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ABSTRACT 
 

The effect of temperature on the equilibrium adsorption of Amoxicillin (AMO) from aqueous solution 
using modified magnetic multi-walled carbon nanotubes (MMWCNTS) was investigated. The 
equilibrium adsorption data were analyzed using three widely applied isotherms: Langmuir, 
Freundlich and Tempkin. The results revealed that Langmuir isotherm fit the experimental results 
well. Kinetic analyses were conducted using pseudo-first and second-order models and the 
intraparticle diffusion model. The regression results showed that the adsorption kinetics were more 
accurately represented by pseudo-second-order model. Standard free energy changes (∆G0), 
standard enthalpy change (∆H0), and standard entropy change (∆S0) were calculated at different 
temperatures. The ∆G0 values were negative and ∆H0 values and ∆S0 values of MMWCNTS were 
positive; and suggested that the AMO adsorption on MMWCNTS was a spontaneous and 
endothermic process. 
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1. INTRODUCTION  
 
The last two decades have witnessed the 
widespread emergence of pharmaceuticals in 
environmental matrices, i.e. surface water, 
groundwater, soils and sediments [1,2]. Among 
the various pharmaceutical compounds, 
antibiotics have been received particular 
attention because of their potential role in the 
development of antibiotic-resistant bacteria [3,4]. 
Antibiotics are used extensively in human and 
veterinary medicine, as well as in aquaculture to 
prevent or treat microbial infections. Most 
antibiotics tested to date are known to be bio-
recalcitrant under aerobic conditions [5,6]. 
 
The presence of antibiotics in the aquatic 
environment has created two issues [7]. The 
immediate concern is the potential toxicity to 
aquatic organisms, and also to humans through 
drinking water [8 9]. In addition, there is growing 
alarm that release of antibiotics to the 
environment contributes to the emergence of 
strains of disease-causing bacteria, resistant to 
high doses of these drugs [10,11]. 
 
Amoxicillin (AMO) is a drug belonging to the 
class of β-lactam antibiotics that has a broad 
spectrum against both Gram-negative and Gram-
positive bacteria [12]. AMO is one of the top-
priority human and veterinary pharmaceuticals, 
and should receive greater attention in the 
management of environmental systems in all 
countries due to its high consumption [13,14]. 
 
Current data available in the literature indicate 
that conventional treatment methods used in 
water treatment (coagulation, flocculation, 
sedimentation, sand filtration, and disinfection 
with chlorine) and wastewater treatment (primary 
settling, activated sludge or trickling filter, and 
secondary settling) are not effective for removal 
of all pharmaceuticals present in raw water and 
wastewater [15-18]. This is because 
pharmaceuticals differ greatly in structure and in 
their physical and chemical properties which 
affect their rate of removal during treatment 
[19,20]. 
 
Among these methods, the adsorption method 
has the advantage of easy operation, low cost, 
high efficiency, and no risk of highly toxic 
byproducts; It is considered one of the most 
promising technologies [21,22]. Adsorption of 
amoxicillin on chitosan beads has been reported, 
where the kinetics and equilibrium of amoxicillin 
adsorption on chitosan fitted well to the Langmuir 

type [23]. Recently, adsorption of antibiotics onto 
activated carbon has been investigated, and 
results show that the adsorption of amoxicillin 
onto activated carbon plays an important role 
[24,25]. However, the most used adsorbents in 
this process are activated carbons (GACs) which 
are costly [26]. Consequently, there is much 
interest in finding alternative adsorbents that are 
inexpensive to implement. 
 
A carbon nanotube (CNTs), as new adsorbent 
has gained increasing attention by many 
researchers. According to the grapheme layer, 
CNTs can be classified into single-wall CNTs 
(SCNTs) and multi-wall CNTs (MWCNTs) 
[27,28]. Due to their large specific surface area, 
small size, and hollow and layered structures, 
CNTs have been proven to possess great 
potential as superior adsorbents for removing 
many kinds of organic and inorganic 
contaminants [29,30]. 
 
Magnetic separation technology has been 
gradually attracting the attention of many 
scientists and technicians as a rapid and 
effective technology for separating magnetic 
materials. Magnetic separation technology 
combined with adsorption on adsorbent has been 
widely used in environmental purification 
applications. The introduction of magnetic 
properties into multi-wall carbon nanotubes 
system will combine the high adsorption capacity 
of CNTs and the separation convenience of 
magnetic materials [31,32]. In this study, multi-
walled carbon nanotubes modified with magnetic 
nanoparticles were used for removal of AMO 
from wastewater samples. The adsorption 
isotherms of the AMO into adsorbent were 
investigated. 
 

2. MATERIALS AND METHODS 
 

2.1 Reagents and Materials 
 
All chemicals were of analytical reagent grade or 
the highest purity available from Merck 
(Darmstadt, Germany) and double distilled water 
was used throughout the study. 
 
In addition, all glassware were soaked in dilute 
nitric acid for 12 h and finally rinsed three times 
with double distilled water prior to use. Fig. 1 
shows the structure of the investigated AMO. 
Stock solutions of AMO were prepared by 
dissolving the powder in double distilled water. 
AMO solutions of different initial concentrations 
were prepared by diluting the stock solution in 
appropriate proportions. 



 
 
 
 

Balarak et al.; BJPR, 16(6): 1-11, 2017; Article no.BJPR.33212 
 
 

 
3 
 

 
 

Fig. 1. Molecular structure of Amoxicillin 
(AMO) 

 

2.2 Synthesis of Magnetic-Modified Multi-
Walled Carbon Nano Tubes 

 
Multi-wall carbon nanotubes with an outer 
diameter 20–25 nm and length of 5–15 nm were 
purchased from Research Institute of Petroleum 
Industry (RIPI), Tehran, Iran. The synthesis of 
MMWCNT Nano composite was achieved 
according to the literature previously reported 
with some modification [33]. Typically, MWCNTs 
were first dispersed in concentrated nitric acid at 
60°C for 12 h under stirring to remove the 
impurities and then washed by copious water 
and ethanol subsequently. After cleaning, 
MWCNTs were dried at 110°C for 4 h. 
Subsequently, an amount of 0.25 g of purified 
MWCNTs was suspended in 100 mL of mixed 
solution containing 0.425 g of ammonium ferrous 
sulfate and 0.6275 g of ammonium ferric sulfate 
followed by the slow addition of 2.5 mL of 8 mol/L 
NH4OH solution at constant temperature of 50°C 
under nitrogen atmosphere with the aid of 
ultrasonic stirring for 10 min. The pH of the final 
mixture was controlled in the range of 10–11. 
The reaction was allowed to be continued for 30 
min, which resulted in the suspension changing 
from black to a brown color. After the completion 
of the reaction, the suspension was allowed to 
cool at room temperature. The MMWCNTs were 
isolated from the mixture by a permanent magnet 
and dried under vacuum. 
 

2.3 Batch Adsorption Studies 
 
The adsorption experiments were carried out 
using a series of 200 mL flasks containing 20 mg 
MMWCNTs and 100 mL 100.0 mg/L AMO 
solution. The pH of the solutions was adjusted at 
7.0 by adding 0.1 M HCl or 0.1 M NaOH solution. 
After stirring at a 180 rpm for 90 min, the 
solid/liquid phases were separated by 
centrifuging at 3600 rpm for 10 min. The residues 
concentration of AMO was measured using a 

HPLC (C18 ODS column) with a UV detector 
2006 at a wavelength of 190 nm. The mobile 
phase was a mixture of buffer phosphate with 
pH= 4.8 and acetonitrile with a volumetric ratio of 
60/40 with an injection flow rate of 1 mL/min. The 
retention time of AMO was 6.5 min. The 
efficiency (R) and adsorption capacity (qe) were 
calculated by equations 1 and 2, respectively 
[34,35]: 
 

R= ������	

��
×100                                           (1) 

 
�� 

������	�

�
× 100                                        (2) 

 
Where C0 (mg/L) is the initial concentration of 
AMO solution, Ce (mg/L) is the equilibrium 
concentration of AMO in aqueous solution, V is 
the volume of the AMO solution (mL); and M is 
the weight of adsorbent (g).  
 
3. RESULTS AND DISCUSSION 
 
The morphologies of the synthesized MMWCNT 
adsorbent were obtained by SEM and TEM 
(shown in Fig. 2). It was observed that iron    
oxide nanoparticles were successfully         
coated    on the surface of MWCNTs to form 
multi-wall carbon nano tube-iron oxide 
nanocomposites. 
 
3.1 Adsorption Isotherm Studies 
 
The adsorption isotherm is the most important 
information, which indicates how adsorbate 
molecules are distributed between the liquid 
phase and solid phase when the adsorption 
process reaches equilibrium. This study adopted 
the Langmuir, Freundlich and Tempkin  
isotherms to describe equilibrium adsorption. 
Equation parameters and underlying 
thermodynamic assumptions of these equilibrium 
isotherms frequently provide some insights into 
adsorption mechanisms, surface properties and 
affinities of the adsorbent. The Langmuir     
model in linear form is presented by equation 3 
[36,37]: 
 

��

��
 = 

��

����
+ 

�

���� ��

                                           (3) 

 
Where qe is the amount of AMO adsorbed per 
gram of MMWNTs (mg/g); Ce is the equilibrium 
concentration of AMO in a solution (mg/L); KL is 
the Langmuir constant (L/mg), which is related 
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Fig. 2. TEM and SEM images of MMWNTs 
 

to the affinity of binding sites; and qm is the 
theoretical saturation capacity of the monolayer 
(mg/g). The values of qm and KL are derived from 
the intercept and slope of the linear plot of 1/qe 
versus 1/Ce. 
 
The Freundlich model in linear form is presented 
by equation 4 [38,39]: 
 

Ln qe = ln KF + 
�

�
 ln Ce                                 (4) 

 
Where qe and Ce are defined as for the Langmuir 
isotherm and KF and n are Freundlich constants, 
which represent adsorption capacity and 
adsorption strength, respectively. Both KF and 
1/n can be obtained from the intercept and slope 
of the linear plot of ln qe versus ln Ce. The 
magnitude of 1/n quantifies the favorability of 
adsorption and the degree of heterogeneity on 
the surface of MMWNTs. If 1/n is less than 1, 
suggesting favorable adsorption capacity 
increases and new adsorption sites form. 
 
The Tempkin isotherm describes the behavior of 
adsorption systems on a heterogeneous surface, 
and is represented by equation 5 [40,41]: 
 

qe = 
��

�
 ln (Kt Ce)                                         (5) 

 
Equation can be expressed in a linear form as 
[42]: 
 

qe =B1 ln (Kt)+B ln (Ce)                               (6) 
 

Where B1=
��

�
, and B is a constant related to 

adsorption heat, and Kt is the equilibrium binding 
constant (L/mol) corresponding to maximum 
binding energy. A plot of qe versus ln Ce is used 
to determine isotherm constants. 

Table 1 shows the isotherm parameters at 
different temperatures. Based on the correlation 
coefficient (R2) (Table 1), the adsorption of AMO 
is best fit by the Langmuir isotherm (Fig 3). 
Notably, KL, KF, B1, n and qm increased as 
temperature increased, suggesting that the 
adsorption of AMO on MMWNTs increased as 
temperature increased (Table 1). These 
experimental results reveal that the affinity of 
binding sites for AMO increased as temperature 
increased. Since 1/n is less than unity, the 
adsorption of AMO onto MMWNTs was favored. 
 
3.2 Kinetic Studies 
 
Adsorption is a physicochemical process that 
involves mass transfer of a solute from liquid 
phase to the adsorbent surface. Three of the 
most widely used kinetic models, i.e. Lagergren-
first-order equation, pseudo-second-order 
equation and intra-particle diffusion model were 
used to research the adsorption kinetic behavior 
of AMO onto MMWCNTs. The best-fit model was 
selected based on the linear regression 
correlation coefficient values (R2). 
 
Lagergren-first-order kinetic model might be 
represented by equation 7 [43, 44]. 
 

Log (qe–qt) = log qe–
��

�. ! 
t                           (7) 

 
Where qe and qt (mg/g) are the amounts of AMO 
adsorbed (mg/g) at equilibrium and time t (min), 
respectively, and k1 (min-1) is the rate constant of 
the pseudo-first-order. The parameters k1 and qe 
could be calculated from the slope and intercept 
of the plots of log (qe-qt) versus t and are given in 
Fig 4. The values of the correlation coefficient R2 
obtained at all the studied concentrations are 
low, in the range 0.844-0.892. Furthermore, the 
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experimental values of qe,exp (mg/g) are far from 
the calculated qe, cal (mg/g). This suggests that 
the pseudo-first-order kinetic model is not 
suitable to describe the adsorption process. 
 
A linear form of pseudo-second-order kinetic 
model was expressed by equation 8 [45,46]: 
 

"

�#
 = 

�

�$��$
 + 

"

��
                                                                       (8) 

 
Where K2 is the rate constant (g/mg min) of 
pseudo-second-order kinetic model for 
adsorption. The slope and intercept of the linear 
plots of t/qt against t yield the values of 1/qe and 
1/k2qe

2 for in the equation 8. 
 
Since neither the pseudo first-order nor the 
second-order model can identify the diffusion 

mechanism, an intra-particle mass transfer 
diffusion model proposed by Weber and Morris 
can be written as follows [47,48]: 
 

qt = K t 0.5 + c                                              (9) 
 
Where c (mg/g) is the intercept and K is the intra-
particle diffusion rate constant (mg/g min), which 
can be calculated from the slope of the linear 
plots of qt versus t1/2.  
 
Different kinetic parameters of AMO adsorption 
onto MMWCNTs for different AMO initial 
concentrations are shown in Table 2. All the 
experimental data showed better compliance 
with pseudo-second-order kinetic model in terms 
of higher correlation coefficient values 
(R2>0.995). Plots of pseudo-second-order

 

 
 

Table 1. Isotherm parameters for AMO adsorption ont o MMWCNTs 
 

Tem (%) 273 293 313 333 
Langmuir 
qmax(mg/g) 
KL (L/mg) 
RL 
R2 

 
335.25 
0.1180.0 
781 
0.998 

 
355.85 
0.248  
0.0378 
0.999 

 
376.25 
0.467  
0.0209 
0.997 

 
395.5 
0.565  
0.0173 
0.996 

Freundlich 
KF (mg/g) 
n 
R2 

 
7.86   
1.951 
0.951 

 
13.52 
2.41 
0.947 

 
17.41 
3.127 
0.916 

 
20.36 
6.94 
0.928 

Tempkin 
A (L/g) 
B 
R2 

 
0.465 
12.25 
0.795 

 
0.641 
10.41 
0.774 

 
0.795 
8.172 
0.832 

 
0.922 
31.66 
0.814 

-0.15

6E-15

0.15

0.3
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0.6
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0 15 30 45 60 75

C
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Fig. 3.  Langmuir isotherms plots for AMO adsorption on MMWC NTs at various 
temperatures 
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kinetic models are shown in Fig. 5 for the effect 
of initial AMO concentrations. It could be found 
that pseudo-second-order kinetic model was 
more valid to describe the adsorption behavior of 
AMO onto MMWCNTs. 
 
The removal of AMO by adsorption on 
MMWCNTs was found to be rapid at the initial 
period and then to become slow and stagnate 
with the increase in contact time.  
 
Typically, various mechanisms control the 
adsorption kinetics; the most limiting were the 
diffusion mechanisms, including external 
diffusion, boundary layer diffusion and intra-
particle diffusion. Hence, the intra-particle 
diffusion model was utilized to determine the 
rate-limiting step of the adsorption process. If the 
regression of qt versus t1/2 was linear and passes 
through the origin, then intraparticle diffusion was 
the sole rate-limiting step. The regression was 
linear, but the plot did not pass through the origin 
(Fig. 6), suggesting that adsorption involved 
intra-particle diffusion, but that was not the only 

rate-controlling step. The values of C were 
helpful in determining the boundary thickness: a 
larger C value corresponded to a greater 
boundary layer diffusion effect. The C values 
(18.45–30.64 mg/g) increased with the initial 
concentrations (25–200 mg/L) (Table 2). The 
results of this study demonstrated increasing the 
initial concentrations promoted the boundary 
layer diffusion effect. 
 

 3.3 Effect of Temperature on AMO 
Adsorption and Apparent 
Thermodynamic Studies 

 
The effect of temperature on AMO adsorption 
was investigated at (273–333 K). As it can be 
seen from Fig. 6, the adsorption capacity was 
increased, when the temperature was increased 
from 273 to 333 K. Increasing the temperature is 
known to increase the rate of diffusion of the 
adsorbate molecules across the external 
boundary layer and in the internal pores of the 
adsorbent particle, owing to the decrease in the 
viscosity of the solution.  

 

 
 

Table 2. Kinetic parameters for the adsorption of A MO onto MMWCNTs biomass at  
various concentration 

 
Co(mg/L)   Pseudo-first order Pseudo-second order Int raparticle diffusion 

K1 qe(mg/g) R 2 K2 qe(mg/g) R 2 K C R2 
25 
50 
100 
200 

0.0289 
0.0234 
0.0158 
0.0124 

 48.32 
98.41 
172.58 
310.64 

0.892 
0.874 
0.853 
0.844 

0.0071 
0.0058 
0.0044 
0.0032 

61.24 
120.37 
218.46 
359.25 

0.995 
0.998 
0.999 
0.996 

0.489 
0.614 
0.781 
0.915 

18.45 
22.37 
27.52 
30.64 

0.828 
0.854 
0.861 
0.895 
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Fig. 4. Pseudo- first order Kinetics for AMO adsorp tion onto MMWCNTs at 
different  concentration 
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Fig. 5. Pseudo-second order Kinetics for AMO adsorp tion onto MMWCNTs at different 

concentration 

 
Fig. 6. Intraparticle diffusion Kinetics for AMO ad sorption onto MMWCNTs at different 

concentration 
 

The thermodynamic parameters of Gibb’s free 
energy change, ∆G˚, enthalpy change, ∆H˚, and 
entropy change, ∆S˚, for the adsorption 
processes are calculated using the equations 10 
and 11 [49,50]: 
 

∆G˚= -RT Ln Ka                                       (10) 
 

∆G˚ = ∆H˚- T∆S˚                                      (11) 
 
Where R is universal gas constant (8.314 
J.mol/K) and T is the absolute temperature in K. 
 
Thermodynamic parameters of AMO adsorption 
are shown in Table 3. The negative values of 

∆G˚ confirm the feasibility of the process and 
also the spontaneous nature of adsorption with a 
high preference of AMO by MMWCNTs. 
Furthermore, the decrease in the negative value 
of ∆G˚ with an increase in temperature indicates 
that the adsorption process of AMO on 
MMWCNTs becomes more favorable at higher 
temperatures. 
 
Adsorption process can be classified as physical 
adsorption and chemisorptions by the magnitude 
of the enthalpy change. It is accepted that if 
magnitude of enthalpy change is lesser than 84 
kJ/mol, then the adsorption is physical. However 
chemisorptions take place in the range of 

0
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Fig. 7. Effect of temperatures on adsorption capaci ty (Dose = 0.4 g/L, AMO concentration = 100 

mg/L, pH = 7) 
 

Table 3. Thermodynamic parameters of the AMO adsorp tion on the MMWCNT S at different 
temperatures 

 
T (K) ∆G◦ (kJ mol −1) ∆S◦ (J mol -1 K-1) ∆H◦ (kJ mol -1) 
273 -17.62  

 
0.191 

 
 
34.52 

293 -21.44 
313 -25.26 
333 -29.08 

 
84–420 kJ/mol. From these results (Table 3 
above) it is clear that physisorption is much more 
favorable for the adsorption of AMO. Also, the 
positive value of ∆H° indicates that the 
adsorption reaction is endothermic. The positive 
value of ∆S° suggests that some structural 
changes occur on the adsorbent and the 
randomness at the solid–liquid interface in the 
adsorption system increases during the 
adsorption process [51,52]. Also entropy 
increase could be due that the separation of the 
associated-water molecules near to non-polar 
moieties of the drug after transfer from the 
solution to the adsorbent [44]. 
 

4. CONCLUSIONS  
 
This study investigated the removal of AMO from 
aqueous solution by MMWCNTs. The adsorption 
of AMO on MMWCNTs has been described by 
the Langmuir, Freundlich, Tempkin isotherms. It 
was found that the data fitted well to Langmuir 
isotherm (R2>0.99) better than other isotherms. 
The adsorption kinetics can be successfully fitted 
to pseudo-second-order kinetic model. The 
results of the intra-particle diffusion model 
suggested that intra-particle diffusion was not the 
only rate-controlling step. Thermodynamic 
analyses indicated that the adsorption of AMO 
onto MMWCNTs was endothermic and 

spontaneous; Additionally, the adsorption of 
AMO onto MMWCNTs was via a physisorption 
process. This study concluded that MMWCNTs 
are an appropriate adsorbent for removing 
antibiotics from wastewater. 
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