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Abstract 
The aim of this study was to determine the cardinal temperatures for germinating colubrina seeds, verify 
isothermal velocity variation based on the transition state model and calculate the ∆H≠ variation as a function of 
temperature. Seeds were incubated at constant temperatures of 5, 10, 15, 20, 25, 30, 35 and 40 °C and alternating 
temperature from 20-30 °C in an 8-hour photoperiod. The variables analyzed were: G, PC, IVG, TMG, VMG, Fi, 
U, Z, CR, CPA, MSR and MSP. Arrhenius equation was linearized by logarithmic transformation, producing the 
graph of -RlnV × 1/T from the experimental values of velocity. A net enthalpy change (∆H≠) in relation to 
temperature was represented by the expression: ∆H≠ = [RT(θ − T)·(Tm + TM)]/[(T − Tm)·(TM − T)]. The logarithm 
regression of the reaction rate on the reciprocal of the temperature fit best to the quadratic model. The 
distribution of ∆H≠ with asymptotes close to Tm and TM indicated that the processes that occurred in the 
supra-optimal temperature range were of a different nature from those that occurred in the infra-optimal 
temperature range. The data showed |∆H≠| < 12 Kcal/mol in the optimal range and |∆H≠| > 30 Kcal/mol for 
temperatures of 10, 15 and 35 °C. The minimum and maximum temperature limits were 10 and 35 °C, 
respectively. Germination speed was related to temperature in a curvilinear manner. The germination process was 
endergonic and only occurred when energy was ≥ -38.35 Kcal/mol and ≤ 32.42 Kcal/mol.  

Keywords: arrhenius equation, colubrina, net enthalpy change, transition state model 

1. Introduction 
Colubrina glandulosa Perkins, popularly known as colubrina, is a rare heliophyte and selective hygrophyte tree 
species (family Rhamnaceae), which is native and distributed in South America, ranging from the coastal Brazil 
to Bolivia, Paraguay, and Peru. Its wood is suitable for civil and naval construction and external and hydraulic 
projects. The wood produces high quality charcoal and firewood. It also presents ornamental value, and is 
indicated for urban afforestation. Its flowers are honey-bearing and suppliers of nectar and pollen. This species 
has been recommended to help recover degraded ecosystems due to its rapid growth (Lorenzi, 2016). It has 
phytotherapeutic value, as the leaves and bark can be used as a fever reducer or for vitamin C deficiency. 
Carvalho (2005) classified this species in the initial secondary ecological group. 

In view of the ancient logging and relictual situation of the colubrina populations, the seeds should receive 
special attention for conservation, and should be present in heterogeneous forests that are permanently preserved. 
A lack of specific information is available on the ecophysiology of seed germination of this species in the Rules 
for Seed Analysis (Brasil, 2009) and Instructions for Analysis of Seeds of Forest Species (Brasil, 2013). This 
species does not have established criteria for standardizing seedling production methods.  

Temperature is one of the main environmental factors that govern seed germination, as it strongly influences 
both the rate of water imbibition by the seed and the biochemical reactions that determine the entire process 
(Oliveira, França, Torres, Nogueira, & Freitas, 2016). Consequently, temperature variations affect the speed, 
percentage, and uniformity of germination (Carvalho & Nakagawa, 2012). Each species has a temperature range 
where germination will occur and is considered optimal, where the efficiency of the process is total, and extreme 
limits of maximum and minimum tolerated by the seeds, above or below which, respectively, germinability 
cannot be measured (Bastos, Ferraz, Lima Junior, & Pritchard, 2017). Therefore, species with different 
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15 °C, the test was extended for another 7 days by transferring the seeds to the ideal temperature. The variables 
analyzed were: 

(a) Germinability: gi = (Σki = 1ni/N) × 100 (Carvalho, Santana, & Ranal, 2005); where, ni the number of seeds 
germinated in time i and N the total number of seeds placed to germinate. 

(b) First germination count: It was performed together with the germination test by computing the percentage 
of normal seedlings obtained on the third day after the test started.  

(c) Speed index of germination: IVG = G1/N1 + G2/N2 + … + Gn/Nn (Maguire, 1962); where, G1, G2, and Gn 
are the number of seeds germinated in the first, second, and last count; and N1, N2, and Nn are the number of 
sowed days at the first, second, and last count.  

(d) Mean germination time: t = Σki = 1(niti)/Σki = 1ni; where, ti is the time from the start of the experiment to 
the i nth observation (days or hours); ni is the number of seeds germinated at time i (corresponding number or i 
nth observation); and k is the last day of germination.  

(e) Average speed of germination: v = 1/t (Ranal & Santana, 2006); where, t is average germination time. 

(f) Relative germination frequency: Fi = ni/Σki = 1ni; where, ni is the number of seeds germinated per day and 
Σni is the total number of germinated seeds. 

(g) Uncertainty index: U = -Σki = 1Filog2Fi ≍ Fi = ni/Σki = 1ni; where, Fi is the relative frequency of 
germination; ni is the number of seeds germinated at time i (corresponding number or i nth observation); and k is 
the last day of germination.  

(h) Synchronicity index: Z = ΣCn1,2/N ≍ Cn1,2 = ni(ni − 1)/2; N = Σni(Σni − 1)/2 (Primack, 1980); where, Cn1,2 
is the combination of seeds germinated in the ith time, and ni is the number of seeds germinated at time i. 

(i) Length of aerial part and primary root: At the end of the germination test, the lengths of the primary root 
(from the base of the neck to the end of the primary root) and of the aerial part (from the collar to the apex of the 
seedling) of the normal seedlings in the experimental unit were measured using a graduated ruler. 

(j) Aerial part dry mass and primary root: After the measurements, the roots and aerial part of the normal 
seedlings of the experimental unit were conditioned in Kraft paper bags and placed in a forced air circulating 
oven, regulated at 80 °C, until the samples reached constant weight (24 h). Then, dry mass was determined on a 
precision analytical balance (0.0001 g).  

Based on the activated complex model, the graph with the coordinates y = -RlnV (V = experimental values of 
velocity) = A(1/T) × 105, with R = 1,987 Kcal mol-1 and T in Kelvin, was constructed to explain variations in 
germination velocity over the entire thermal range.  

From the Arrhenius equation ∂(-RlnV)/∂(1/T) = ΔH≠ + RT, the net energy change (enthalpy) of germination 
activation was calculated for both the infra (V1) and the supra-optimal (V2), using the minimum (Tm) and 
maximum (TM) germination temperatures as parameters (Labouriau & Osborn, 1984). Thus, in the range V1, 
∆H≠

1 = RTm·[T/(T − Tm)], and in the range V2, ∆H≠
2 = -RTM·[T/(TM − T)], the net change in enthalpy (∆H≠) as a 

function of temperature was represented by the expression: ∆H≠ = [RT·(θ − T)·(Tm + TM)]/[(T − Tm)·(TM − T)], 
where, θ (harmonic mean of minimum and maximum temperatures) = [(2Tm·TM)/(Tm + TM)], and T the 
experimental temperature, following the physiological interpretation of the opposite signs of ΔH≠ in the infra and 
supra-optimal bands of germination.  

The experimental design was completely randomized, with four replicates of 25 seeds per treatment. Data were 
submitted to analysis of variance and the means were compared by Tukey’s test at a 5% probability. A 
polynomial regression analysis was performed to test the linear and quadratic models for quantitative effects, and 
the most significant R2 was selected. The statistical program used was Sisvar version 5.6 (Ferreira, 2011). 

The stochastic model is: Yij = μi + εij (i = 1, … ݇ and j = 1, … r); where, i is the index referring to the treatment 
and j is the experimental unit.  

3. Results and Discussion 
The colubrina seeds germinated in the range 10 °C ≤ T ≤ 35 °C, with the minimum cardinal point at 5 °C < T < 
10 °C, and the maximum at 35 °C < T < 40 °C, i.e., no germination occurred at 5 °C or 40 °C, resulting in 
physiological adaptation of the seeds to the environmental conditions for the species. The optimum temperature 
was 25 °C < T < 30 °C, which allowed high germinability at a lower germination time (TMG) (Table 1). 
Nevertheless, the seeds present some plasticity regarding this adaptive character, as this species occurs over 
several Brazilian states, in regions of transition between the Cerrado or Atlantic Forest biomes for the Caatinga. 
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The temperature variation (20-30 °C) did not increase the percentage of germination (G) compared to the 
constant temperature of 20 °C (Table 1). F. N. Oliveira, J. R. Oliveira, Torres, Freitas, and Nogueira (2017) 
reported that the efficiency of germination can be quantified using the ideal temperature and maximum and 
minimum temperature limits. Other trees in the Caatinga biome present similar thermal requirements: Amburana 
cearensis (Allemão) A. C. Sm. (20 °C ≤ T ≤ 40 °C) (Almeida et al., 2017), Mimosa ophthalmocentra Mart. ex 
Benth. (25 °C ≤ T ≤ 35 °C) (Nogueira, Torres, Freitas, Castro, & Sá, 2017), Mimosa tenuiflora Willd. (20 °C ≤ T 
≤ 40 °C) (Benedito, Ribeiro, Torres, Guimarães, & Oliveira, 2017), and Senegalia bahiensis (Benth.) Seigler & 
Ebinger (25 °C ≤ T ≤ 30 °C) (Lima, Mendonça, Paixão, Freitas, & Moreira, 2017). 

Increasing the experimental temperature increased G, first count (PC) and germination speed index (IVG), 
within a certain limit, but temperatures > 30 °C caused a marked reduction in total germination until the 
maximum temperature was reached (35 °C) (Table 1). No seeds germinated at 35 °C, due to thermoinhibition, 
which can also cause thermal dormancy or loss of viability. On the other hand, a small number of seeds 
germinated (12%) at 10 °C during the 19 day incubation (Table 1), contributing to the proliferation of 
microorganisms harmful to the establishment of the seedlings. Low temperatures may have resulted in the 
gradual immobilization of seed reserves, gradually decreasing the percent germination (R. B. Silva, Matos, 
Farias, Sena, & D. Y. B. O. Silva, 2017). 

 

Table 1. Germination (G), first count (PC), germination speed index (IVG) and mean germination time (TMG) of 
C. glandulosa seeds, submitted to different temperatures 

Temperatures (ºC) G (%) PC (%) IVG TMG (days) 

10 12 e 0 f 0.331 g 12.0 f 

15 32 d 2 ef 0.919 f 10.0 e 

20 59 c 6 d 2.618 d 6.2 d 

25 73 b 29 b 4.707 b 4.2 b 

30 97 a 58 a 7.033 a 3.6 a 

35 28 d 4 de 1.443 e 5.3 c 

20-30 61 c 11 c 3.469 c 4.7 b 

Value of “F” 495.74** 569.54** 933.61** 1160.59** 

CV (%) 6.67 13.36 6.94 4.59 

Note. Means followed by the same lowercase letter in the column do not differ from each other to a 5% 
probability by the Tukey test. 

** Significant at the 1% probability level. 

 

The Arrhenius curve is shown in Figure 2. The typical unimodal relationship between the logarithm of the 
reaction velocity and the reciprocal of the temperature better fit a quadratic regression model, where the 
decreasing part of the curve represented the supra-optimal thermal range, and the increasing part of the curve 
corresponded to the infra-optimal range. Based on the activated complex model and isothermal dependence of 
germination, the theoretical optimum temperature for velocity was 31.4 °C. 

It should be emphasized that the energy barrier of activation encompasses both thermal and organizational 
transitions. The model assumes that an enzyme can exist in two states, such as active and inactive. According to 
Machado, Bortolin, Paranhos, and Silva (2016), products are formed when the enzyme is in its active state, 
which, in turn, is in equilibrium with the denatured or inactive form. As temperature increases, equilibrium shifts 
to the inactive enzymatic state. 
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(Table 4), which may extend the problem to the rest of the plant cycle, with effects on speed of development and 
production by area (Missio et al., 2017). According to Marcos-Filho (2015), injuries due to cooling are probably 
related to damage to the membrane system, because embryonic axes subjected to these conditions lose organic 
substances. Temperature has its main effect on the physical state of the cell membrane, particularly on lipid 
fluidity (Lopes & Franke, 2011). 

Some of the reactions that would generally culminate in the protrusion of the primary root proceeded normally at 
the maximum temperature, but subsequent normal seedling development did not occur (Table 4), possibly as a 
consequence of a lower rate of protein synthesis or other processes particularly sensitive to the temperature 
increase. This observation may be related to the loss of conformational structure of the enzymes at a given 
temperature, which also leads to loss of function or inactivation (Ataíde, Borges, & Leite Filho, 2016). 

Temperature variations within the optimum range were the most adequate for seed germination and other aspects 
of initial development of the plant (Tables 1, 2, and 4), as there is a relationship between these temperatures and 
the biome where the seeds were produced.  

 

Table 4. Root length (CR), length of the aireal part (CPA), root dry mass (MSR) and dry mass of the aireal part 
(MSP) of C. glandulosa seedlings, submitted to different temperatures 

Temperatures (ºC) CR (mm) CPA (mm) MSR (mg) MSP (mg) 

10 3 f 36 f 2 f 26 e 

15 9 e 56 e 4 e 28 e 

20 19 d 59 e 9 d 38 d 

25 28 b 97 b 19 b 85 b 

30 34 a 109 a 23 a 93 a 

35 7 e 76 d 3 ef 27 e 

20-30 24 c 86 c 15 c 76 c 

Value of “F” 236.00** 1462.59** 429.52** 920.69** 

CV (%) 12.09 3.58 9.80 5.53 

Note. Means followed by the same lowercase letter in the column do not differ from each other to a 5% 
probability by the Tukey test. 

** Significant at the 1% probability level. 

 

4. Conclusions 
Colubrina seeds presented a wide range of tolerance to temperatures, with minimum and maximum limits of 10 
and 35 °C, respectively. 

The optimal temperature for colubrina seed germination was 30 °C. 

Germination speed was in a curvilinear relationship with temperature. 

The germination process was predominantly endergonic and occurred only when an energy ≥ -38.35 Kcal mol-1 
and ≤ 32.42 Kcal mol-1 was reached. 
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