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ABSTRACT 
 

Introduction: Hippocampal neurogenesis is essential for cognitive functions like memory and 
learning. However, other functions of hippocampus are not well understood. We aimed to study the 
role of hippocampus in regulation of feeding behavior during withdrawal period. 
Materials and Methods: Forty eight male Sprague-Dawley rats were randomly divided into four 
experimental groups: socialized, isolated, withdrawal isolated group and withdrawal socialized 
group. At the end of study, short - term memory, feeding behavior, blood glucose levels, 
corticosterone, copper, anxiety and neurogenesis were assessed. 
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Results: Socialization during withdrawal, increased food intake in rats. In isolated rats, short term 
memory was significantly impaired and neurogenesis was reduced. Blood glucose and anxiety 
levels were found to be higher in isolated rats. Socialization reduced corticosterone level and 
copper in serum in rats. 
Conclusion: Socialization improves hippocampal neurogenesis which in turn regulates feeding 
behavior. Feeding behavior imparts regulated by hippocampus directly and also indirectly by co 
morbid psychiatric disorder. 
 

 
Keywords: Neurogenesis; Y-maze; feeding; corticosterone; novelty suppressed feeding test; 

withdrawal; copper and glucose. 
 

1. INTRODUCTION 
 

Contrary to earlier dogma, it is now acceptable 
that the adult brain is capable of generating new 
neurons. Adult neurogenesis predominantly 
occurs in two regions of brain; subventricular 
zone and subgranular zone of the hippocampus 
[1]. Newly generated neurons are involved in 
tuning the hippocampus to changing 
environment. These changes may help in 
improving rewarding experiences or facilitate the 
avoidance of stressful conditions. There is a 
balance between positive and negative 
reinforcing states and, any disbalance may result 
in mood imbalances like anxiety and depression 
[2]. In addition, neuronal loss can lead to memory 
impairment as assessed by the Morris water 
maze [3]. In subventricular zone neurons are 
proliferated in response to injury, ischemia and 
infarction and from this area they are migrating to 
olfactory bulb where they differentiate into 
granule and periglomerular cells. There is 
growing evidences that link energy balance and 
food intake to adult hippocampal neurogenesis 
[4].  
 

Socialization promotes new habits and skills. 
Social interaction is especially important during 
childhood as it facilitates learning, reasoning, 
comprehension and critical thinking. In adults, 
socialization helps in acquiring new values and 
behaviors associated with new adult statuses 
and roles. Environmental enrichment is more 
powerful than socialization in strength for 
activating neurogenesis [5]. In contrast, social 
isolation during adulthood can bring about a 
variety of troubles like personality disorder, family 
instability and social problems [6]. Social 
isolation impairs learning and memory formation, 
and promotes mood disturbances [7].  
 

Feeding behaviors are well regulated. These 
ingestive behaviors are regulated by neural 
circuits embedded within central nervous system. 
However, current literature lacks exacts 

mechanisms involved in the regulation of feeding 
behavior. Classical studies have indicated the 
role paraventricular nucleus and lateral 
hypothalamic area as feeding centers. In 
addition, arcuate hypothalamic nucleus has 
recently gained much attention for the neuronal 
control of appetite and metabolism [8]. The 
hippocampus has been recently highlighted for 
regulation of food intake [9,10]. Kanoski et. al 
showed that ghrelin signalling in ventral 
subregion of hippocampus contributes to food 
intake and learned appetite behaviors [4]. 
Regulation of food intake also relies on 
communication between hypothalamic 
homeostatic circuits and reward circuits [11]. It is 
possible that intake of large quantities of 
food/drug can disturb these circuits and may 
result in compulsive ingesting behaviors. In 
addition, endogenous opioids are also involved in 
the regulation of food intake and it appears to be 
linked with reward-dependent feeding [12]. 

 

Abstinence from drug of abuse is often not 
successful and drug relapse remains a major 
problem. Understanding the pathophysiological 
basis of drug relapse can aid in successful drug 
withdrawal. Transition from occasional usage to 
uncontrolled and compulsive state is not a 
predictable behavior. Being able to delineate the 
development of such behaviors is important. In 
this study, feeding behavior is assessed to 
determine if it is associated with good prognosis. 
Since normal feeding behavior is indicative of 
healthy functioning of rewarding center, proper 
feeding for developing addiction. In addition, 
addiction involves pathological disruption of 
neural processes that are normally important for 
reward-related learning and memory. For 
successful drug withdrawal and abstinence, 
intact short-term memory is essential [13]. Thus, 
disturbed feeding patterns co-morbid with 
memory impairment and mood imbalances can 
be indicative of bad prognosis during withdrawal 
period.  
 



Elevated corticosterone level is a marker of 
relapse to drug abuse and poor stress response 
[14]. The elevation of corticosterone is 
associated with elevated corticotrophin
factor (CRF) which plays an important role in 
stress-induced drug relapse. Pharmacological 
blockade of CRF system has shown to inhibit 
drug-seeking and drug-taking behaviors 
 
Copper (Cu) is an element essential for cellular 
function and it acts as a cofactor for many 
enzymes involved in biochemical reactions. In 
the nervous system, Cu ions take part in 
neurotransmitter metabolism and synaptic 
activity. Using x-ray fluorescence microscopy, it 
has been observed that subventricular contains a 
very high Cu concentration as compared to other 
brain areas [17]. Thus, it can be speculated that 
Cu may be involved in neuronal proliferati
differentiation associated with the subventricular 
zone.   
 
In this study, we hypothesize that socialization 
during withdrawal period facilitates the reward 
center for the maintenance of positive behaviors 
such as feeding and prevents anxiety. 
Furthermore, we explored the role of 
hippocampal neurogenesis in the regulation of 
feeding behavior. 
 

2. MATERIALS AND METHODS
 
2.1 Animal Care  
 
The experimental protocols followed in this study 
were conformed to the Guidelines for the Care 
and Use of Laboratory Animals published by 
National Institutes of Health (NIH Publication 
No.85-23, revised 1996) and were further 
 

 

Socialized (n=16)

Isolated (n=8)

Withdrawal Socialized (n=16)

Withdrawal Isolated (n=8)
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2. MATERIALS AND METHODS 

The experimental protocols followed in this study 
were conformed to the Guidelines for the Care 
and Use of Laboratory Animals published by 
National Institutes of Health (NIH Publication 

23, revised 1996) and were further 

approved by the institutional ethical committee at 
Tehran University of Medical Sciences (Tehran, 
Iran). Forty eight male Sprague
(weighing 200 to 250 g) were housed in an air
conditioned colony room maintained at 21
with 12 hours light-dark cycle. All animals had 
with free access to food and water. The animals 
were divided into 4 groups (n=
(control), isolated (control), withdrawal isolated 
and withdrawal socialized group. Sixteen
were used for modeling socialization without any 
other intervention (Fig. 1). 
 

2.2 Isolation and Socialization of Rats
 
Rats in the isolated group were housed 
individually in cages with walls covered with 
black plastic. Isolated rats were housed
separate rooms in order to attain true isolation. 
The rooms were well-ventilated and kept quiet. In 
socialized group, rats were housed in pairs and 
the cages left transparent. Rats were caged for 
1-week adaptation period followed by two weeks 
of experimental period (Fig. 2).  
 

2.3 Addiction and Withdrawal 
 
For adaptation, all rats received 0.75 mg/
of morphine sulphate for three days. Rats were 
rendered morphine dependent by 
interaperitoneally infusions of increasing doses of 
morphine (from baseline dose: 5mg/kg/
final dose: 35/mg/kg/7

th
 day) for 7 days twice a 

day. Next, Naltrexone was injected (3 mg/kg
in day 8. Drug doses were selected from 
preliminary study performed at our laboratory 
(unpublished data) and other previous s
[18, 19]. Naltrexone was used for preparing rats 
for better tolerance of withdrawal period

 
Fig. 1. Experimental groups 
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Fig. 2. 

Fig. 3. 

 
2.4 BrdU Preparation  
 
BrdU is analogue of base thymidine that 
incorporates into the DNA of newly generated 
neurons and gives brown stain to them. BrdU 
powder was purchased from Sigma
Company and 50 mg/kg/rat was dissolved in 
normal saline (N/S 0.9%). BrdU was injected 
intraperitoneally once a day for 14 days.
 

2.5 Experimental Design  
 
At the end of 14th day, spatial memory (using Y
maze), feeding behavior and blood sugar levels 
were assessed. Furthermore, novelty 
suppressed feeding test (NSF) was performed. 
Rats were anesthetized and blood was collected 
and brains were perfused with paraformaldehyde 
4%. The rats were decapitated and their brains 
were sectioned to study neurogenesis by 
counting BrdU positive cells. 
 

2.6 Assessment of Feeding Behavior 
 
Twenty-four hour food and water intake were 
noted in rats. Food and water were weighed in 
the beginning and compared with that at the end. 
For this experiment, all rats were housed 
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Feeding Behavior  

od and water intake were 
noted in rats. Food and water were weighed in 
the beginning and compared with that at the end. 
For this experiment, all rats were housed 

separately and tap water and food pellets were 
introduced to each cage.  
 

2.7 Novelty Suppressed Feeding Test 
(NSF)   

 
This test was performed to assess anxiety
induced hypophagia in rats. Rats were housed 
individually, and food pellets were removed from 
their cages. Water was made freely available. 
After 24 hours, rats were tested. The testing 
apparatus consisted of a square open field 
chamber (30 cm long × 30 cm wide × 20 cm 
high). A piece of chow was placed in the center 
of the testing apparatus. Each rat was placed in 
a corner of the testing apparatus, and the latency 
to the first feeding episode was recorded for 5 
min [20]. 

 
2.8 Y-maze  
 
We used a Y-shaped maze with three 
placed at 120° angle from each other. Each arm 
was 40 cm long, 30 cm high and 15 cm wide 
converging on a triangular central area with 15 
cm at its longest axis. This test was used to 
assess short term memory involving many parts 
of brain like; hippocampus, basal forebrain, 
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septum and prefrontal cortex. In this study, we 
considered prefrontal cortex function for short 
term memory assessment by recording 
spontaneous alternation in a single 8 minute 
session. Each rat was placed at one end of the 
maze and then allowed to move freely. The 
sequence of each arm entry was recorded 
manually (i.e., ABCBCAACACBABCB, etc.).  A 
spontaneous alternation behavior, which 
is regarded as a measure of spatial memory, was 
defined as the entry into all three arms on 
consecutive choices in overlapping triplet sets 
(i.e., ABC, ABA, CAB, and CBC). The percent 
spontaneous alternation behavior was calculated 
as the ratio of actual to possible alternations. 
Percent Alternation = Actual Alternation (i.e., 
ABC, CBA = 6) / Maximal Alternation* (i.e., 

ABCBCABCABCACBA = 15 – 2 = 13) ×100 = 
(6/13)×100 = 46.15%. * Total number of arms 
entered minus 2. The test was done once for 
each rat [21]. 

 

2.9 Blood sugar levels 

 
Blood was obtained from the tail vein of the 
animal. Next, blood was put over the strip and 
glucose level was assessed using glucometer 
(Roche, No.GN02531992). 

 

2.10 Assessment of Corticosterone  

 
Animals were anesthetized for collection of blood 
samples from heart. Serum corticosterone levels 
were assessed using ELISA kit (Sigma Aldrich).   

 

2.11 Plasma Copper Level 

 
Following thoracotomy, 5ml blood was obtained 
from heart and centrifuged. Plasma was 
collected and stored in microtube at -70

0
C. For 

measuring copper levels, plasma was incubated 
with 65% citric acid for 2hr and 65% perchloric 
acid for 1hr. Next, the absorbance was obtained 
using atomic spectroscopy (Varian-220-FS-aa) 
and was adjusted according to calibration curve 
Plasma copper levels were expressed as p.p.m.  

 

2.12 Neurogenesis 

 
At the end of 14th day, rats were anesthetized 
with ketamine (100 mg/kg) and xylazine (10 
mg/kg). After thoracotomy, all rats were first 
perfused with normal saline and then, with 
paraformaldehyde 4% via intracranial infusion. 

After fixation, the brains were removed from the 
skull. For the first 2 days, the brains were kept in 
PBS + paraformaldehyde 4% and then at day 3, 
in sucrose 10% + paraformaldehyde 4% + PBS. 
Throughout day 4, the brains were kept in 
sucrose 20% + paraformaldehyde 4% + PBS and 
for the rest of the days they were kept in sucrose 
30% + paraformaldehyde 4% + PBS. The 
cryosections (30 µm) were prepared from 
dentate gyrus of the hippocampal region. 
Immunohistochemistry was performed for ten 
sections from each brain, five of which were 
stained for BrdU positive neurons with anti-BrdU 
antibody kit (5-Bromo-2′-dU Labelling and 
Detection Kit ll; Roche, Germany, Cat. No. 
11299964001-en-17). BrdU-positive cells in 
dentate gyrus were counted under light 
microscope  [7].  
 

2.13 Statistics 

 
Data were analyzed using SPSS version 22 and 
Graphpad prism 5. Uni-variate (Two-way) 
ANOVA followed by Pos-hoc Tukey was 
performed with two factors (withdrawal × 
socialization). Data were represented as mean ± 
SEM and P<0.05 was considered significant. 

 

3. RESULTS 

 

3.1 Short Term Memory Assessed with  
Y-maze  

 
During withdrawal, short term memory was 
markedly impaired in isolated rats as compared 
to socialized rats. Also isolated rats had better 
short memory than withdrawal isolated rats     
(Fig. 4). 

 

3.2 Feeding Behavior 

 
During withdrawal, isolated rats consumed 
significantly lesser food and water as compared 
to socialized rats. In addition, isolated rats 
consume more food and water than withdrawal 
isolated rats (Fig. 5A and B). 

 

3.3 Blood Sugar Level  

 
During withdrawal, isolated rats had higher blood 
glucose level as compared to socialized rats. 
Also isolated rats had higher blood glucose level 
than withdrawal isolated rats (Fig. 6).  
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Fig. 4. Short term memory assessed by Y-

maze / sec (n=8) 
Data are represented as Mean ± SEM 

 

3.4 Anxiety Level as Assessed by Novelty 
Suppressing Feeding Test (NSF) 

 
During withdrawal, isolated rats demonstrated 
higher anxiety levels as compared to socialized 
rats. Also isolated rats demonstrated higher 
anxiety level than withdrawal isolated rats       
(Fig. 7). 
 

3.5 Corticosterone Levels  
 
Withdrawal socialized rats had lower 
corticosterone levels when compared to 
withdrawal isolated rats (Fig. 8). 
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Fig. 5. A. Amount of food intake/g (n=8) B. 

Amount of water intake/ml (n=8) 
Data are represented as Mean ± SEM 
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Fig. 6. Level of blood glucose mg/dl (n=8)  

Data are represented as Mean ± SEM 
 

3.6 Copper Level Assessment  
 
In isolated and withdrawal isolated rats, plasma 
copper was higher as compared to socialized 
and withdrawal socialized rats, respectively. In 
addition, copper level was markedly higher in 
withdrawal isolated rats than in socialized rats. In 
isolated rats, plasma copper was more than 
withdrawal socialized rats (Fig. 9).  

 



 
 
 
 

Famitafreshi et al.; BJMMR, 17(3): 1-13, 2016; Article no.BJMMR.27641 
 
 

 
7 
 

Novelty Suppressed Feeding Test

Groups

L
a
te

n
c
y
 t

o
 E

a
t 

F
o

o
d

 (
s
)

Soci
al

iz
ed

Is
ola

te
d

W
ith

dra
w
al

 S
oci

al
iz

ed

W
ith

dra
w
al

 Is
ola

te
d

0

100

200

300
$

*

 
Fig. 7. Level of anxiety / sec (n=8) 
Data are represented as Mean ± SEM 
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Fig. 8. Plasma level of corticosterone (pg/dl) 

(n=6) 
Data are represented as mean ± SEM 

 

3.7 Neurogenesis  
 
During withdrawal, the number of BrdU positive 
cells in dentate gyrus of hippocampus was 
considerably lower in isolated rats in comparison 
to socialized rats. Also rats in withdrawal 
isolation had more neurogenesis than isolated 
rats (Figs. 10 and 11). 
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Fig. 9. Level copper in serum assessed by 

atomic spectrophotometer (n=6) 
Data is represented as mean ± SEM.* means 

significant difference between adjacent groups and $ 
and & between those apart from each other 
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Fig. 10. Neurogenesis in dentate gyrus of 

hippocampus (n=8) 
Data are represented as Mean ± SEM 

 

4. DISCUSSION 
 
For the first time, our study shows that 
socialization during withdrawal period improves 
feeding behavior, neurogenesis, mood 
disturbances and stress responses. Furthermore, 
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we showed that withdrawal groups have worse 
prognosis than socialized and isolated groups.  
 

 
 

 
 
Fig. 11. A. Different parts of dentate gyrus of 
Hippocampus have been marked in picture. 

Counting of BrdU positive cell have been 
done in these areas. It has three parts: 

molecular cell layer (MCL) (outer (OML), 
middle (MML) and inner (IML)), granular cell 
layer (GCL) (sub granular zone (SGZ) and 

deep hilus) and hilus (40X) magnification B. 
BrdU positive cells have colored brown. They 

may be in single or cluster forms (400X 
magnification) (n=6). The two micrographs 

have been taken from dentate gyrus of 
withdrawal socialized rats in 40X and 400X 

respectively 
 
Satiety - the absence of hunger or feeling of 
fullness is regulated in several ways. Previous 
studies have revealed its time dependent 
regulation. Forty-eight hour food deprivation 
elicited some responses in different from those in 
short-term (24 h and 6 h) food deprivation [22].  
In this study, we observed that hippocampal 
neurogenesis affects short-term food deprivation 
[23]. It has been suggested that BDNF plays an 

important role in regulating hippocampal 
neurogenesis and it may affect neuronal circuits 
involved in satiety [24]. In addition, neuropeptide 
Y - a neurotransmitter involved in neurogenesis 
and neuronal guidance, also controls food intake 
[9]. Neuropeptide Y can also alter food intake by 
changing emotional states that are regulated by 
the hippocampus. In this study it was assessed 
by novelty suppressed feeding test.  

 
Emotional states can alter feeding behaviors by 
hormonal influences [25]. Hormones like 
glucocorticoids, leptin, adiponectin, resistin, and 
insulin affect hippocampal neurogenesis and this 
in return may influence the function of feeding 
center [26]. Furthermore, the depressed state 
can motivate an individual to take high-fat diet 
which can reduce hippocampal neurogenesis 
[27]. 
 
Adult hippocampal neurogenesis is highly 
influenced by isolation-induced stress [28]. 
Previously, stress has been studied in two forms: 
acute and chronic. The effect of acute stress on 
neurogenesis is quite controversial. It has been 
shown that acute stress may enhance 
hippocampal neurogenesis via secreted 
astrocyte fibroblast growth factor -2 (FGF-2). On 
the other hand, studies indicate that social defeat 
and restraint stress can reduce the rate of 
neurogenesis [29-31], but prolonged restraint 
stress may not affect it [32-34] Therefore, it 
seems that duration, frequency and intensity of 
stressors may influence neurogenesis. 

 
There is ample evidence that chronic stress 
decreases hippocampal neurogenesis, especially 
in neonatal mice [35]. It may reduce survival and 
inhibit proliferation of new neurons [36]. 
Moreover, hippocampal - dependent learning as 
demonstrated by water maze training, causes 
acute downregulation of adult neurogenesis [37]. 
In accordance to previous studies, we found that 
social isolation - induced chronic stress reduces 
neurogenesis during drug withdrawal period. 

 
Stressful events lead to the activation of 
hypothalamus-pituitary-adrenal (HPA), which in 
turn, triggers glucocorticoid release. It has been 
observed that administration of corticosterone 
decreases both, proliferation and survival of new 
neurons [15]. Furthermore, elevated pro-
inflammatory cytokines have been linked to 
neurodegeneration [38,39]. Following stress, IL-1 
expression has shown to be dramatically 
enhanced in hypothalamus [40,41]. 
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Adult hippocampal neurogenesis is vital for the 
regulation of feeding behavior and neuropeptide 
Y can potentiate both, neurogenesis and food 
intake. Hokfelt et al, showed that mice deficient 
in Y1 or Y2 receptor had fewer proliferating 
precursor cells and neuroblasts in subventricular 
zone and rostral migratory stream and fewer 
neurons in the olfactory bulb expressing 
calbindin, calretinin or tyrosine hydroxylase [9]. 
We found that socialization promotes food and 
water intake during withdrawal period, thereby 
attaining the state of nutritional balance. 
 
Another important subject to be discussed is the 
role of circadian rhythm in regulating 
neurogenesis and feeding behavior. [42]. 
Furthermore, feeding behavior is affected by 
light- dark cycle. In a complex circadian control 
pathway, light-controlled rhythms are primary 
regulators of neuronal proliferation, and 
hormonal and activity-driven influences over 
neurogenesis are secondary events [42]. In a 
study, glucocorticoids have shown to increase 
food intake in rats by increasing sensitivity to 
leptin and insulin [43]. In addition to increased 
sensitivity to leptin and insulin, glucocorticoids 
also increase the sensitivity to melanocortin 
action [44]. Hence, in our study, reduced appetite 
can be partly attributed to changes in circadian 
rhythm and hormonal sensitivity caused by 
isolation.  
 
The current literature lacks much information 
about the effect of diet and nutrition on adult 
hippocampal neurogenesis. One study found that 
high-fat diet impairs hippocampal neurogenesis 
in male rats [45]. However, other diets have not 
been studied yet. Neuronal lipoprotein lipase 
(LPL) is essential for regulating energy balance 
by hydrolyzing triglycerides. Picard et al, 
demonstrated that inhibition of hippocampal LPL 
activity can increase ceramide (a core 
constituent of all complex sphingolipids) 
biosynthesis, which in turn enhances 
neurogenesis. It is evident that ceramide levels 
control dendritic spine maturation and cognition 
[46]. Furthermore, caloric restriction and exercise 
enhances progenitor cell survival and 
proliferation, respectively [45,47], and social 
isolation can delay this exercise-induced 
neurogenesis [48]. The responding ability of new 
hippocampal neurons to triglycerides changes 
shows that new neurons may be affected by 
nutritional status affect [46]. Furthermore, Perera 
et al, reported that  higher blood glucose levels 
were associated with higher rate of neurogenesis 
[24]. The current study establishes that 

socialization can improve feeding behavior and 
therefore, can attain nutritional balance in the 
body. However, further studies are needed to 
assess effects of different types of diet on 
neurogenesis.  
 
Specific mechanisms that link hippocampal 
neurogenesis with the hypothalamus and 
appetite regulation remain unclear. There are two 
reasons for considering the involvement of 
hippocampus in regulating energy balance. First, 
both the hippocampus and hypothalamus are 
part of the limbic system with the appetite center 
located in the hypothalamus. Secondly, 
hippocampal projections spread to adjacent 
areas like feeding center [24]. In addition, a study 
shows that BDNF knock-out rats have poor 
regulation of food intake and demonstrate 
diminished hippocampal neurogenesis. [24,49]. 
We observed high glucose intake by isolated rats 
during withdrawal, which can be due to the 
increase in metabolic demand for restoring 
neurogenesis.  
 
Leptin- an adipose-derived hormone affects 
hypothalamic receptors that control food intake. It 
also increases hippocampal cell proliferation by 
interacting with leptin receptors on hippocampal 
progenitor cells [24,50].  
 
Ghrelin is a hormone and neuropeptide which is 
involved in regulating energy balance via 
hypothalamic circuits  [51]. Ghrelin also plays an 
important role in regulating reward perception in 
dopamine neurons that link ventral tegmental 
area to nucleus accumbens [52]. However, the 
role of exogenous Ghrelin in promoting 
neurogenesis via regulating behavior needs to be 
investigated. 
 
Independent of its cognitive functions, the 
hippocampus plays a distinctive role in mediating 
mood balance. The current literature 
demonstrates that selective impairment of 
hippocampal neurogenesis can exhibit a striking 
increase in anxiety-related behaviors [2, 53]. The 
hippocampus may respond to stress by altering 
nutritional balance in order to combat adverse 
effects of mood disturbance. Effect of stress on 
feeding behavior is controversial. According to 
some studies, stress increases food intake, 
whereas other reports contradict this 
observation. However, sustained chronic stress 
seems to decrease appetite [54]. 
 
Social interaction profoundly affects 
neurogenesis and this effect can at least be 
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partly attributed to oxytocin [55]. A study 
suggests the therapeutic effect of oxytocin for 
treating amphetamine abuse [56]. 
 
During withdrawal period, we observed elevated 
corticosterone levels in isolated rats. It is in 
accordance with previous studies which have 
reported elevated corticosterone levels during 
substance abuse. Interestingly, increased 
corticosterone can lead to long-lasting alterations 
in social interactions and aggression [57]. 
Furthermore, chronically high corticosterone can 
reduce hippocampal neurogenesis which in turn 
can adversely  affect serotonin levels and mood 
[15]. Yuan et al., demonstrated that exogenous 
corticosterone suppresses body weight gain and 
reduces feed and caloric efficiencies [58]. Our 
study suggests that corticosterone exerts its 
negative effects partly by reducing neurogenesis. 
 
Copper is present throughout the brain but is 
most abundant in basal ganglia, hippocampus, 
and cerebellum Copper acts as a cofactor for 
many enzymes in brain such as tyrosinase, 
peptidylglycine α-amidating mono-oxygenase, 
copper/zinc superoxide dismutase, 
ceruloplasmin, hephaestin, dopamine-β-
hydoxylase, and cytochrome c oxidase. 
Interestingly, imbalanced Cu homeostasis in 
brain, contributes to neurodegenerative disorders 
like Alzheimer’s disease, Parkinson's disease 
and sclerosis [59]. Furthermore, NMDA receptors 
also are regulated by this ion [60] and also 
NMDA receptor activation mediates copper 
homeostasis [61]. In this study, Cu levels were 
found to be higher in isolated animals as 
compared to control rats. Further, isolated and 
withdrawal isolated rats had higher Cu levels 
than isolated and withdrawal socialized rats, 
respectively. These results signify the importance 
of socialization. We found that withdrawal 
isolated rats had elevated Cu levels as compared 
to control rats, and this implies that in withdrawal 
period Cu increases. Copper probably affects 
neurogenesis and this in return, directly or 
indirectly via rewarding center may regulate 
addictive behaviors. 
 

5. CONCLUSION 
 
Socialization improves hippocampal 
neurogenesis and improves feeding behavior. 
Furthermore, socialization restores mood 
balance as seen by reduced anxiety levels. 
Socialization of addicts can result in good 
prognosis during withdrawal and can reduce risk 
of relapse in abstinence period. 
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