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Abstract
We employ bifurcation method of dynamical systems to investigate exact traveling wave solutions of
a nonlinear evolution equation. We obtain some exact explicit expressions of solitary wave solutions
and some new exact periodic wave solutions in parameter forms of Jacobian elliptic function. We
point out that the solitary waves are limits of the periodic waves in some sense, the results infer that
the periodic waves degenerate solitary waves in some conditions.

Keywords: Bifurcation method; solitary wave solutions; periodic waves solution.
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1 Introduction

The Benjamin-Bona-Mahony(BBM) equation [1]

ut + ux + uux − uxxt = 0 (1)
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was derived to describe propagation of long waves where nonlinear dispersion is incorporated. The
spatially one-dimensional KdV equation

ut + auux + uxxx = 0, (2)

is a approximate model that governs the one-dimensional propagation of small amplitude, weakly
dispersive waves, and plays a major role in the solitons concepts. The term soliton coined by
Zabusky and Kruskal [2] who found particle like waves which retained their shapes and velocities
after collisions. The balance between the nonlinear convection term uux and the dispersion effect
term uxxx in the KdV equation (2) gives rise to solitons. Furthermore, both BBM and KdV equations
can be used to describe long wave length in liquids, etc.
Besides, there are two well-known two-dimensional equations which were derived as the generaliza-
tions of the KdV equations. One is the the Kadomtsov-Petviashivilli(KP) equation [3],

(ut + auux + uxxx)x + uyy = 0 (3)

and the other is the Zakharov-Kuznetsov(ZK) equation [4]

ut + auux + (uxx + uyy + uzz)x = 0. (4)

The studies made in the literature [5] dealed with the BBM equation and its modified forms formulated
in the KP and ZK sense, and the BBM equation in KP sense was studied and some exact solutions
were obtained [6],[7]. Further, to extend the relevant results, this work will investigate exact solutions
of the nonlinear (2+1) dimensional ZK-BBM equation(5)

ut + ux − a(u2)x − (buxt + kuyt)x = 0, (5)

which is a generalized form of the ZK-BBM equation(6)

ut + ux + a(un)x + b(uxx + uyy) = 0.(n > 1) (6)

Some methods are applied to seek exact solutions of nonlinear evolution equations because exact
solutions play a key role in comprehension of nonlinear phenomena. For example, the method of
lines and Adomian decomposition is applied to obtain solitary wave solutions of the KdV equation
[8]. Homotopy perturbation Pade technique is used to construct approximate and exact solutions of
Boussinesq equations [9], extended tanh method, extended mapping method with symbol computation
and bifurcation method of dynamical systems are used to study equation (5) [8],[9], and some solitary
wave solutions and triangle periodic wave solutions were obtained.

However, there is no method can be used to all nonlinear evolution equations. The research on
the solutions of the ZK-BBM equation now appears insufficient. Further studies are necessary for the
traveling wave solutions of the ZK-BBM equation. The purpose of this paper is to apply the bifurcation
method of dynamical systems [10],[11],[12],[13] to continue to seek traveling waves of equation (5).
Firstly, we obtain some solitary wave solutions. Then, we get some new periodic wave solutions in
parameter forms of Jacobian elliptic function. The periodic wave solutions obtained in this paper are
new. Furthermore, we find an close relationship between the solitary waves and periodic waves, that
is, the solitary waves are limits of the periodic waves in the sense of modulus of Jacobian elliptic
function approaches 1.
This paper is organized as follows. In Sec. 2, we discuss the bifurcation phase portraits of planar
system according to the ZK-BBM equation under different parameters conditions. In Sec.3, we give
exact solitary wave solutions to the ZK-BBM equation. In Sec.4, we obtain periodic solitary waves
in the forms of Jacobian elliptic function. Finally we discuss the relationship between the two kind
waves in Sec. 5.
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Figure 1: The phase portraits of system (9) under conditon (b+ c)k < 0

2 Bifurcation Phase Portraits
Let u(x, y, t) = φ(ξ), ξ = x+ y− ct, where c is the wave speed. Substituting u(x, y, t) = φ(ξ) into (5)
admits to the following ODE

(1− c)φ
′
− a(φ2)

′
+ (b+ k)cφ

′′′
= 0, (7)

where the prime stands for the derivative with respect to ξ. Integrating (7) once with respect to ξ, it
follows that

(1− c)φ− aφ2 + (b+ k)cφ
′′
= g, (8)

where g is the integral constant.
Equation (8) can be transformed to the following two-dimensional planar system

dφ
dξ

= y,
dy
dξ

=
aφ2 + (c− 1)φ+ g

(b+ k)c
. (9)

System (9) has the first integral

H(φ, y) =
a

3(b+ k)c
φ3 +

c− 1

2(b+ k)c
φ2 +

g

(b+ k)c
φ− 1

2
y2 = h, (10)

where h is the constant of integration.
Let ∆ = (c − 1)2 − 4ag. When ∆ > 0, there are two equilibrium points (φ1, 0) and (φ2, 0) of (9) on
φ−axis, where φ1 = (1−c)+

√
∆

2a
, φ2 = (1−c)−

√
∆

2a
. The Hamiltonian H of (φ1, 0) and (φ2, 0) is denoted

by h1 = H(φ1, 0) and h2 = H(φ2, 0). According to the stationary theorem of differential equation,
the bifurcation phase portraits of system (9) are given as Fig.1 and Fig.2 respectively in the case of
(b+ k)c < 0 and (b+ k)c > 0, in which there are some homoclinic and periodic orbits.

3 Exact Explicit Expressions of Solitary Wave Solutions
In this Section, we solve solitary wave solutions under g = 0 and g ̸= 0 respectively.
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Figure 2: The phase portraits of system (9) under conditon (b+ c)k > 0

3.1 The case integral constant g = 0

System (9) is namely the system as follows

dφ
dξ

= y,
dy
dξ

=
aφ2 + (c− 1)φ

(b+ k)c
, (11)

which has the first integral

H(φ, y) =
1

2
y2 − a

3(b+ k)c
φ3 − c− 1

2(b+ k)c
φ2 = h. (12)

Figure 3: The phase portraits of homoclinic and periodic orbits under conditon g = 0

When (b + k)c < 0 and c > 1, the system has homoclinic orbits Γ1 (see Fig.3). In φ − y plane, the
homoclinic Γ1 can be described by the following equation

y2 =
2a

3(b+ k)c
φ3 +

c− 1

(b+ k)c
φ2, φ ∈ (0, φ∗) or φ ∈ (φ∗, 0), (13)
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where φ∗ = − 3(c−1)
2a

. That is

y = ±

√
2a

3(b+ k)c
φ3 +

c− 1

(b+ k)c
φ2. (14)

Substituting (14) into dφ/dξ = y and integrating along the homoclinc orbits Γ1, we have∫ φ∗

φ

ds√
2a

3(b+k)c
s3 − c−1

(b+k)c
s2

= ±|ξ|. (15)

Completing the above integration yields a solution u1(x, y, t) of (5)

u1(x, y, t) =
−3(c− 1)

a[1 + cosh(
√

− c−1
(b+k)c

(x+ y − ct))]
. (16)

When (b+ k)c < 0 and c < 1, the homoclinic Γ1 can be described by the following equation

y2 =
2a

3(b+ k)c
φ3 +

c− 1

(b+ k)c
φ2 + h1, φ ∈ (φ1, φ

∗) or φ ∈ (φ∗, φ1), (17)

where h1 = − 2a
3(b+k)c

φ3
1 − c−1

(b+k)c
φ2

1, φ1 = 1−c
a

and φ∗ = − 3(c−1)
2a

. Equation (17) can be rewritten as

y = ±

√
2a

3(b+ k)c
(φ− φ1)2(φ− φ∗). (18)

Substituting (18) into dφ/dξ = y and integrating along the homoclinc orbits Γ1, we get a solution
u2(x, y, t) of equation (5) as follows

u2(x, y, t) =
(1− c)[−2 + cosh(

√
1−c

(b+k)c
(x+ y − ct))]

a[1 + cosh(
√

1−c
(b+k)c

(x+ y − ct))]
. (19)

Remark. The solutions u1 and u2 are bright soliton solutions when a < 0, and dark soliton solutions
when a > 0. When (b+ k)c > 0, there are also homoclinic orbits (see Fig.2). It is same to the above
solving process that we can get exact expressions of solitary wave solutions according to homoclinic
orbits as u1 and u2.

3.2 The case integral constant g ̸= 0

The system (9) possesses homoclinic orbits (see Fig.1 and Fig.2). For simplicity we solve solitary
wave solutions under (b+ k)c < 0. These homoclinic orbits can be expressed by

y2 =
2a

3(b+ k)c
φ3 − 1− c

(b+ k)c
φ2 +

2g

(b+ k)c
φ+ 2h1, (20)

where h1 = H(φ1, 0) denotes Hamiltonian at point (φ1, 0) according to equation (10). When (b +
k)c/a < 0, the homoclinic orbits have a double zero point φ1 and a zero point φ3 on φ−axis(see
Fig.4), so (20) can be rewritten as

y2 =
2a

3(b+ k)c
(φ− φ1)

2(φ− φ3), (21)

that is

y = ±

√
2a

3(b+ k)c
(φ− φ1)2(φ− φ3). (22)
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Figure 4: The phase portraits of homoclinic and periodic orbits under conditon g ̸= 0

Substituting (22) into dφ/dξ = y and integrating along homoclinic orbits, we get∫ φ3

φ

ds√
2a

3(b+k)c
(s− φ1)2(s− φ3)

= |ξ|, (23)

where φ1 = 1−c+
√

∆
2a

and φ3 = 1−c−2
√

∆
2a

, then completing (23) we get the following solution

u3(x, y, t) =
(1− c+

√
∆) cosh

√ √
∆

(b+k)c
(x+ y − ct) + 1− c− 5

√
∆

2a(cosh
√ √

∆
(b+k)c

(x+ y − ct) + 1)
. (24)

When (b+ k)c > 0, similarly the expressions of solitary wave solutions can be obtained as

u4(x, y, t) =
(1− c−

√
∆) cosh

√
−

√
∆

(b+k)c
(x+ y − ct) + 1− c+ 5

√
∆

2a(cosh
√

−
√

∆
(b+k)c

(x+ y − ct) + 1)
. (25)

4 Periodic Wave Solutions in Forms of Jacobian Elliptic
Function

In order to explain our work conveniently, the Jacobian elliptic function sn(k,m) with modulus m will
be expressed by snk in this section . We solve the periodic wave solutions under conditions g = 0
and g ̸= 0 respectively.

4.1 The case integral constant g = 0

If g = 0, then system according to equation (5) is namely (11), and it has periodic orbits (see Fig.1
and Fig.2). For simplicity, we discuss periodic waves under (b + k)c < 0, and the (b + k)c > 0 is
the same. When (b + k)c < 0 and c > 1, these periodic orbits Γ2(see Fig.3) satisfy (12), where
h1 < h < h2(or h2 < h < h1). Let

f1(φ) =
2a

3(b+ k)c
φ3 − 1− c

(b+ k)c
φ2 + 2h, (26)
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when h1 < h < h2(or h2 < h < h1), by ShenJin Theorem [14] we can distinguish that f1 has three
different real points. Let r1 < r2 < r3 are three different real zero points of f1(φ), then equation (12)
can be rewritten as

y2 =
2a

3(b+ k)c
(φ− r1)(φ− r2)(φ− r3) (27)

where r1 < 0 < r2 < φ < r3 when a < 0, and r1 < φ < r2 < 0 < r3 when a > 0(see Fig.3). The
expressions of the periodic orbits Γ2 are given by

y = ±

√
2a

3(b+ k)c
(φ− r1)(φ− r2)(φ− r3), (r1 < r2 ≤ φ ≤ r3), (28)

or

y = ±

√
2a

3(b+ k)c
(φ− r1)(φ− r2)(φ− r3), (r1 ≤ φ ≤ r2 < r3), (29)

respectively. Substituting (28) into dφ

dξ
= y and integrating along periodic orbit Γ2, we get

∫ r3

φ

ds√
(r3 − s)(s− r1)(s− r2)

=

√
− 2a

3(b+ k)c
|ξ|, (r1 < r2 ≤ φ < r3). (30)

By formula 236 in [15],we have

g1sn−1(sinψ1,m5) =

√
− 2a

3(b+ k)c
|ξ|, (31)

where g1 = 2√
r3−r1

, sinψ1 =
√

r3−φ
r3−r2

and m5 =
√

r3−r2
r3−r1

. Solving (31) we get

φ = r3 − (r3 − r2)sn2

√
−a(r3 − r1)

6(b+ k)c
ξ, (32)

That is

u5(x, y, t) = r3 − (r3 − r2)sn2

√
−a(r3 − r1)

6(b+ k)c
(x+ y − ct), (33)

where the modulus of sn is m5 =
√

r3−r2
r3−r1

. Similarly, Substituting (29) into dφ

dξ
= y and integrating

along orbits Γ2, we have

u6(x, y, t) = r1 + (r2 − r1)sn2

√
a(r3 − r1)

6(b+ k)c
(x+ y − ct), (34)

where the modulus of sn is m6 =
√

r2−r1
r3−r1

. When(b+ k)c < 0 and c < 1, periodic wave solutions can
be obtained as u5 and u6 as the above procedure.

4.2 The case integral constant g ̸= 0

If g ̸= 0, then system according to equation (5) is namely (11), and it has periodic orbits (see Fig.1
and Fig.2). Their expressions are (10) on the φ− y plane, where h1 < h < h2(or h1 < h < h2). Let

f2(φ) =
2a

3(b+ k)c
φ3 − 1− c

(b+ k)c
φ2 +

2g

(b+ k)c
φ+ 2h.
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If g ̸= 0 and h1 < h < h2(or h2 < h < h1), then the function f2(φ) must have three different real zero
points. In fact, under above conditions,

h1 = H(φ1, 0) = − a
3(b+k)c

φ3
1 +

1−c
2(b+k)c

φ2
1 − g

(b+k)c
φ1 = − 1

2
f2(φ1) + h,

h2 = H(φ2, 0) = − a
3(b+k)c

φ3
2 +

1−c
2(b+k)c

φ2
2 − g

(b+k)c
φ2 = − 1

2
f2(φ2) + h,

So f2(φ1) · f2(φ2) = 4(h− h1)(h− h2) < 0. For f2(φ), we have f2(−∞) > 0,f2(φ1) < 0,f2(φ2) > 0
and f2(+∞) < 0. Again,f ′

2(φ) = 2a
(b+k)c

(φ − φ1)(φ − φ2), which is monotonous in the intervals
(−∞, φ1),(φ1, φ2) and (φ2,+∞). By zero point theorem of continuous function, there must be one
real zero point of f2(φ) lies in each of the three intervals. Let c1 < c2 < c3 are three different real
zero points of f2(φ). Then (10) can be rewritten as

y2 =
2a

3(b+ k)c
(φ− c1)(φ− c2)(φ− c3) (35)

where c1 < φ1 < c2 < φ2 < c3. When (b+ k)c < 0 and a < 0, the expression of periodic orbits are

y = ±

√
2a

3(b+ k)c
(φ− c1)(φ− c2)(φ− c3), (c1 < c2 ≤ φ ≤ c3). (36)

When (b+ k)c < 0 and a > 0, the expression of periodic orbits are

y = ±

√
2a

3(b+ k)c
(φ− c1)(φ− c2)(φ− c3), (c1 ≤ φ ≤ c2 < c3). (37)

Substituting (36) and (37) into dφ

dξ
= y and integrating along periodic orbits respectively, it is same to

the proceeding for solving u5 and u6, we can get the corresponding periodic solutions as follows

u7(x, y, t) = c3 − (c3 − c2)sn2

√
−a(c3 − c1)

6(b+ k)c
(x+ y − ct), (38)

and

u8(x, y, t) = c1 + (c2 − c1)sn2

√
a(c3 − c1)

6(b+ k)c
(x+ y − ct), (39)

where the modulus for sn are m7 =
√

c3−c2
c3−c1

in (38)and m8 =
√

c2−c1
c3−c1

in (39).
Compared with the solutions (30) and (31) in [16], and periodic wave solutions in [17], we find

that the periodic wave solutions are new.

5 Relationship Between Solitary Waves and Periodic
Waves

In Sec.3 and Sec.4, we obtain the solitary wave and periodic wave solutions. With further study, we
find that there exists a colse relationship between these two kind of solutions, that is, the solitary
wave solutions are limits of the periodic ones in the sense of modulus of Jacobian elliptic functions
approach 1. The results are detailed as follows.
Theroem. Let ui(i = 1, 2, · · · , 8) are solutions of equation (5), , a, b, c, k and g are parameters in
(8), and mi(i = 5, 6, 7, 8) are modulus of Jacobian elliptic function sn, then we have the following
conclusions:
(1). When g = 0 and 1−c

(b+k)c
< 0, for modulus mi → 1(i = 5, 6), the periodic wave solutions u5 and

u6 degenerate solitary wave solution u1;
(2). When g = 0 and 1−c

(b+k)c
> 0, for modulus mi → 1(i = 5, 6), the periodic wave solutions u5 and
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u6 degenerate solitary wave solution u2;
(3). When g ̸= 0 and (b+ k)c/a < 0, for modulus m7 → 1, the periodic wave solution u7 degenerates
solitary wave solution u4;
(4). When g ̸= 0 and (b+ k)c/a > 0, for modulus m8 → 1, the periodic wave solution u8 degenerates
solitary wave solution u3.

For the sake of simplicity, here we only prove (1) and (3) , the rest cases are the same. In the following
proofs, we use the property of elliptic function that sn → tanh when the modulus m→ 1 [17],[18].

Proof of (1). When m5 =
√

r3−r2
r3−r1

→ 1, it means r1 = r2 and sn = tanh, then we calculate

r1 = r2 = 0 and r3 =
3(1− c)

2a
,

substituting ri(i = 1, 2, 3) into u5 admits to u1 as follows

u5(x, y, t) = r3 − (r3 − r2)sn2

√
−a(r3 − r1)

6(b+ k)c
(x+ y − ct)

=
3(1− c)

2a
− 3(1− c)

2a
tanh2

√
− (1− c)

4(b+ k)c
(x+ y − ct)

=
3(1− c)

2a
[1− tanh2

√
− (1− c)

4(b+ k)c
(x+ y − ct)]

=
3(1− c)

2a

1

cosh2
√

− (1−c)
4(b+k)c

(x+ y − ct)

=
3(1− c)

2a

1

1
2
[cosh

√
− (1−c)

(b+k)c
(x+ y − ct) + 1]

=
3(1− c)

a[1 + cosh
√

− (1−c)
(b+k)c

(x+ y − ct)]

= u1(x, y, t).

When m6 =
√

r2−r1
r3−r1

→ 1, it means r2 = r3, then we calculate r2 = r3 = 0 and r1 = 3(1−c)
2a

,
substituting ri(i = 1, 2, 3) into u6 we get u6 = u1.

Proof of (3). When m7 =
√

c3−c2
c3−c1

→ 1, it means c1 = c2 and sn = tanh, then we calculate
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c1 = c2 = 1−c−
√
∆

2a
and c3 = 1−c+2

√
∆

2a
, substituting ci(i = 1, 2, 3) into u7 admits to u4 as follows

u7(x, y, t) = c3 − (c3 − c2)sn2

√
−a(c3 − c1)

6(b+ k)c
(x+ y − ct)

=
1− c+ 2

√
∆

2a
− 3

√
∆

2a
tanh2

√
−
√
∆

4(b+ k)c
(x+ y − ct)

=
1− c−

√
∆+ 3

√
∆(1− tanh2

√
−
√

∆
4(b+k)c

(x+ y − ct))

2a

=
1− c−

√
∆

2a
+

3
√
∆

a[1 + cosh
√

−
√
∆

(b+k)c
(x+ y − ct))]

=
(1− c−

√
∆) cosh

√
−

√
∆

(b+k)c
(x+ y − ct) + 1− c+ 5

√
∆

2a[cosh
√

−
√
∆

(b+k)c
(x+ y − ct) + 1]

= u4(x, y, t).

6 Conclusion
The results in this paper means that the bifurcation method of dynamical system is effective for solving
nonlinear evolution equations, and it can be widely used to other nonlinear equations. Besides solitary
and periodic waves, the method can be used to seek other kind waves such as kink waves, peakons,
compactons, cuspons and so on. We will also study other kind solutions in the future.
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