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Abstract

This paper investigates the existence of solutions for fractional differential inclusions of order
q € (4,5) with anti-periodic type boundary conditions by means of some standard fixed point
theorems for inclusions. The existence results are established for convex as well as the non-
convex multivalued maps. Some illustrative examples are introduced to explain the applicability
of the theory.
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1 Introduction

The topic of fractional differential equations and inclusions has recently emerged as a popular field
of research due to its extensive development and applications in several disciplines such as physics,
mechanics, chemistry, engineering, etc. (see [1], [2], [3], [4], [5], [6], [7], and references therein).
The fact that using the fractional-order models instead of integer-order model is due to more realistic
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in description of many physical phenomenons. The investigation of existence problems of fractional
differential equations in general is considered as a priority for going forward in such applications (see
[8], [9], [10], [11],[12]). Anti-periodic boundary value problems occur in the mathematical modeling of
a variety of physical processes ([6], [13]) and have recently received considerable attention. For
examples and details of anti-periodic boundary conditions (see [14]-[20], [13], [21], [22] and the
references therein). Differential inclusions arise in the mathematical modeling of certain problems
in economics, optimal control, etc. and are widely studied by many authors (see [23], [24] and the
references therein). For some recent works on differential inclusions of fractional order, we refer
the reader to the references ( [25], [18], [19]). In this paper, we discuss some existence results for
anti-periodic boundary value problems of differential inclusions of fractional order ¢ € (4, 5].
Precisely, we consider the following problem:

‘Dz (t) € F (t,z(t)),t € J=[0,T],T > 0,q € (4,5] (1.1)
z® (0) = —2® (), k=0,1,2,3,4. :

where F': J xR — P(R) is a multivalued map, P(R) is the family of all subsets of R, and ©D? denotes
the Caputo fractional derivative of order ¢ which is generally defined by

t

1 )
) /(t — )" M (s)ds,n — 1 < g <,

crya — n—a,.(n) gy —
Dix(t)y=1"""z (t)_l“(nfq

0

where n = [q] + 1, and [g] denotes the integer part of the real number q.

This paper is organized as follows: In Section 2, we introduce some well-known results in
multivalued analysis. The main results of existence theorems will be given in Section 3. Finally,
we give some illustrative examples to explain the theorems.

2 Preliminaries

We recall in this section some facts from multivalued mapping analysis (see [26], [27], [28]) that
needed for the results in the sequel.

Definition 2.1. For a normed space (X, |-||), let
Pu(X)={Y € P(X) : Y is closed},
Py,(X)={Y € P(X) : Y is bounded},
P.,(X)={Y € P(X) : Y is compact}, and
Py o(X)={Y € P(X) : Y is compact and convex}.

Definition 2.2. Let F': X — P(X) be a multivalued map.

(i) F'is convex (closed) valued if F'(z) is convex (closed) for all z € X.

(i) Fis bounded on bounded sets if F(B) = |J,. F(z) is bounded in X for all B € P,(X).

(ii) F' is an upper semi-continuous (u.s.c.) on X if for each zo € X, the set F(x¢) is a nonempty
closed subset of X, and if for each open set N of X containing F'(zo), there exists an open neighborhood
Noof zosuch that F(Ny) C N.

(iv) F is said to be completely continuous if F'(B) is relatively compact for every B € P,(X).

(v) F has a fixed point if there is € X such that z € F(z).

(vi) If F'is completely continuous with nonempty compact values, then F'is u.s.c if and only if F' has
aclosed graph, i.e., zn — Tx, Yn —> Yx, Yn € F(x,) imply y. € F(z).

The fixed point set of the multivalued operator F' will be denoted by Fixz F.
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Definition 2.3. A multivalued map F' : J — P(R) with nonempty compact convex values is said to
be measurable if for every y € R, the function

t—d(y, F(t) =inf{ly — 2| : 2 € F(t)}
is measurable.

Let L'(J,R) be the Banach space of all measurable functions = : J — R which are Lebesgue
integrable endowed with the norm |jz||;» = fOT |z(t)|dt, and C(J,R) denotes the Banach space
of all real valued continuous functions defined on J endowed with the norm defined by ||z| =
sup {|z(t)|,t € J}.

Definition 2.4. .A multivalued map F : J x R — P(R) is said to be Carathéodory if (i) t — F(¢,z)
is measurable for each z € R, (ii) x — F(¢,z) is upper semi-continuous for almost all ¢ € J. Further
a Carathéodory function F is called L'-Carathéodory If for each o > 0, there exists ¢, € L'(J,R™)
such that

IF(t2)|| = sup{Jv| : v € F(t,2)} < palt)

for all ||| < o and for a.e. ¢t € J.

Definition 2.5. Let Y be a Banach space, Z a nonempty closed subset of Y. The multivalued
operator F' : Z — P(Y) is said to be lower semi-continuous (I.s.c.) iftheset {z € Z : F(2)NB # ¢} is
open for any open set BinY .

Definition 2.6. Let A be a subset of J x R. A is said to be £ ® B-measurable if A belongs to the
o-algebra generated by all sets of the form L x B, where L is Lebesgue measurable in J and B is
Borel measurable in R.

Definition 2.7. A subset A of L' (J,R) is decomposable if for all u,v € A and measurable sets I C J,
the function uxr + vxs—r € A, where x; stands for the characteristic function of I.

Definition 2.8. If F: J x R — P(R) is a multivalued map with nonempty compact values and u €
C(J,R), then the set of selections of F(.,.), denoted by Sr,., is of lower semi-continuous type if

Spu ={w € L' (J,R) : w(t) € F(t,u(t)) fora.e. t € J}
is lower semi-continuous with nonempty closed and decomposable values .

Definition 2.9. Let (X, d) be a metric space associated with the metric d. The Pompeiu—Hausdorff
distance of the closed subsets A, B C X is defined by

di(A, B) = max{d" (4, B),d" (B, A)},
where d* (A, B) = sup{d(a, B) : a € A}, and d(z, B) = inf e d(z,y).

Definition 2.10. A multivalued operator F' on X with nonempty values in X is called (a) ~-Lipschitz
if and only if there exists v > 0 such that

du (F(x), F(y)) < vd(z,y),foreach z,y € X,
(b) a contraction if and only if it is y-Lipschitz with v < 1.

The following lemmas will be used in what follows.
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Lemma 2.1. ([29])Let X be a Banach space. Let F : J x X — Pe, .(X) be an L*-Carathéodory
multivalued map and let H be a linear continuous mapping from L*(J,X) to C(J,X). Then the
operator

HoSfp : C(J,X)ﬁpcp,C(C(‘LX)):
€T — (HO SF)(iE) = H(SF,L)

is a closed graph operator in C(J, X) x C(J, X).
We close these preliminaries by introducing the following two fixed point theorems.

Lemma 2.2. (/30])LetY be a separable metric space and let F : Y — P(L*(J,R)) be a lower semi-
continuous multivalued map with closed decomposable values. Then F(.) has a continuous selection,
i.e., there exists a continuous mapping (single valued) f : Y — L*(J,R) such that f(y) € F(y) for
everyyey.

Lemma 2.3. ([37]) Let (X, d) be a complete metric space. If F : X — P, (X) is a contraction, then
FizF # ¢.

3 Existence Results

In this section, three existence results of problem (1.1) are presented. The first one concerns the
convex valued case, and the others are related to the nonconvex valued case.

Before starting the first result, we recall an equivalent integral form of the corresponding single
value problem of (1.1).

Lemma 3.1. ([20])For any y € C(J,R), the unique solution of the boundary value problem

“Diz(t) =y (t),t € J,4 < q<5,
™ (0) = 2™ (T),k=0,1,2,3,4,

T
2= [ Gl ds,
0
where G(t, s) is Green’s function given by

2(t—s)9" 1 —(T—s)771 +(T72t)(Tfs)q’2 t(T—t)(T—s)973

2I'(q) R 4T (g—1) + 41“(%72)
(6t?T—443—1%) (1—5)"" (33T —t*—t13) (T—s)""
G(t.s) = 48T (q—3) + 18T (q=4) 0<s<t<T,
( 38) - T—g)a—1 T2t (T—s)9—2 HT— 1) (T—s)d—2
_(T-=s) ( )(T—s) 4 HT=t)(Tos)d72
( 22F(q)3 3) 4F51q_4_1> ( 3 4 41“;(3—2) q—5
6t°T—4t"—T" )(T—s)" 33T ¢4 ¢T3 ) (T—s5)97°
48T (g—3) 48T (q—4) ,O <t<s<T.

Observe that
(T-t)(T—s)"°<(T—-)""t<s,
(T —t)(T — )T > < (T —s)"* t>s.
The main results are based on the following fixed point theorems.
Theorem 3.2. [32](Nonlinear alternative of Leray-Schauder type) Let X be a Banach space, X be a
closed convex subset of X, 4l be an open subset of X with 0 € {l. Suppose that F' : 8l — P., (%) is

an upper semicontinuous compact map. Then either ' has a fixed point in il or there are r € 94l and
X € (0,1) such thaty € AF (x).
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Theorem 3.3. [32](Covitz and Nadler) Let (X, d) be a complete metric space. If F : X — P, (X) is
a contraction, then F' has a fixed point.

Before going on, using Lemma 3.1, we convert the problem to be suitable form for using the
above fixed point theorems, hence we let H acting on Sr,, as

H()) = / oy ifT f)ds
A2 /T Fq_l s)ds+t(T4_t)/T(€(;f);3f(s)ds
(o —ae 1) / L9 wyas
MG —4::; —tT°) /T (?(; i)‘: F(s)ds, (3.1)

for ¢t € J. Using the convexity property of the multivalued map, we can prove the first result.

Theorem 3.4. Assume that

(H1) F:J xR — P(R) is Carathéodory and has convex values.

(H2) There exists a continuous nondecreasing function « : [0,00) — (0,00) and a function p €
L'(J,RT) with ||p|| .. > 0, such that

|F(t,z)|| = sup{|v| : v € F(t,z)} < p(t)a(||z|) foreach (t,z) € J x R.

(H3) There exists a number M > 0 such that

M

— >,
You(M) |Ipl[ 1.2

where

_ T3 (= 1D(10+35(g— 1) +4(g — 1))
7T T (5 18 )

Then the boundary value problem (1.1) has at least one solution on J.

Proof. Define an operator Y(z) = {hy € C(J,R) : hy = H(f) for f € Sr.}. We show that Y satisfies
the assumptions of the nonlinear alternative of the Leray-Schauder type. The proof consists of several
steps.

Step One: We show that Y (z) is convex for each = € C(J,R). For that, let hy, , hy, € T(z), such
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that hy, , and hy, satisfying (3.1) for fi, f2 € Sr.. Therefore,if 0 <w <1andt e J, we have

[why, + (1 = w)hp](t)

_ /&[wﬁ(s)—i—(l—@ﬁ(s)]ds

I'(q)
;/T r(q o.;fl (s) + (1 —w) f2 (s)]ds
(-2 /T ) oy (9 + (1) s (9l
IR /T e o () + (1 - ) £ o)
LR /T o o () + (1 =) fa (o)l

T'(g—4)

Since F' has convex values implies Sr,, is convex, and then why, + (1 — w)hy, € T(z).

Step Two: We show that T (z) maps bounded sets into bounded sets in C(J,R). For a positive
number r, let B, = {z € C(J,R) : ||z|| < r} be a bounded set in C(J,R). Then, hy € T(z), « € By,
implies hy satisfies (3.1) for f € SF,z, and

Cs S ) / T oty () + (1= w) fa (9)ds

t T

mol < [ 1re |d8+%/%lﬂs)lds
'T‘Qt‘/ i+ ORI [EE i 6 as
|6tT 43 — T3|
o T 0 s

[383T — t* —¢T3| [ (T —s)?°
+ 13 / T(g— 1) |f (s)|ds.
0

Hence

thHSa(M)Tq—l <§ (q—1)(10+35(q — 1) + 4(q — 1)° )/|p ) |ds.

T(q) *

2 48
Step Three: We show that T maps bounded sets into equicontinuous sets of C'(J,R). Let ¢1,t2 € J
with t; < ¢z and = € B, where B, is a bounded set of C(J,R). In view of (Hs), for each hy € T(z),
we obtain

he(ts) — helt <t2‘(t2*5) —(t1—s)9" ‘ d [(ty—5)9"1] §)971 d
nstt2) = (1) < o £ )l s+f 2|1 (5)] ds
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T _
\tg t1| f (T—s)1"2 £(s)|ds + ‘(t2*t1)<’§*t2*tl)| f (T—s)973 If (s)|ds
0

T'(q— 1) T'(q—2)

[(t2—t1)[3T(t2+11)—2(t3+tat1 +¢3)]| & (17— g)a—4
+ [ VA i) f(r(q>3) |f ()| ds

(ta—t1)[2(t3+t1 to+t2)T—(ta+t1) (t3+t3)—T3] T—5)1—5
+| 2—t1)[2(t5+t1t2 1)48 (t2+t1)(t5+1t7) ‘f(l"(q - If (s) |ds

to —1 —1
(ta=5)1 "1 —(t1 =) —s)i-
< Of‘ : e | \p(s)a(M)|d5+tf (t2 o) U p(s)a(M)| ds
1
lto—t1] [ (T—s)9~2
+=3 f T(q—1) Ip(s) a (M)|ds

flttamt)(T—ta— tmf(T(;)C;)g Ip(s) o (M) ds

(to—1t1)[BT (to+t1)—2(t3+tat+t2)]| Taq4
+\ 2—t1)[3T (t2 ;4 2ttati+t7 f(F(q>5) (s) o (M) |ds

NG tl)[2<t2+t2t1+t1g (t2+t1) (t3+t3) T3] f <F(;)44> (s)au(M)|ds.

Obviously the right hand side of the above inequality tends to zero independently of x € B, as
ta —t1 — 0. The operator YT satisfies the above three assumptions, it follows by the Arzela—Ascoli
theorem that T : C(J,R) — P(C(J,R)) is completely continuous.

Step Four: We show that T has a closed graph. Let z, — =, hy, € Y(z,) and hy, — hy,.
Then we need to show that hy, € Y(z.) i.e hy, satisfies (3.1) for f. € Sr.,. Since hy, € Y(zn),
then it satisfies (3.1) for f,, € Sr..,, and t € J. Now, the operator H : L'(J,R) — C(J,R), defined by

f = (HoSrz)(f) = H(f)

and the last given in (3.1), is a continuous linear operator. Observe that ||k, — hy, || = ||hs 1. || = O,
as n — oo. Thus, it follows by Lemma 2.1 that H o Sr, is a closed graph operator. Further, we have
hy, (t) € H(SF), since z, — x., we have hy, satisfies (3.1) for some f. € Sr., .

Step Five: Finally, we discuss a priori bounds on solutions. Let z; be a solution of (1.1). Then x
satisfies (3.1) for f € Sr..,. Using (H2), we obtain

T (3 (q—1)(10+35(¢—1)+4(¢g—1) r
o0l < Ty (5+ . ) / (o

T
< ol /p
(0]

N

Consequently, we have
[l
v (llzg D llpllys —
In view of (H3), there exists M such that ||z¢|| # M. Letus set i = {z € C(J,R) : ||z| < M + 1}.
Note that the operator T : &l — P(C(J,R)) is an upper semi-continuous and completely continuous.
The choice of §l, implies there is no = € 94l such that x € AY(x) for some A € (0, 1). Consequently, by
the nonlinear alternative of the Leray-Schauder type (3.2), we deduce that Y has a fixed point = € &
which is a solution of problem (1.1). This completes the proof. O

As a next result, we study the case when F' is not necessarily convex valued. Since the convexity
may be replaced by decomposability, then the next result is based on the nonlinear alternative of the
Leray—Schauder type together with the selection theorem of Bressan and Colombo ([30]) for lower
semi-continuous maps with decomposable values .
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Theorem 3.5. Assume that (H2), (H3) and the following conditions hold

(H4) F:J xR — P(R) is a nonempty compact-valued multivalued map such that
(@) (t,z) — F(t,z) is L ® B-measurable,
(b)x — F(t,x) isl.s.c foreacht € J.

(H5) For each§ > 0, there exists o5 € L*(J,R") such that

|E(t,z)|| =sup{|v| : v € F(t,x)} < ps(t) forall ||z|| < 6 and fora.e. t € J.
Then the boundary value problem (1.1) has at least one solution on J.

Proof. ltfollows from (H4) and (H5) that F'is of [.s.c. type and has nonempty closed and decomposable
values. Then from Lemma 2.2, there exists a continuous function f : C(J,R) — L'(J,R) such
that f(z)(t) € F(x) forall z € C(J,R), and a.e. t € J. Consider the problem

{ *Dx(t) = f(z)(t),t € J,q € (4,5

5]
2® (0) = —2® (T) ,k =0,1,2,3,4. (3.2)

Observe that if x € C(J,R) is a solution of (3.2), then x is a solution to problem (1.1). In order to
transform problem (3.2) into a fixed point problem, we define the operator IT : C(J,R) — C(J,R) as
(z)(t) = H(f(x))(t).

It can easily be shown that IT is continuous and completely continuous. The remaining part of the
proof is similar to that of Theorem 3.4. So we omit it. This completes the proof. O

Now we prove the existence of solutions for problem (1.1) with a nonconvex-valued right hand
side by applying a fixed point theorem for a multivalued map due to Theorem (3.3).
Theorem 3.6. Assume that the following conditions hold:
(H6) F:J xR — P, (R) is such that F(-,z) : J — P.,(R) is measurable for each = € R.

(H?7) du(F(t,z), F(t ,y)) < z(t)|z — y| for almost all t € J and z,y € R with z ¢ L'(J,R") and
dr (0, F(¢,0)) < z(t) foralmost all t € J.

Then the boundary value problem (1.1) has at least one solution on J if

T (3 (¢—1)(10+35(g — 1) + 4(q — 1)®)
(5 + 18 ) Izl L1 < 1.

Proof. Observe that the set Sr,» is nonempty for each « € C'(J,R) by assumption (H6), so F has a
measurable selection (see [33], Theorem 111.6]). Now we show that the operator T (defined as in the
proof of Theorem 3.4) satisfies the requirements of Lemma 2.3.

Step One: We show that Y(x) € P, ((C(J,R)) for each z €C(J,R). Let (un)n>0 € Y(x) be such
that u, — w in C(J,R). Then u € C(J,R) and u,, satisfies (see equation (3.1)) u,(t) = H(v,)(t)
for some v,, € Sk, t € J. As F has compact values, we pass onto a subsequence to obtain that v,,
converges to v in L*(J,R). Thus, u satisfies u(t) = H(v)(t) forv € S, and t € J. Hence, v € Y ().

Step Two: We show that there exists 0 < 8 < 1 such that

du (Y (2), Y(y)) < Blle -yl

for each x,y € C(J,R). Let z,y € C(J,R) and w1 € Y(z). Then u; satisfies ui(t) = H(v1)(t) for
vi1(t) € F(t,z(t)) and t € J. By (H7), we have

du(F(t,x), F(t,y)) < z(8)]x(t) — y(B)],
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for almost all ¢ € J. So, there exists w € F(t,y(t)) such that
vi(t) —w| < 2(B)|=(t) —y(B)], t € J.
Define the multivalued map V : J — P(R) by
V(t) ={w e R: |ui(t) — w| < z(t) [x(t) —y()[}-

Since the multivalued operator V' (t) N F'(¢,y(t)) is measurable ([33], Proposition 111.4), there exists a
function v2(t) which is a measurable selection for V. So v2(t) € F(¢,y(t)) and for each t € J, we
have

[v1(t) — v2(t)| < 2(t)|z(t) — y(t)], fora.e. t € J.

Let us satisfying uz(t) = H(v2)(¢). Thus, for each ¢ € J, it follows that

| (t) — w2 ()]

t

/ %Wl (s) —v2(s)|ds

IN

I'(q)

|T — 2t] T(T—s)q*2
+ 52 / iyl ()= (s) s

v1 (s) —v2 (s) |ds

HT—1) [ (T—5)7>
O/ I'(qg—2)

+|6t T—zgt -T {/(z(;i); [v1 (s) — v2 (s) |ds

T
3637 — t* — 7% [ (T —5)7~°
+ 15 / T (=1 lv1 (s) — v2 (s) |ds
0

T (3 L la=1)0+ 35((518— 1) +4(g—1) )) /z(s) [z = ylids.

Hence,

I ) = hao)] < Frs (5 -+ LRI DEAGZ DD oy, oy

Analogously, interchanging the roles of z and y, we obtain

du(Y(z),Y(y)) < Bllz—yl

T (3 (q—1)(10 +35(q — 1) + 4(q — 1)*)
< = — ||
< T3+ - lelale — vl
Since Trq(;; (% + (q‘”(w*%(jg1”4("‘1)3’) |2]l,» < 1, then Y is a contraction. It follows by Lemma
2.3 that T has a fixed point = which is a solution of (1.1). This completes the proof. O
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The new existence results for a class of fifth-order nonlinear differential inclusions with anti-
periodic boundary conditions follow as a special case by taking ¢ = 5 in the results of this section.

Example 3.7. Consider the following fractional differential inclusion

{ °D*2g (t) € F (t,z (t)),t € [0,1], (3-3)

2™ (0) = —z® (1) ,k =0,1,2,3,4.
where F : [0,1] x R — R is a multivalued map given by

F(t,x):{yeR:e_ll‘—Fsint—l—tQ§y§2+$+t3}.

It is clear that F' is Carathéodory and has convex values satisfying
|E(t,z)|| =sup{ly| : y € F(t,x)} < 4 foreach (t,z) € J x R,

with p(t) = 1, and a(||x||) = 4. Furthermore, let M be any number satisfying

M >

T1-La (M) ol <§ 4 (0= D00 +35(g 1) +4(g 1>3>>
I'(q) 2 48
> 3.49.

Clearly, all the conditions of Theorem 3.4 are satisfied. So there exists at least one solution of problem
(3.3) on [0,1].

Example 3.8. Consider the following fractional differential inclusion

0,1,2,3,4.

‘DT (t) € F(tax(t)),t
z® (0) = —2® (1) ,k =

where F : [0,1] x [0, 2] — R* is a multivalued map given by

sin x
F(t,z) = {O, m} .
Now
sup{ly| : y € F(t,z)} < (28Tf)4 < 1—16 for each (t,z) € [0,1] x [0, g],
and
i (F0,2), (1) < e =l
Here z(t) = W with ||z|| ., = 0.017, and

e <§ L (a=1D(0+35(g = 1) +4(g— 1)°)

<o0. .
5 s ) 2]l 2 <0.009 < 1

The compactness of F together with the above calculations lead to the existence of solution of the
problem (3.4) by Theorem 3.6.
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4 Conclusion

The fractional differential inclusion (1.1) of order ¢ € (4, 5] with anti-periodic type boundary condition is
considered by means of some standard fixed point theorems for inclusions. The existence results are
established for convex as well as the non-convex multivalued maps by obtaining sufficient conditions
for each case. The fact that the problem is a generalization of lower fractional order inclusion
problems. The more generalization for arbitrary fractional order inclusion problem is still open problem
for the researchers.
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