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Abstract
Rolling bearings are commonly used components in rotating machinery and play a vital role.
When the bearing fails, if it cannot be found and repaired in time, it will cause great economic
losses. Time-frequency analysis has been widely used for bearing fault signals under
non-stationary operating conditions, but the existing methods have problems such as poor
adaptability under multiple operating conditions. At the same time, the low time-frequency
resolution and poor energy aggregation also affect the fault feature extraction effect. Aiming at
these problems, this paper proposes a bearing fault detection method, which combines empirical
mode decomposition and adaptive time-varying parameter short-time Fourier synchronous
squeezing transform (AFSST), it solves the problem of adapting to signals under multiple
operating conditions; A weighted least squares estimation time-varying parameter algorithm is
proposed, which improves the calculation speed by 29% under the premise of ensuring the
calculation accuracy; A time-varying index of energy effective compression ratio is proposed to
accurately measure the time-varying energy aggregation of time-frequency analysis methods.
Using short-time Fourier transform, continuous wavelet transform, wavelet synchrosqueezed
transform, and AFSST to analyze the simulated FM signal, the results show that the AFSST
transform has better time-frequency resolution and higher energy-efficient compression rate
globally. Through the verification of the fault experimental data of rolling bearings, the
diagnosis method proposed in this paper can accurately extract the bearing fault characteristics,
has a good diagnosis ability in the multi-working operating environment, and has strong
robustness and anti-noise interference.
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1. Introduction

Bearings are widely used in various types of rotating
machinery, and it is difficult to avoid the resulting compon-
ent or system failure [1]. Bearing faults will produce shock
features in the vibration signal during operation, and the judg-
ment of the operating state can be realized by identifying the
shock features [2]. However, the operating conditions of rotat-
ing machinery are complex, working under the condition of
speed change and load, and the bearing fault signal and noise
are aliased, so the bearing vibration signal has obvious non-
stationary and time-varying characteristics [3]. Simple spec-
trum analysis methods for stationary signals can no longer be
applied directly, Time-frequency analysis methods are very
effective tools for dealing with non-stationary signals [4].

At present, many scholars have conducted research on
time-frequency analysis methods [5] and achieved fruitful
results [6]. Tang et al [7] proposed a composite fault dia-
gnosis strategy based on the classification of multiple time-
frequency curves, matching the average ratio between the
curves of interest with the theoretical fault characteristic coef-
ficients to determine the fault type. Tiwari and Upadhyay
[8] propose a novel self-adaptive signal decomposition tech-
nique: concealed component decomposition, which was valid-
ated on experimental datasets. Wei et al [9] proposed a time-
varying envelope filtering method to extract the weak fault
features of the space-bearing cage and improve the signal-
to-noise ratio of the original vibration signal. Xu et al [10]
proposed the match-extracting chirplet transform to analyze
multi-component dynamic signals. The experiments proved
that it has good performance in time-frequency localization
and noise robustness. Chen et al [11] proposed a fault pulse
extraction and feature enhancement method for bearing fault
diagnosis, which enhanced the extraction of weak transient
features. Shi et al [12] proposed an instantaneous frequency
synchronous generalized stepwise demodulation transform-
ation method for time-frequency analysis of non-stationary
vibration signals. Yu [13] proposed a high-resolution time-
frequency analysis method for analyzing strong non-stationary
signals, which provides better performance in handling strong
non-stationary signals and signals with added noise. Liu et al
[14] proposed a time-frequency processing method called
synchro-squeeze extraction transform, which can well extract
the time-varying information of non-stationary signals and
has better noise robustness. Ma et al [15] proposed a method
to extract the main components from time-frequency images,
which realized the bearing fault diagnosis under variable
working conditions. Hu et al [16] proposed an adaptive time-
domain signal segmentation method, which divides long-term
non-steady-state signals into multiple short-term steady-state

signals, which can effectively suppress the high-amplitude
components of the vibration signal of subway gearboxes.
Xu et al [17] proposed generalized S-simultaneous extrusion
to extract variation, a new time-frequency post-processing
algorithm with good noise robustness. Wang et al [18] pro-
posed an ensemble decision method that combines a disloca-
tion time-frequency representation and a pre-trained convolu-
tional neural network to evaluate gear health status. He et al
[19] proposed a modified deep autoencoder driven by a multi-
source parameter, which confirmed the feasibility of cross-
domain fault prediction. Han et al [20] proposed a new multi-
compression method based on wavelet transform to accurately
extract fault-related features and used second-order instant-
aneous frequency estimation to approximate the real inter-
mediate frequency of the analyzed signal. Multi-resolution
high-quality time-frequency representation of non-stationary
signals at intermediate frequencies. Shao et al [21] proposed
a new fault diagnosis method for variable-speed rotor bearing
systems based on two-stage parameter transfer and infrared
image, and realized the extended use of the diagnosis model.
Lee et al [22] proposed a time-frequency envelope analysis to
overcome the influence of impulse noise, which can be per-
formed by dividing the signal into several parts through a time
window, which can eliminate the influence of impulse noise.
He et al [23] proposed an enhanced depth transfer autoen-
coder for fault diagnosis of bearings installed on different
machines. Li et al [24] proposed a fusion framework based
on the confidence weight support matrix machine, and the
experiment proved that the method has good fault diagnosis
performance. Deng et al [25] proposed a bearing fault detec-
tion method based on hybrid singular value decomposition
(SVD) denoising and adaptive time redistribution transform-
ation. The experimental results show that the algorithm has
better performance in extracting weak bearing fault features
in a strong background noise environment. Lv et al [26] pro-
posed a time-frequency analysis method of longitudinally syn-
chronous compression change, which preserves the ability of
pattern extraction and reconstruction, and can accurately char-
acterize the fast event characteristics of the signal within a
largewindow size. Lin et al [27] proposed an optimal weighted
sliding window signal segmentation algorithm based on the
second-order synchronous compression S-transform, which
can improve the spectrum aggregation of the signal and obtain
high-precision signal instantaneous frequency (IF) estimation
in the low signal-to noise ratio (SNR) environment. Meng
et al [28] used the empirical modal decomposition algorithm
to extract the features of rolling bearings and realize the fault
classification of rolling bearings. Bai et al [29] proposed a
new spectral Markov transition field algorithm to represent
the spectral characteristics of vibration signals in the form of
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images. To improve the separation effect of short-time Four-
ier transform (STFT) for multi-components, Li et al [30] pro-
posed good separation conditions and established an FSST
with adaptive time-varying parameters, which improved the
time-frequency resolution.

Many scholars have made many attempts to improve
the time-frequency resolution and anti-interference perform-
ance, but these methods have certain limitations. Some time-
frequency processing effects are affected by the selection
of convolution kernels, and there may be large differences;
the selection of some windows does not have global adapt-
ation, and only selects the frequency that is suitable for the
strongest separation energy. These processing algorithms have
great constraints on the practical application of non-stationary
signals.

Aiming at these problems, this paper proposes a new dia-
gnostic strategy. The original signal is decomposed by empir-
ical mode decomposition (EMD), the intrinsic mode func-
tion (IMF) with a higher correlation coefficient is selected
for signal reconstruction, the signal irrelevant to the fault fea-
ture is filtered out, the shock feature is extracted by envel-
ope demodulation, and the window prediction interpolation
algorithm is proposed to realize the fast window width para-
meter. To determine, time-frequency analysis of the recon-
structed signal was performed using adaptive short-time Four-
ier synchronized squeeze transform (AFSST). It realizes the
analysis and diagnosis of complex fault signals. Compared
with STFT, continuous wavelet transform (CWT) and wave-
let synchrosqueezd transform, it shows that AFSST has bet-
ter time-frequency resolution and frequency resolution, has
strong self-adaptation, and can obtain higher frequency res-
olution at a lower sampling rate, Moreover, it has strong anti-
interference performance and can be used for bearing fault dia-
gnosis under actual working conditions.

The work of this paper is organized as follows: The second
Section introduces the EMD algorithm and the adaptive short-
time Fourier synchronous squeezing transform, proposes a
time-varying parameter prediction interpolation algorithm,
and defines the energy-efficient compression ratio. The third
section uses the simulation signal to verify the diagnostic
algorithm proposed in this paper. The fourth section analyzes
four experimental fault signals with the algorithm proposed
in this paper, and compares the results with STFT, CWT and
WSST. The fifth section is the conclusion of this paper.

2. EMD and time-varying parameter short-time
Fourier synchronous extrusion transform

2.1. Principles of EMD

The EMD method is an adaptive analysis method, it performs
adaptive time-frequency decomposition according to the local
time-varying characteristics of the signal, which eliminates
human factors and overcomes the defect of traditional meth-
ods that use meaningless harmonic components to represent
non-stationary nonlinear signals, suitable for the analysis of
non-stationary nonlinear signals [31]. For a vibration signal
x(t), the EMD decomposition algorithm is as follows:

(a) Use the cubic spline interpolation curve to connect the
maximum and minimum points of the signal x(t) to be
processed, so that the signal is surrounded by it, and the
sequence consisting of the mean value of the upper and
lower envelopes is m(t).

(b) Subtract m(t) from x(t), and check whether the obtained
cc h1 satisfies the condition of the fundamental mode
component. If so, it is regarded as the first fundamental
mode component; otherwise, the calculation of formula 1
is repeated until the condition is met

h1 = x(t)−m(t)

c1(t) = h1(t). (1)

(c) Subtract the first fundamental mode component c1(t) from
the original signal to obtain the residual sequence r1(t)

r1(t) = x(t)− c1(t). (2)

(d) The above operation is repeated with the r1(t) obtained in
step 3 as the ‘original’ signal, and other basic mode com-
ponents are obtained in sequence, and the processing is
stopped after the preset conditions are met.

The original signal x(t) can be expressed as the sum of sev-
eral fundamental mode components and a remainder:

x(t) =
i=1∑
n

ci (t)+ rn (t) . (3)

2.2. Selection of IMF components

EMD can decompose the original signal into multiple IMF
components, but there will be false components and trend
components unrelated to faults in the components. By elimin-
ating these components, the anti-interference performance in
the subsequent time-frequency processing can be improved.
The correlation coefficient rk can be used to measure the
degree of correlation between the IMF component and the ori-
ginal signal. The greater the correlation, themore fault features
are included. The choice can be made by the size of the correl-
ation coefficient. The formula for calculating the correlation
coefficient is:

rK =

n∑
i=1

(RIMFK(i)− R̄IMFK)(RX(i)− R̄X){
n∑
i=1

(RIMFK(i)− R̄IMFK)
2

n∑
i=1

(RX(i)− R̄X)
2
}1/2

. (4)

In the formula, n is the number of sample samples; Rx and
RIMFK are the samples of the original signal and each eigen-
mode function, respectively, R̄IMFK =

∑n
i=1RIMFK(i)/n, K is

the number of IMF components.

2.3. Time-varying parameter FSST and good separation
conditions

Most of the current FSST algorithms are based on fixed-
window STFT, which determines that high time resolution
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and frequency resolution cannot be obtained at the same time.
For the signal x(t) ∈ L2(R), this paper considers the STFT
with time-varying parameters σ(t), and its signal definition
expression is:

Ṽx (t,η) : =
ˆ ∞

−∞
x(τ)gσ(t) (τ − t)e−i2πη(τ−t)dτ

=

ˆ ∞

−∞
x(t+ τ)

1
σ (t)

g

(
τ

σ (t)

)
e−i2πητdτ. (5)

Here gσ(t)(τ) is the window function, σ = σ(t) is a positive
function of t, and gσ(t)(τ) is defined as

gσ(t)(τ) :=
1

σ(t)
g

(
τ

σ(t)

)
. (6)

Here g ∈ L2(R). The window width of gσ(t)(τ) is σ(t),
depending on the time variable t

gσ(t) =
1
σ
g
( t
σ

)
(7)

where the parameter σ > 0, g(t) is a positive function in L2(R),
and g(0) ̸= 0, it has a certain decay order when in t→∞. If

g(t) =
1√
2π

e−
t2

2 . (8)

Here gσ(t) is a Gaussian window function. When Ṽx(t,η) ̸= 0
in (t,η), the phase transition ωadpx (t,η) can be expressed as:

ωadpx (t,η)=Re

{
∂t
(
Ṽx(t,η)

)
i2πṼx(t,η)

}
+

σ ′(t)
σ(t)

Re

{
Ṽτg ′(τ)
x (t,η)

i2πṼx(t,η)

}
,

for Ṽx(t,η) ̸= 0. (9)

Then the FSST of the time-varying parameter is defined as

Radpx (t, ξ) :=
ˆ
{η∈R:Ṽx(t,η) ̸=0}

Ṽx(t,η)δ
(
ωadpx (t,η)− ξ

)
dη .

(10)

Let x(t) =
∑k

k=1 xk(t), where each x(t) = Akei2πϕk(t) is a
chirp, and ϕ ′

k−1(t)< ϕ ′
k. If

4α
√
π
√∣∣ϕ ′ ′

k (t)
∣∣+ ∣∣ϕ ′ ′

k−1(t)
∣∣⩽ ϕ ′

k(t)−ϕ ′
k−1(t), k= 2, . . . ,K

(11)

max
2⩽k⩽K

 4α

bk (t)+
√
bk(t)

2 − 8αak (t)


⩽ min

2⩽k⩽K

 4α

bk (t)−
√
bk(t)

2 − 8αak (t)

 . (12)

In the formula,

ak(t) = 2πα
(∣∣ϕ′′

k−1(t)
∣∣+ |ϕ′′

k (t)|
)

bk(t) = ϕ′
k(t)−ϕ′

k−1(t)

α=
1
2π

√
2ln(1/ ∈).

For a multi-component signal x(t), we call equations (11)
and (12) as good separation conditions based on the linear-
frequency modulation (LFM) model. Any on both sides
of inequality 12 can separate the components in the time-
frequency plane. As mentioned above, we should choose as
small as possible, since a smaller σ(t) can get a sharper
synchro-squeeze effect. Therefore, we propose that σ is
determined by σ(t) based on the LFM model:

σ(t) =max

 4α

bk(t)+
√
bk(t)

2 − 8αak(t)
: 2⩽ k⩽ K

 .

(13)

2.4. Time-varying parameter prediction and interpolation
algorithm

With the good separation conditions mentioned in the previ-
ous section, a time-varying parameter σ(t) that changes with
time and has a sharper frequency expression can be obtained
for non-stationary signals, and we can obtain better time resol-
ution and frequency resolution. However, the determination of
suitable time-varying parameters requires a lot of search calcu-
lations, which greatly affects the efficiency of the algorithm. In
order to optimize this problem, this paper proposes a weighted
least squares prediction and interpolation algorithm, which
realizes that the global time-varying parameters of the signal
can be determined with fewer calculation times, and the cal-
culation time is greatly reduced.

The state of a non-stationary signal at a certain moment
will be affected by the previous period of time, and will also
affect the next period of time, but the impact size will change
accordingly with the change of the time parameter. In order to
avoid the time parameter from affecting the prediction accur-
acy, The weighted least squares method is introduced for fit-
ting estimation. The time-varying parameters calculated using
the separation conditions are used as anchor points, and dif-
ferent weighting coefficients are selected in the least squares
estimation according to the time distance between the position
of each anchor point and the prediction point, so as to improve
the prediction accuracy of the time-varying parameters. The
coefficients are estimated byminimizing the generalized resid-
ual sum of squares, which can be expressed as:

RSS (β) = (Y−Xβ)TW(Y−Xβ)

W=


1
w1

. . . 0
...

. . .
...

0 · · · 1
wi

 . (14)
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The formula, W represents the weight matrix. Then the
weighted least squares estimation can be solved as follows:

β =
(
XTWX

)−1
XTWY. (15)

During window length prediction, six adjacent anchor
points are selected as the fitting data points before and after
the prediction point, and the weighting coefficient matrix [0.2,
0.35, 0.8, 0.8, 0.35, 0.2] is selected according to the time para-
meter. The weighted least squares estimation is used to fit the
data, and then the time-varying parameters of the prediction
points are obtained according to the fitting results, so as to
quickly determine the window length.

Algorithm calculation steps:
Let σi, i= 1,2, . . . ,n be the time-varying parameter to

be determined, and the signal S(t), t= t1, t2, . . . , tn to be
processed.

Step 1: Set t= t1, t2, t3, t5, t7, t9, use good separation condi-
tions to determine σ1,σ2,σ3,σ5,σ7,σ9;

Step 2: Use the obtained 6 points as anchor points to fit
using the weighted least squares method;

Step 3: Use the fitting function to predict the central time-
varying parameter σi, i= 4,6, . . . ,n− 3;

Step 4: Calculate the new time-varying parameter to
determine whether it is the last data point. If yes, go to step
five. If not, update the data anchor point and jump to step 2;

Step 5: To ensure good global coherence, use a low-pass
filter B(t) to smooth the time-varying parameters σi to obtain
the time-varying parameters: σe(t) = (C ∗ B)(t).

2.5. Energy effective compression ratio

Through the time-frequency processing method, the time-
frequency signal is converted into a time-frequency graph,
so as to better feature expression and fault judgement. How-
ever, affected by interference factors such as invalid sig-
nals and background noise, the characterization effect of
the time-frequency graph may not be ideal. At present,
many scholars use Rényi entropy as a measure of the
time-frequency aggregation effect, and improve the time-
frequency processing method. The determination of the time-
varying parameters in this paper is more input research
based on it. In order to better highlight the improvement of
the time-frequency aggregation effect of AFSST, this paper
proposes the energy effective compression ratio parameter
(EECR) to measure the time-frequency processing effect
qualitatively.

The obtained time-frequency diagram is divided accord-
ing to the time scale, and the frequency component with the
strongest energy at a certain time is extracted as the effect-
ive energy, and the rest of the divergent energy is mostly
noise energy or fault energy that cannot be extracted. The
ratio is defined as the effective compression ratio of energy,
the dynamic relationship between the effective compression
ratio and time can be obtained, and the effect of different

Figure 1. Signal processing flowchart.

time-frequency analysis methods can be accurately measured.
The calculation formula is as equation (16):

Ecret =

k∑
i=0

y(t,i)

m∑
i=0

x(t,i)

(t= 1,2, . . . ,n). (16)

In the formula: n is the number of time dimensions,m is the
number of frequency dimensions, k is the number of statistical
effective energy, yt,i is the effective energy matrix, and xt,i is
the total energy matrix. According to the signal components
in this paper, the number of statistics k is set to 5.

2.6. Signal processing flow

For the fault feature identification of non-stationary signals,
based on the above research, this paper proposes a new signal
diagnosis strategy, as shown in figure 1:

3. Simulation signal analysis

In order to verify the effectiveness of the AFSST algorithm
for non-stationary signals, a simulated signal X(t) of frequency
modulation and amplitude modulation is established, and the
AFSST algorithm proposed in this paper is used for pro-
cessing, and the results are compared with STFT, CWT and
WSST.
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Figure 2. Time domain waveform.

3.1. FM signal

The simulated signal is composed of two cosine fre-
quency modulated (FM) signals of different frequencies
superimposed: x1(t) = cos(2π× 25t+ cos(10πt))

x2(t) = cos(2π(60t+ 30t2))
x(t) = x1(t)+ x2(t)

. (17)

In the formula, x1(t) is the cosine FM signal whose fre-
quency is oscillating at 25 Hz; x2(t) is the chirp signal whose
initial frequency is 60 Hz. Set the sampling time to one second
and the sampling frequency to Fs = 256 Hz.

The time domain diagram of the simulated signal is shown
in figure 2. Figure 3 shows different time-varying paramet-
ers σ of the simulated signal, σ1 which are the time-varying
parameters calculated by using the weighted least squares fit-
ting prediction, and σ2 are the time-varying parameters cal-
culated globally. In order to qualitatively measure the fitting
degree, the goodness-of-fit parameter is used to evaluate the
fitting effect. The statistic to measure the goodness of fit is
the coefficient of determination R2. The maximum value of
R2 is 1. The closer the value of R2 is to 1, the better the fit
of the regression line to the observations. It can be seen that
when the goodness of fit is 0.9064, the calculation speed of
time-varying parameters is increased by 29%, and the calcu-
lation efficiency is greatly improved. The specific parameters
are shown in table 1.

Use AFSST transform, STFT transform, CWT transform
and WSST transform to perform time-frequency transform
on the simulated signal, and the time-frequency diagram is
obtained as shown in figure 4. It can be seen that the STFT
transform can separate the two frequency components, but the
frequency resolution is low. For the cosine frequency mod-
ulation component, there is a serious energy dispersion phe-
nomenon, and the frequency components cannot be identified;
the CWT transform can clearly separate the two types of fre-
quency modulation components, but CWT has serious energy

Figure 3. Time-varying parameter σ.

dispersion in the high-frequency part, and cannot accurately
locate the frequency components in the low-frequency region.
WSST can clearly separate the two FM components, and
accurately gather energy for the chirp components, however,
for the cosine FM signal, serious energy leakage occurs,
and the time resolution and frequency resolution are not
ideal. AFSST can clearly separate two FM signals, and can
accurately squeeze energy for cosine FM components, which
has obvious advantages in time resolution and frequency
resolution.

Figure 5 shows the EECR parameters. It can be seen that
AFSST has a better effective energy compression rate glob-
ally, which greatly exceeds other processing methods, which
proves that the diagnostic method can achieve effective energy
accumulation.

3.2. Noise-added FM signal

In order to verify the anti-interference performance of the
AFSST algorithm for noise, on the basis of the above cosine
FM signal, random white Gaussian noise with a mean of 0 and
a standard deviation of 0.5 is added. The time-domain wave-
form is shown in figure 6, and the time-varying parameters are
shown in figure 7.

Using AFSST, STFT, CWT and WSST time-frequency
algorithms for analysis, the time-frequency diagrams obtained
are shown in figure 8. Both STFT and CWT are interfered
with by noise, and different levels of interference frequen-
cies appear, which affect the determination of actual frequency
components and energy accumulation. WSST basically real-
izes the separation of the chirp signal, but still produces serious
energy dispersion near the cosine frequency component, and
the time resolution and frequency resolution are poor. AFSST
can better separate two different frequency modulation com-
ponents, has good time resolution and frequency resolution,
basically does not have large interference frequencies, and has
strong anti-interference performance.

The EECR under the noise-added signal is shown in
figure 9. Compared with the un-noised signal, the EECR as
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Table 1. Calculation parameters of time-varying parameter σ.

Category
Global

calculation
Predictive Imputation

Algorithms Speed boost
Goodness

of fit

Index 7.361 s 5.279 s 29% 0.9064

Figure 4. Time-frequency analysis.

a whole has a certain decrease, which also shows the ration-
ality of the EECR parameter. However, compared with sev-
eral other methods, AFSST has a higher effective energy com-
pression rate globally, which proves that the AFSST method
has good anti-interference performance and feature extraction
ability.

4. Test verification

4.1. Data of western reserve university

In order to further verify the validity and accuracy of the dia-
gnostic algorithm proposed in this paper, the public data set of
the bearing data test bench of Case Western Reserve Univer-
sity was analyzed and diagnosed [32], the test bench is shown
in figure 10. The test bearing is a 6205-2RS JEM SKF deep
groove ball bearing at the drive end. The specific parameters
are shown in table 2.

The pit damage with a diameter of 0.1778 mm and a depth
of 0.2794 mmwas machined on the inner raceway of the bear-
ing with an electric spark to simulate a single point failure.
The acquisition parameters of the experimental data are: the
rotational speed is 1797 r min−1, the available frequency is
fr = 29.95Hz, and the sampling frequency is 12 kHz. Accord-
ing to the basic parameters of the bearing and the rotational fre-
quency of the motor, the fault characteristic frequency (FCF)
of the inner ring of the bearing and the fault frequency of the
outer ring of the bearing can be calculated by equation (18).

f0 =
Z
2

(
1− d

D
cosθ

)
fr = 3.5848fr

fi =
Z
2

(
1+

d
D
cosθ

)
fr = 5.4152fr. (18)

In the formula, Z is the number of rolling elements; d is the
diameter of the rolling elements;D is the diameter of the pitch
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Figure 5. EECR.

Figure 6. Noise-added time-domain waveform.

circle; θ is the pressure angle. fi = 162.18Hz can be obtained
through the parameters of the bearing.

Taking the data of length 1S, the time domain signal of the
faulty bearing is shown in figure 11. For analyzing the spec-
trum of 0 Hz–512 Hz, figure 12 shows the fast Fourier trans-
form (FFT) spectrum of the selected data. It can be seen that
there is a higher amplitude near 162.6 HZ, which proves that
this frequency may be the fault frequency of the inner ring
of the bearing. Figure 13 shows the time-varying parameters.
Then perform AFSST, STFT, CWT, and WSST analysis on
the fault vibration signal.

Figure 14 shows the time-frequency processing results. The
FCF of 162 Hz can be accurately located by AFSST, and
under the optimization of time-varying parameters, it has a
good frequency resolution in the whole world, showing good
anti-interference performance. Using STFT, the energy of the
fault frequency band can be seen, but due to the interference

Figure 7. Noise time-varying parameter σ.

of noise, the energy is relatively divergent, the fault charac-
teristics and interference signals cannot be accurately separ-
ated, and the frequency resolution is poor. The FCF can also
be seen through CWT and WSST, but the characteristic fre-
quency band obtained byCWT is toowide, and the FCF cannot
be clearly located; while WSST transform solves the problem
of CWT energy divergence, and has good energy aggregation,
but the aggregated characteristic energy band diverges in a
cosine shape, which has a large error with the actual FCF, and
the frequency resolution is not accurate enough.

Figure 15 shows the change of EECR. It can be seen that
the use of synchronous extrusion can improve the energy con-
centration, while STFT and CWT have weak energy concen-
tration, which is not conducive to the resolution of features.
WSST has good energy aggregation, but the frequency resol-
ution is not enough to accurately locate the fault frequency.
AFSST performs well in terms of effective energy concentra-
tion rate and also has excellent frequency resolution. Through
the analysis and verification of the actual bearing data set,
it is verified that AFSST has a certain anti-interference per-
formance, can accurately locate the FCF, and has good time-
frequency resolution and good frequency resolution.

4.2. University of ottawa data

The variable speed data from the University of Ottawa is used
to verify the bearing diagnosis algorithm proposed in this
paper [33]. The experiments are carried out on the Spectra-
Quest mechanical fault simulator (MFS-PK5M). The exper-
imental setup is shown in figure 16. The motor drives the
shaft, and the rotational speed is controlled by an AC drive.
The accelerometer is installed on the experimental bearing
housing, and an incremental encoder is used to measure the
rotational speed. Two ER16K rolling bearings are installed to
support the shaft, the healthy bearing on the left and the exper-
imental bearing on the right.

8
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Figure 8. Time-frequency analysis.

Figure 9. EECR.

By observing the FCF in the frequency domain, it is pos-
sible to detect and diagnose bearing faults. Table 3 gives the
structural parameters of the bearing in the experiment. Accord-
ing to the bearing parameters, the FCF coefficient of the inner

Figure 10. Western reserve university test bed.

ring of the bearing can be calculated by the above formula to
be 5.43, that is, the characteristic frequency of the inner ring of
the bearing is BPFI= 5.43fr. The first second data of the inner
ring fault data I-A-1 is selected for analysis, the rotation speed
is increased from 12.5 Hz to 14.03 Hz, and the fault frequency
is increased from 66.75 Hz to 74.9 Hz.

The time domain diagram is shown in figures 17 and 18 is
the time-varying parameters.
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Table 2. Bearing parameters.

Inner ring
diameter

Outer ring
diameter

Roller
diameter Pitch diameter

Number of
the rolling

Contact
angle

25 mm 52 mm 7.94 mm 39.04 mm 9 0◦

Figure 11. Time domain waveform.

Figure 12. Spectrum analysis.

Using four time-frequency processing methods such as
AFSST, STFT, CWT, and WSST, the time-frequency dia-
grams are obtained as shown in figure 19. The time-frequency
diagram obtained by the AFSST method can see the obvi-
ous fault time-frequency curve, Accurate energy accumula-
tion has been carried out for the fault characteristics of the
one-fold frequency and the double-frequency frequency, and
the frequency identification is also relatively accurate, and no
frequency appears Offset, the frequency components of triple
frequency can be seen in some areas, which has a good fil-
tering effect on background noise and interference frequency

Figure 13. Time-varying parameter σ.

components. The time-frequency diagram obtained by the
STFT method can see three faint fault frequency bands, and
the frequencies are more spread out, it is difficult to determ-
ine the frequency center, and the suppression of background
noise and interference frequencies is not ideal, which seriously
affects the extraction and resolution of fault features; the time-
frequency diagram obtained by CWT and WSST has poor
extraction effect on fault features, and the frequency energy
is too Dispersed, and mixed with background noise and inter-
ference frequencies, the extraction of fault features cannot be
achieved.

The EECR parameters are shown in figure 20. Com-
pared with the other three time-frequency processing meth-
ods, the overall effective energy compression rate of the
AFSST algorithm is significantly higher than the other three
algorithms. It is proved that AFSST has great advantages in
energy aggregation, and can accurately extract fault features
in bearing vibration signals and filter interference signals.

4.3. Experimental platform construction and signal
acquisition

Build the bearing fault test platform by yourself to collect the
measured data, and verify the algorithm proposed in this paper
based on the measured data. The basic transmission diagnosis
simulator produced by SpectraQuest Company in the United
States is used as the bearing simulation test bench. The test
bench can realize different assembly methods and parts selec-
tion, to simulate variousworking conditions. The experimental
platform is shown in figure 21.
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Figure 14. Time-frequency analysis.

Figure 15. EECR.

In order to pick up and collect vibration signals accurately
and quickly, and ensure that the collected vibration data will
not be distorted, and can truthfully reflect the vibration of the

workpiece, theMDR80mobile data acquisition, and recording
system is selected. The MDR80 mobile data acquisition and
recording system can record various types of digital and ana-
log signals, and is widely used in various experimental fields
that require dynamicmonitoring, such as aerospace engine test
runs, aircraft test flight experiments, and automobile experi-
ments. The working condition is set to zero load condition,
the bearing rotation frequency is 46 Hz, and the sampling fre-
quency is 20 kHz. The cylindrical roller bearing is selected as
the experimental object, as shown in figure 22. Grooves were
machined in the bearing inner ring to simulate surface damage
failures in actual operation conditions, see figure 23.

The specific bearing parameters are shown in table 4. From
the calculation formula above, the fault frequency is 309.1 Hz.

The time domain diagram of the collected bearing fault sig-
nal is shown in figure 24, and the time-varying parameters are
shown in figure 25.

Figure 26 can be obtained by four time-frequency pro-
cessing methods such as AFSST, STFT, CWT, and WSST.
It can be seen that the time-frequency diagram obtained by
AFSST extracts clear bearing fault characteristics, and the
rotation frequency and fault frequency can be clearly seen. It
also has a good separation effect on the modulation frequency

11
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Figure 16. Test bench.

Table 3. Bearing parameters.

Bearing
type Pitch diameter

Roller
diameter

Number of
the rolling BPFI BPFO

ER16K 38.52 mm 7.94 mm 9 5.43f r 3.57f r

Figure 17. Time domain waveform.

of the fault feature, and has achieved good frequency resol-
ution and good anti-interference ability in the whole world,
which can accurately judge the bearing fault. However, the
time-frequency diagrams obtained by methods such as STFT,
CWT and WSST can only extract and identify the rotational
frequency, which is not ideal for the extraction of bearing

Figure 18. Time parameters.

fault features, and they all suffer from serious noise interfer-
ence, so it is difficult to accurately judge the bearing fault
state.

Figure 27 shows the EECR parameters proposed in this
paper. It can be seen that the AFSST algorithm proposed in
this paper has an excellent effective energy accumulation rate
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Figure 19. Time-frequency analysis.

Figure 20. EECR.
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Figure 21. Bearing fault simulation test bench.

Figure 22. Cylindrical roller bearings.

Figure 23. Inner ring fault bearing.
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Table 4. Fault bearing parameters.

Bearing
type

Outer ring
diameter

Inner ring
diameter

Roller
diameter

Contact
angle

Pitch
diameter

Number of
the rolling

NU 202
ECP

35 mm 15 mm 5.5 mm 0◦ 24.8 mm 11

Figure 24. Time domain waveform.

Figure 25. Time parameters.

globally, and has strong fault feature extraction performance
and anti-interference performance.

4.4. MFS-MG experimental platform

In order to verify that the method proposed in this paper
can achieve better diagnostic results under various work-
ing conditions, collect data using the machinery fault simu-
lator – magnum (MFS-MG) mechanical failure comprehens-
ive simulation experiment platform, and the layout is shown in
figure 28. A rolling bearing with defects (ER-12K) is installed

near the driving motor, and the defects are obtained by elec-
trical discharge machining (EDM), as shown in figure 29.
Vibration information is collected by piezoelectric an accel-
eration sensor. Table 5 shows the basic parameters of rolling
bearings.

During the test, the sampling frequency was set as 25.6 kHz
and the motor rotation frequency was kept at 29.87 Hz.
According to equation (18), the fault frequency is 147.86 Hz.
The time-domain diagram of the collected bearing fault sig-
nal is shown in figure 30, and the time-varying parameters are
shown in figure 31.
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Figure 26. Time-frequency analysis.

Figure 27. EECR.

Figure 32 can be obtained by four time-frequency pro-
cessing methods, such as AFSST, STFT, CWT and WSST.
The AFSST algorithm can extract clear fault features with a
frequency of 148 Hz and its modulation frequency, the rota-
tion frequency is also accurately located, and it also has a
strong filtering ability for interference harmonics. However,

both STFT and CWT can only see fuzzy characteristic fre-
quency bands, and serious energy diffusion occurs, makes it
difficult to determine the core frequency. WSST algorithm
can only accurately analyze the rotation frequency, but can-
not extract effective fault features. By comparison, it can be
proved that the algorithm proposed in this paper has good
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Figure 28. MFS–MG test bench.

Figure 29. Bearing inner ring.

Table 5. Fault bearing parameters.

Bearing
type

Outer ring
diameter

Inner ring
diameter

Roller
diameter Contact angle Pitch diameter

Number of
the rolling

ER-12K 52 mm 25.4 mm 7.93 mm 0◦ 33.47 mm 8

Figure 30. Time domain waveform.
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Figure 31. Time parameters.

Figure 32. Time-frequency analysis.

feature extraction ability and anti-interference ability, and has
strong robustness.

Figure 33 shows the EECR parameters proposed in this
paper. It can be seen that the proposed AFSST algorithm

has an excellent energy effective compression ratio globally,
has strong fault feature extraction performance and anti-
interference performance, and can effectively realize bearing
fault diagnosis under multiple working conditions.
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Figure 33. EECR.

5. Conclusion

In this paper, a new time-frequency processing algorithm
AFSST based on EMD and FSST is proposed, which improves
the adaptability tomulti-condition signals, enhances the ability
to extract the characteristic frequencies of non-stationary sig-
nals, and improves the robustness to noise. Based on good sep-
aration conditions, by constructing the time-varying parameter
anchor point and introducing the weighted least squares fitting
calculation, the time-varying parameter prediction algorithm
is established. Through experimental verification, the calcula-
tion speed of the time-varying parameter is increased by 29%,
and the overall calculation efficiency of AFSST is improved.
The EECR parameter is proposed to measure the effective
energy aggregation effect and feature extraction ability of the
time-frequency analysis method.

Using the simulation signal, the bearing data of Western
Reserve University, University of Ottawa variable speed bear-
ing data, and the data collected by the self-built experimental
bench, the AFSST, STFT, CWT and WSST processing meth-
ods are used for time-frequency processing. Through compar-
ative analysis, it is verified that the AFSST algorithm has great
advantages in dealing with non-stationary signals, has strong
self-adaptation and can obtain better fault feature extraction
results for bearing fault data under different working con-
ditions. This provides a basis for the identification of fault
characteristics and has certain application value in practical
engineering.
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