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Abstract
In this paper, we establish some hyperstability results concerning the Cauchy - Jensen functional
equation

f
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2

)
+ f
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in Banach spaces.

Keywords: Hyperstability; Cauchy-Jensen equation; fixed point theorem
2010 Mathematics Subject Classification: Primary 39B82, 39B62; Secondary 47H14,47H10.

1 Introduction
In 1940, Ulam [1] raised the following question: Under what conditions does there exist an additive
mapping near an approximately additive mapping?
Let X and Y be Banach spaces with norms ‖.‖ and ‖.‖, respectively. In 1941, Hyers [2] showed that
if ε > 0 and f : X → Y such that

‖f(x+ y)− f(x)− f(y)‖ ≤ ε,
for all x, y ∈ X, then there exists a unique additive mapping T : X → Y such that

‖f(x)− T (x)‖ ≤ ε,

for all x ∈ X. In 1978, Rassias [3] introduced the following inequality, that we call Cauchy-Rassias
inequality. Assume that there exist constants θ ≥ 0 and p ∈ [0, 1) such that

‖f(x+ y)− f(x)− f(y)‖ ≤ θ(‖x‖p + ‖y‖p),

for all x, y ∈ X. Rassias [3] showed that there exists a unique R-linear mapping T : X → Y such that

‖f(x)− T (x)‖ ≤ 2θ

2− 2p
‖x‖p,
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for all x ∈ X. The above inequality has produced a lot of influence on the development of what we
now call the Hyers-Ulam-Rassias stability of functional equations. Beginning around the year 1980
the topic of approximate homomorphisms, or the stability of the equation of homomorphism, was
studied by a number of mathematicians (see [4], [5], [6], [7], [8] and [9]).

Recently, interesting results concerning Cauchy-Jensen functional equation

f
(x+ y

2

)
+ f

(x− y
2

)
= f(x) (1)

have been obtained in [10], [11], [12], [13] and [14].

We say a functional equation D is hyperstable if any function f satisfying the equation D approximately
is a true solution of D. It seems that the first hyperstability result was published in [15] and concerned
the ring homomorphisms. However, The term hyperstability has been used for the first time in [16].
Quite often the hyperstability is confused with superstability, which admits also bounded functions.

Numerous papers on this subject have been published and we refer to [17], [18], [19] and [20].
Throughout this paper, we present the hyperstability results for the Cauchy-Jensen functional

equation (1) in Banach spaces.
The method of the proofs used in the main results is based on a fixed point result that can be

derived from [Theorem 1 [21]]. To present it we need the following three hypothesis:

(H1) X is a nonempty set, Y is a Banach space, f1, ..., fk : X −→ X and L1, ..., Lk : X −→ R+

are given.

(H2) T : Y X −→ Y X is an operator satisfying the inequality

‖T ξ(x)− T µ(x)‖ ≤
k∑

i=1

Li(x)‖ξ (fi(x))− µ (fi(x)) ‖, ξ, µ ∈ Y X , x ∈ X.

(H3) Λ : RX
+ −→ RX

+ is a linear operator defined by

Λδ(x) :=

k∑
i=1

Li(x)δ (fi(x)) , δ ∈ RX
+ , x ∈ X.

The following theorem is the basic tool in this paper. We use it to assert the existence of a unique
fixed point of operator T : Y X −→ Y X .

Theorem 1. Let hypotheses (H1)-(H3) be valid and functions ε : X −→ R+ and ϕ : X −→ Y fulfil
the following two conditions

‖T ϕ(x)− ϕ(x)‖ ≤ ε(x), x ∈ X,

ε∗(x) :=

∞∑
n=0

Λnε(x) <∞, x ∈ X.

Then there exists a unique fixed point ψ of T with

‖ϕ(x)− ψ(x)‖ ≤ ε∗(x), x ∈ X.

Moreover
ψ(x) := lim

n→∞
T nϕ(x), x ∈ X.
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2 Hyperstability Results
The following theorems are the main results in this paper and concern the hyperstability of equation
(1).

Theorem 2. Let X be a normed space, Y be a Banach space, c ≥ 0, p, q ∈ R, p + q < 0 and let
f : X −→ Y satisfy ∥∥∥f (x+ y

2

)
+ f

(x− y
2

)
− f(x)

∥∥∥ ≤ c‖x‖p · ‖y‖q (2)

for all x, y ∈ X \ {0}. Then f is Cauchy-Jensen on X \ {0}.

Proof. Since p+ q < 0, one of p, q must be negative. Assume that q < 0 and replace y by mx, where
m ∈ N, in (2). We get that∥∥∥∥f (1 +m

2
x

)
+ f

(
1−m

2
x

)
− f(x)

∥∥∥∥ ≤ cmq‖x‖p+q (3)

for all x ∈ X \ {0}. Write

Tmξ(x) := ξ

(
1 +m

2
x

)
+ ξ

(
1−m

2
x

)
, x ∈ X \ {0}, ξ ∈ Y X\{0},

εm(x) := cmq‖x‖p+q, x ∈ X \ {0},
then (3) takes the following form

‖Tmf(x)− f(x)‖ ≤ εm(x), x ∈ X \ {0}.

Define

Λmη(x) := η

(
1 +m

2
x

)
+ η

(
1−m

2
x

)
, x ∈ X \ {0}, η ∈ RX\{0}

+ .

Then it is easily seen that Λm has the form described in (H3) with k = 2 and
f1(x) = 1+m

2
x, f2(x) = 1−m

2
x, L1(x) = L2(x) = 1 for x ∈ X \ {0}.

Moreover, for every ξ, µ ∈ Y X\{0} and x ∈ X \ {0}, we get that

‖Tmξ(x)− Tmµ(x)‖ =

∥∥∥∥ξ(1 +m

2
x

)
+ ξ

(
1−m

2
x

)
− µ

(
1 +m

2
x

)
− µ

(
1−m

2
x

)∥∥∥∥
≤
∥∥∥∥(ξ − µ)

(
1 +m

2
x

)∥∥∥∥+

∥∥∥∥(ξ − µ)

(
1−m

2
x

)∥∥∥∥ =

2∑
i=1

Li(x)‖(ξ − µ)(fi(x))‖.

So, (H2) is valid. Next, we can find m0 ∈ N such that∣∣∣∣1 +m

2

∣∣∣∣p+q

+

∣∣∣∣1−m2

∣∣∣∣p+q

< 1 for all m ≥ m0.

Therefore, we obtain that

ε∗m(x) :=

∞∑
n=0

Λn
mεm(x)

= cmq‖x‖p+q
∞∑

n=0

(∣∣∣∣1 +m

2

∣∣∣∣p+q

+

∣∣∣∣1−m2

∣∣∣∣p+q
)n

=
cmq‖x‖p+q

1−
∣∣ 1+m

2

∣∣p+q −
∣∣ 1−m

2

∣∣p+q , x ∈ X \ {0},m ≥ m0.
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Hence, according to Theorem 1, for each m ≥ m0 there exists a unique solution Am : X \ {0} →
Y of the equation

Am(x) = Am

(
1 +m

2
x

)
+Am

(
1−m

2
x

)
, x ∈ X \ {0}

such that

‖f(x)−Am(x)‖ ≤ cmq‖x‖p+q

1−
∣∣ 1+m

2

∣∣p+q −
∣∣ 1−m

2

∣∣p+q , x ∈ X \ {0},m ≥ m0.

Moreover,
Am(x) := lim

n→∞
T n
mf(x), x ∈ X \ {0}.

To prove that Am satisfies the Cauchy-Jensen equation on X \ {0}, we show that

∥∥∥T n
mf
(x+ y

2

)
+ T n

mf
(x− y

2

)
− T n

mf(x)
∥∥∥ ≤ c(∣∣∣∣1 +m

2

∣∣∣∣p+q

+

∣∣∣∣1−m2

∣∣∣∣p+q
)n

‖x‖p‖y‖q (4)

for every x, y ∈ X \ {0} and every n ∈ N0.

If n = 0, then (4) is simply (2). So, take r ∈ N0 and suppose that (4) holds for n = r. Then

∥∥∥T r+1
m f

(x+ y

2

)
+ T r+1

m f
(x− y

2

)
− T r+1

m f(x)
∥∥∥ =

∥∥∥∥T r
mf

(
1 +m

2

x+ y

2

)
+ T r

mf

(
1−m

2

x+ y

2

)

+T r
mf

(
1 +m

2

x− y
2

)
+ T r

mf

(
1−m

2

x− y
2

)
− T r

mf

(
1 +m

2
x

)
− T r

mf

(
1−m

2
x

)
‖

≤
∥∥∥∥T n

mf

(
1 +m

2

x+ y

2

)
+ T n

mf

(
1 +m

2

x− y
2

)
− T n

mf(
1 +m

2
x)

∥∥∥∥
+

∥∥∥∥T n
mf

(
1−m

2

x+ y

2

)
+ T n

mf

(
1−m

2

x− y
2

)
− T n

mf(
1−m

2
x)

∥∥∥∥
≤ c

(∣∣∣∣1 +m

2

∣∣∣∣p+q

+

∣∣∣∣1−m2

∣∣∣∣p+q
)r (∥∥∥∥1 +m

2
x

∥∥∥∥p · ∥∥∥∥1 +m

2
y

∥∥∥∥q +

∥∥∥∥1−m
2

x

∥∥∥∥p · ∥∥∥∥1−m
2

y

∥∥∥∥q)

= c

(∣∣∣∣1 +m

2

∣∣∣∣p+q

+

∣∣∣∣1−m2

∣∣∣∣p+q
)r+1

‖x‖p · ‖y‖q, x, y ∈ X \ {0}.

Thus, by induction we show that (4) holds for all n ∈ N0. Letting n −→∞ in (4), we obtain that

Am(x) = Am

(x+ y

2
x
)

+Am

( x− y
2

x
)
, x, y ∈ X \ {0}.

So, we obtain a sequence {Am}m≥m0 of Cauchy-Jensen functions on X \ {0} such that

‖f(x)−Am(x)‖ ≤ cmq‖x‖p+q

1−
∣∣ 1+m

2

∣∣p+q −
∣∣ 1−m

2

∣∣p+q , x ∈ X \ {0}.

It follows, with m −→∞, that f is Cauchy-Jensen on X \ {0}.
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In a similar way we can prove the following two theorems.

Theorem 3. Let X be a normed space, Y be a Banach space, c ≥ 0, p, q ∈ R, p + q > 0 and let
f : X −→ Y satisfies (2). Then f is Cauchy-Jensen on X \ {0}.

Proof. Replacing y by 1
m
x in (2), where m ∈ N, we get∥∥∥∥f (m+ 1

2m
x

)
+ f

(
m− 1

2m
x

)
− f(x)

∥∥∥∥ ≤ c

mq
‖x‖p+q (5)

for all x ∈ X \ {0}. Define operators Tm : Y X\{0} → Y X\{0} and Λm : RX\{0}
+ → RX\{0}

+ by

Tmξ(x) := ξ

(
m+ 1

2m
x

)
+ ξ

(
m− 1

2m
x

)
, x ∈ X \ {0}, ξ ∈ Y X\{0},

Λmδ(x) := δ

(
m+ 1

2m
x

)
+ δ

(
m− 1

2m
x

)
, x ∈ X \ {0}, δ ∈ RX\{0}

+ .

Then it is easily seen that Λm has the form described in (H3) with k = 2 and

f1(x) =
m+ 1

2m
x, f2(x) =

m− 1

2m
x, L1(x) = L2(x) = 1

for x ∈ X \ {0}. Further, (5) can be written in the form

‖Tmf(x)− f(x)‖ ≤ εm(x), x ∈ X \ {0},

with
εm(x) :=

c

mq
‖x‖p+q.

Moreover, for every ξ, µ ∈ Y X\{0} and x ∈ X \ {0}, we have

‖Tmξ(x)− Tmµ(x)‖ =

∥∥∥∥ξ(m+ 1

2m
x

)
+ ξ

(
m− 1

2m
x

)
− µ

(
m+ 1

2m
x

)
− µ

(
m− 1

2m
x

)∥∥∥∥
≤
∥∥∥∥(ξ − µ)

(
m+ 1

2m
x

)∥∥∥∥+

∥∥∥∥(ξ − µ)

(
m− 1

2m
x

)∥∥∥∥ =

2∑
i=1

Li(x)‖(ξ − µ)(fi(x))‖

and hypothesis (H2) holds, too. We can find m0 ∈ N such that∣∣∣∣m+ 1

2m

∣∣∣∣p+q

+

∣∣∣∣m− 1

2m

∣∣∣∣p+q

< 1 for all m ≥ m0.

Note yet that we have

ε∗m(x) :=

∞∑
n=0

Λn
mεm(x)

=
c

mq
‖x‖p+q

∞∑
n=0

(∣∣∣∣m+ 1

2m

∣∣∣∣p+q

+

∣∣∣∣m− 1

2m

∣∣∣∣p+q
)n

=
c‖x‖p+q

mq(1−
∣∣ 1+m

2

∣∣p+q −
∣∣ 1−m

2

∣∣p+q
)
, x ∈ X \ {0},m ≥ m0.

Consequently, in view of Theorem 1, for each m ≥ m0 there exists a unique solution Am :
X \ {0} → Y of the equation
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Am(x) = Am

(
m+ 1

2m
x

)
+Am

(
m− 1

2m
x

)
, x ∈ X \ {0}

such that

‖f(x)−Am(x)‖ ≤ c‖x‖p+q

mq(1−
∣∣m+1

2m

∣∣p+q −
∣∣m−1

2m

∣∣p+q
)
, x ∈ X \ {0},m ≥ m0.

Moreover,
Am(x) := lim

n→∞
T n
mf(x), x ∈ X \ {0}.

Then we show

∥∥∥T n
mf
(x+ y

2

)
+ T n

mf
(x− y

2

)
− T n

mf(x)
∥∥∥ ≤ c(∣∣∣∣m+ 1

2m

∣∣∣∣p+q

−
∣∣∣∣m− 1

2m

∣∣∣∣p+q
)n

‖x‖p‖y‖q (6)

for every x, y ∈ X \ {0} and every n ∈ N0.

If n = 0, then (6) is simply (2). So, take r ∈ N0 and suppose that (6) holds for n = r. Then

∥∥∥T r+1
m f

(x+ y

2

)
+ T r+1

m f
(x− y

2

)
− T r+1

m f(x)
∥∥∥ =

∥∥∥∥T r
mf

(
m+ 1

2m

x+ y

2

)
+ T r

mf

(
m− 1

2m

x+ y

2

)

+T r
mf

(
m+ 1

2m

x− y
2

)
+ T r

mf

(
m− 1

2m

x− y
2

)
− T r

mf

(
m+ 1

2m
x

)
− T r

mf

(
m− 1

2m
x

)
‖

≤
∥∥∥∥T n

mf

(
m+ 1

2m

x+ y

2

)
+ T n

mf

(
m+ 1

2m

x− y
2

)
− T n

mf(
m+ 1

2m
x)

∥∥∥∥
+

∥∥∥∥T n
mf

(
m− 1

2m

x+ y

2

)
+ T n

mf

(
m− 1

2m

x− y
2

)
− T n

mf(
m− 1

2m
x)

∥∥∥∥
≤ c

(∣∣∣∣m+ 1

2m

∣∣∣∣p+q

+

∣∣∣∣m− 1

2m

∣∣∣∣p+q
)r (∥∥∥∥m+ 1

2m
x

∥∥∥∥p · ∥∥∥∥m+ 1

2m
y

∥∥∥∥q +

∥∥∥∥m− 1

2m
x

∥∥∥∥p · ∥∥∥∥m− 1

2m
y

∥∥∥∥q)

= c

(∣∣∣∣m+ 1

2m

∣∣∣∣p+q

+

∣∣∣∣m− 1

2m

∣∣∣∣p+q
)r+1

‖x‖p · ‖y‖q, x, y ∈ X \ {0}.

Thus, by induction we show that (6) holds for all n ∈ N0. Letting n −→∞ in (6), we obtain that

Am(x) = Am

(x+ y

2
x
)

+Am

( x− y
2

x
)
, x, y ∈ X \ {0}.

So, we obtain a sequence {Am}m≥m0 of Cauchy-Jensen functions on X \ {0} such that

‖f(x)−Am(x)‖ ≤ c‖x‖p+q

mq(1−
∣∣m+1

2m

∣∣p+q −
∣∣m−1

2m

∣∣p+q
)
, x ∈ X \ {0}.

It follows, with m −→∞, that f is Cauchy-Jensen on X \ {0}.

Theorem 4. Let X be a normed space, Y be a Banach space, c ≥ 0, p < 0 and let f : X −→ Y
satisfy ∥∥∥f (x+ y

2

)
+ f

(x− y
2

)
− f(x)

∥∥∥ ≤ c(‖x‖p + ‖y‖p) (7)

for all x, y ∈ X \ {0}. Then f is Cauchy-Jensen on X \ {0}.
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Proof. Replacing x by (m+ 2)x and y by −mx, where m ∈ N, in (7), we obtain

‖f(x) + f((m+ 1)x)− f((m+ 2)x)‖ ≤ c((m+ 2)p +mp)‖x‖p (8)

for all x ∈ X \ {0}. Write

Tmξ(x) := ξ((m+ 2)x)− ξ((m+ 1)x), x ∈ X \ {0}, ξ ∈ Y X\{0},

εm(x) := c((m+ 2)p +mp)‖x‖p.
Inequality (8) takes the following form

‖Tmf(x)− f(x)‖ ≤ εm(x), x ∈ X \ {0}.

The following linear operator Λm : RX\{0}
+ −→ RX\{0}

+ which is defined by

Λmη(x) := η((m+ 2)x) + η((m+ 1)x), η ∈ RX\{0}
+ , x ∈ X \ {0}

has the form described in (H3) with k = 2 and f1(x) = (m+2)x, f2(x) = (m+1)x, L1(x) = L2(x) = 1,
for x ∈ X \ {0}.

Moreover, for every ξ, µ ∈ Y X\{0}, x ∈ X \ {0}

‖Tmξ(x)− Tmµ(x)‖ = ‖ξ ((m+ 2)x)− ξ ((m+ 1)x)− µ ((m+ 2)x) + µ ((m+ 1)x)‖

≤ ‖(ξ − µ) ((m+ 2)x)‖+ ‖(ξ − µ) ((m+ 1)x)‖ =

2∑
i=1

Li(x)‖(ξ − µ)(fi(x))‖.

So, (H2) is valid. Now, we can find m0 ∈ N such that

(m+ 2)p + (m+ 1)p < 1 for all m ≥ m0.

Therefore, we obtain that

ε∗m(x) :=

∞∑
n=0

Λn
mεm(x)

= c((m+ 2)p +mp)
∞∑

n=0

Λn
m (‖(m+ 2)x‖p + ‖(m+ 1)x‖p)

= c((m+ 2)p +mp)‖x‖p
∞∑

n=0

((m+ 2)p + (m+ 1)p)n

=
c((m+ 2)p +mp)‖x‖p

1− (m+ 2)p − (m+ 1)p
, x ∈ X \ {0},m ≥ m0.

The rest of the proof is similar to the proof of Theorem 2.

3 Conclusion
This paper indeed presents a relationship between three various disciplines: the theory of Banach
spaces, the theory of stability of functional equations and the fixed point theory. We established
some hyperstability results concerning a Cauchy-Jensen functional equation in Banach spaces by
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using fixed point theorem which given by Brzḑek J. Chudziak J. and Páles Zs. [21].
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