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Abstract 

In this work, we present a computational method for solving nonlinear Fredholm-Volterra integral equations 
of the second kind which is based on replacement of the unknown function by truncated series of well known 
Block-Pulse functions (BPfs) expansion. Error analysis is worked out that shows efficiency of the method. 
Finally, we also give some numerical examples. 
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1. Introduction  

The integral equation method is widely used for solving 
many problems in mathematical physics and engineering. 
This article proposes a computational method for solving 
nonlinear Fredholm-Volterra integral equations. Several 
numerical methods for approximating the solution of linear 
and nonlinear integral equations and specially Fredholm- 
Volterra integral equations are known [1-10]. Also, Block- 
Pulse functions are studied by many authors and applied 
for solving different problems. In presented paper, by using 
vector forms of BPfs, the main problem can be easily re-
duced to a nonlinear system of algebraic equations which 
can be solved by Newton’s iterative method. 

2. Review of Some Related Papers 

Some computational methods for approximating the so-
lution of linear and nonlinear integral equations are 
known. The classical method of successive approxima-
tion for Fredholm-Hammerstein integral equations was 
introduced in [3]. Brunner in [4] applied a collocation 
type method and Ordokhani in [8] applied rationalized 
Haar function to nonlinear Volterra-Fredholm-Hammer-
stein integral equations. A variation of the Nystrom me- 
thod was presented in [5]. A collocation type method 
was developed in [6]. The asymptotic error expansion of 
a collocation type method for volterra-Hammerstein in-

tegral equations has been considered in [7]. Yousefi in [9] 
applied Legendre wavelets to a special type of nonlinear 
Volterra-Fredholm integral equations of the form. 
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where ( )f t , and 1( ,  )K t x  and 2 ( ,  )K t x  are assumed 
to be in  on the interval 2 (L R) 0 x 1t , . Yalcinbas in 
[10] used Taylor polynomials for solving Equation (1) with 

( ) pF u u  and ( ) qG u u . Orthogonal functions and 
polynomials receive attention in dealing with various 
problems that one of those in integral equation. The main 
characteristic of using orthogonal basis is that it reduces 
these problems to solving a system of nonlinear algebraic 
equations. The aim of this work is to present a numerical 
method for approximating the solution of nonlinear Fred-
holm-Volterra integral equation of the form: 
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where  and  are nonnegative integers and 1m n   and 

2  are constants. For this purpose we define a k-set of 
BPfs as  
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A function  defined over the interval [0, 1) may be 
expanded as: 
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In practice, only k-term of (6) are considered, where k is 
a power of 2, that is,  
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with matrix from: 
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In a similar manner, [ (  can be approximated in 
term of BPfs 
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that we need to calculate vector  whose elements are 
nonlinear combination of the elements of the vector u  
For this purpose, we can write 
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where,  is the identity matrix of order k. By incorporat-
ing these results we have  

I

1 1

0 0
( ) ( )d [ ( )dt t t t t tk t t t k t    I  u u u B B u B( Bt)

m
t .  

Hence, 
1

0

1
1

1
1

1

( )] ( )d

   ( )] ( )d

  ( )] [ ( ) ( )]d

t t m

ik
t mk

i
i k

ik
t m tk

i
i k

k t t t

k t t t

k t t























t

t

u u B B

u B B

u B u B B

t[

[

[ t t

.    (11) 

So using (11) leads to  
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Now for evaluating the integral  at the 
collocation points  
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3. Solution of the Nonlinear Fredholm- 
Volterra Integral Equations  

In order to use BPfs for solving nonlinear Fredholm- 
Voterra integral equations given in Equation (2), we first 
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by using (10) and (13) and the fact that ( )j jt B e  
where, je  is the j-th column of the identity matrix of 
order k, Equation (22) may then be restated as  
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Equation (23) gives  nonlinear equations which can kk
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Table 1.  

t Exact Approximate for 8k   Approximate for 16k 
0.1 –1.99 –1.9847 –1.9876 
0.2 –1.96 –1.9505 –1.9532 
0.3 –1.91 –1.8857 –1.8905 
0.4 –1.84 –1.7905 –1.8122 
0.5 –1.75 –1.7650 –1.7666 
0.6 –1.64 –1.6650 –1.6589 
0.7 –1.51 –1.5091 –1.5080 
0.8 –1.36 –1.3205 –1.3342 
0.9 –1.19 –1.1103 –1.1297 

Table 2.  

t Exact Approximate for 8k   Approximate for 16k 
0.1 0.0998 0.0625 0.0936 
0.2 0.1986 0.1866 0.2070 
0.3 0.2955 0.3078 0.2776 
0.4 0.3894 0.4242 0.3952 
0.5 0.4794 0.5139 0.5067 
0.6 0.5646 0.5339 0.5596 
0.7 0.6442 0.6353 0.6514 
0.8 0.7173 0.7268 0.7243 
0.9 0.7833 0.8069 0.7874 

 
be solved for the elements  using Newton’s iterative 
method. 

1u

4. Error in BPfs Approximation 

Theorem. If a differentiable function  with 

bounded first derivative on (0, 1) is represented in a se-

ries of BPfs over subinterval 
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Proof. See [1]. 

5. Illustrative Examples 

Consider the following nonlinear volterra-Fredholm in-
tegral equations.  

Example 1. 
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0 t , 1x  . 

We applied the method presented in this paper for 
solving Equation (2) with  and .  8k  16k 

The computational results together with the exact so-
lution  are given in Table 1. 2( ) 2u t t 

Example 2. 

2

0

1 1 1
( ) sin sin 2 [ ( )] d

8 4 2

t
u t t t t u x x     , 0 t , 1x  . 

The computational results with  and 8k  16k   
together with the exact solution  are given in 
Table 2. 

( )u t sin t

6. Conclusions 

The aim of present work is to apply a method for solving 
the nonlinear Volterra-Fredholm integral equations. The 
properties of the Block Pulse functions together with the 
collocation method are used to reduce the problem to the 
solution of nonlinear algebraic equations. Example 1 is 
solved in [2] using Chebyshev expansion method (Cem), 
comparing the results shows Cem is more accurate than 
BPfs method But, it seems the number of calculations of 
BPfs method is lower. Also, the benefits of this method 
are low cost of setting up the equations due to properties 
of BPfs mentioned in Section 2. In addition, the nonlin-
ear system of algebraic equations is sparse. Finally, this 
method can be easily extended and applied to nonlinear 
Volterra-Fredholm integral equations of the form Equa-
tion (1). Illustrative examples are included to demon-
strate the validity and applicability of the technique. 
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