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Abstract 
 
According to Godunov theorem for numerical calculations of advection equations, there exist no high-
er-order schemes with constant positive difference coefficients in a family of polynomial schemes with an 
accuracy exceeding the first-order. In case of advection-diffusion equations, so far there have been not found 
stable schemes with positive difference coefficients in a family of numerical schemes exceeding the 
second-order accuracy. We propose a third-order computational scheme for numerical fluxes to guarantee 
the non-negative difference coefficients of resulting finite difference equations for advection-diffusion equa-
tions. The present scheme is optimized so as to minimize truncation errors for the numerical fluxes while 
fulfilling the positivity condition of the difference coefficients which are variable depending on the local 
Courant number and diffusion number. The feature of the present optimized scheme consists in keeping the 
third-order accuracy anywhere without any numerical flux limiter by using the same stencil number as con-
vemtional third-order shemes such as KAWAMURA and UTOPIA schemes. We extend the present method 
into multi-dimensional equations. Numerical experiments for linear and nonlinear advection-diffusion equa-
tions were performed and the present scheme’s applicability to nonlinear Burger’s equation was confirmed. 
 
Keywords: Numerical Scheme, Numerical Analysis, Numerical Stability, Positivity Condition, 

Advection-Diffusion Equation, Advection Equation, High-Order Scheme, Godunov Theorem, 
Burgers’ Equation 

1. Introduction 

1.1. Overview 

In numerical calculations of advection equations and 
advection-diffusion equations appearing frequently in 
scientific and engineering fields, there is a trend of trade- 
off relationship between numerical accuracy and numer-
ical stability. Hence it is much concern to construct sta-
ble numerical schemes with higher-order accuracy. 

In connection with this tradeoff relationship between 
accuracy and stability, there exist no polynomial expan-
sion schemes with positive difference coefficients in a 
family of numerical schemes with an accuracy exceeding 
the first-order according to Godunov theorem for nu-
merical calculations of advection equations. In case of 
advection-diffusion equations, there exist the second- 
order schemes with the positivity conditions such as the 

FTCS (Forward Time and Centered Space) scheme. 
However, so far there have been not found such stable 

numerical schemes with the positivity condition in a 
family of schemes with an accuracy exceeding the 
second-order. For examples, in case of the conventional 
high- order polynomial schemes such as QUICK [1], 
UTOPIA [1] and KAWAMURA [2] schemes, at least 
one of those difference coefficients is negative even for 
advection- diffusion equations, and those higher-order 
schemes tend to bring forth unstable solutions due to 
unphysical oscillations, especially around a location 
where a steep gradient in the solutions exists. 

To cope with this numerical oscillation problems, non- 
linear monotonicity preserving schemes such as the 
FRAM technique [3] and the TVD schemes [4] using a 
numerical flux limiter have been proposed. But there may 
be a case that such a flux limiter may introduce extra 
numerical diffusions, resulting in decreasing the quality 
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of the solution around a steep gradient field. 
So far we have constructed stable schemes based on an 

analytical solution of unsteady advection-diffusion equa-
tions. Namely, by involving the properties of the exact 
solutions of linear and nonlinear advection-diffusion 
equations into a numerical scheme, we constructed the 
numerical schemes ANO [5,6] and COLE [6,7] with mo- 
notonocity preserving properties for unsteady linear and 
nonlinear equations, respectively. 

1.2. Ojbjectives 

In this paper, we perform discussions on computational 
transport within a frame of linear theory. We propose a 
third-order computational method for numerical fluxes 
associated with the transport of a quantity f with a form 
of     e f e v f e      u  in a direction e, where u  
and ν are the velocity and diffusivity, respectively. The 
present scheme guarantees the positive difference coeffi-
cients of resulting finite difference equations for advec-
tion-diffusion equations in no use of any numerical flux 
limiter. Once we construct a stable scheme in a frame of 
linear theory, we apply it to nonlinear equations as well 
as linear equations in numerical experiments. Its evi-
dence consists in the followings: We make use of an 
iterative calculation to take into consideration the nonli-
near effect involved in nonlinear equations. In each itera-
tive calculation at a given time step, a linear theory is 
applicable. This approach would be justified as long as 
its iterative solution converges. This is our policy. We 
confirm the convergence of iterative solutions in numer-
ical experiments for nonlinear Burgers equation and dis-
cuss this justification. 

Further we extend the present method into multi-di- 
mensional equations. We perform numerical experiments 
for linear and nonlinear advection-diffusion equations to 
confirm the performance of the present scheme. 

2. Mathematical Formulation 

2.1. Numerical Stability 

Regarding the numerical stability, we have the positive 
coefficient condition in a frame of linear numerical 
schemes that all coefficients linearly associated with the 
quantity f in the finite difference equations should be 
nonnegative. This positivty condition guarantees the sta-
bility such as monotone property of numerical schemes, 
monotonicity preserving condition, maximum principle, 
TVD (Total Variation Diminishing) condition and bound-
edness condition under the consistency condition of nu-
merical schemes. Thus the positive coefficients condition 
with the consistency condition is sufficient condition for 

both the monotonicity and the boundedness of the nu-
merical solutions. 

2.2. Transport Vector J and Numerical Flux   

The transport vector J associated with a quantity f in a 
flow field  , ,u wu  with the diffusion coefficient ν 
is expressed as 

  ,J f f   u                (1) 

where the first term and the second term denote the ad-
vection and the diffusion, respectively and νis the diffu-
sion coefficient. The conservation low for f in case of no 
sources is expressed as 

 div 0
f

J
t


 


               (2) 

which corresponds to the advection-diffusion equation. 
By integrating Equation (2) over the time and space con-
trol volumes  ,t t t   0, V  related to the computa-
tional cell under consideration and making use of Gaus-
sian divergence theorem, we obtain  

   
0 0

d dSdt 0,
V t t S

t t

st
t

f V J e
  

            (3) 

where es means the normal vector on the control volume 
surface. We define the numerical flux e  in the direc-
tion e by  

      .e J e f e v f e        u       (4a) 

In case of one dimension shown in Figure 1(a), we 
have  

 

 

1 2 1/2 1/2
1/2

1/2

( )

at ,

xe
i x i i

i

i

f
J e uf v

x

x x

   




       
　

   (4b) 

   

 

1 2 1 21 2
1 2

1/2at ,

xe
i x ii

i

i

f
J e uf v

x

x x

  




       

　

   (4c) 

where ex means a unit vector in the x-direction. Taking 
note of 1 2s i xe e e    at 1 2ix x   and 1 2s ie e   

xe at 1 2ix x  , from Equations (3) and (4) we obtain 
in one dimension 

    

 

2

2

1/2 1/2

, , dx

dt 0.

i

i

x x

x x

x x

t t
e e

i i
t

f t t x f t x

 







 

  

  





         (5) 

Hereafter we omit the superscript ex. In the first term in 
Equation (5) we approximate the averaged value of f over 
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the control line  2, 2,i ix x x x    to be the value of 
f at the center of control volume, namely  , if t x  

 
2

2

, d
i

i

x V

x V

f t x x x




   at any time t. 

Further approximating the time integration in Equation 
(5) by the fully explicit scheme, we obtain the finite dif-
ference equation for the advection-diffusion equation by 
using numerical fluxes as follows: 

1
1 2 1 2

n n n n
i i i i

t
f f

x
 

 
     

.        (6) 

where the superscript n denotes the time step number and 
we let  , .n n

i if f t x  

2.3. One-Dimensional Case 

2.3.1. Finite Difference Equation 
We perform a finite difference formulation for numerical 
flux  . In the staggered grid with the velocity defined on 
the cell surface as shown in Figure 1, the quantity f and 
its derivative are to be interpolated using f at its surround-
ing cells. Here we perform mathematical formulation 
 
 

1 2i  1 2i 
 

 
(a) 

 

, 1/2i j   

1/2,i j   1/2,i j   
, 1/2i j   

 
(b) 

Figure 1. A computational grid. (a) One-dimensional grid, 
(b) Two-dimensional grid. 

in case using 4 stencils to evaluate the numerical flux in 
one dimension. We expand  1,0,1,2i kf k    with 
respect to the cell surface point (i + 1/2) into the Taylor 
series. Taking a linear combination of those Taylor ex-
pansion series with multiplication of four parameters 
 , , ,        yields 
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3
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i
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 (7) 

Requiring that the right-hand side of Equation (7) 
should be consistent with the numerical flux 1 2i   

given 
by Equation (4b) within the third-order accuracy, we 
obtain 

1 2iu            ,          (8a) 

 3 3 ,
2

x       


             (8b) 

2 2 2 2
3 1 1 3

0.
2 2 2 2

      
                 
       

   (8c) 

If we impose that the fourth term in the right hand side 
of Equation (7) is equal to 0, all parameters ( , , ,      
 ) are to be determined uniquely. But in order to de-
termine the difference coeffcients of the resulting differ-
ence equation so as to satisfy the stability condition (non- 
negative condition), we solve the above three Equations 
(8a),(8b) and (8c) with a free parameter   as follows:  

1 2

3
3 ,

8 iu
x

      


          (9a) 

1 2

3
3 ,

4 iu
x

     


           (9b) 

1 2

1
.

8 iu                   (9c) 

Thus we get  

1 2 1/2 1 2
1 2

1 1 2

4
1/2

,

       

          ( ),

x
i i i

i

n n n n
i i i i

i

f
u f

x

f f f f

TE O x

 
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  


      



 
     
   

  

      (10) 
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where 1 2iTE  is the lowest-order term in the truncation 
errors defined by 

3 3 3

1 2

3 3
3

3
1 2

1 3 1 1

3! 2 2 2

3
.

2

i

i

TE

f
x

x
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
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


                     
        

   (11) 

In the same manner as that in case of 1 2i  , we get 
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where 

1 2

3
3 ,

8 iu
x
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

          (13a) 
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3
3 ,
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

          (13b) 
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1
,

8 iu                   (13c) 
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x

  



   



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        

    (14) 

In the above equations two free parameters α+ and α－ 

are to be determined later from the stability condition 
and requirement of minimum truncation errors. 

Substituting Equations (10) and (12) into Equation (6) 
yields the finite difference equation: 

 
 

1
1 1 2

2 1 1

2 1 1 2

         ,

     ,
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i i i i i i
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 (15) 

where 

3
, ( ) 3 ,

8
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
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(16)
 

with    , ,t x t x    
        

1 2 1 2and .i iC u t x C u t x        
 

2.3.2. Stability Condition 
From the positive coefficients condition (rigorously 
nonnegative condition), we have the following stability 
condition: 

0, 0, 0, 0, 0a b c d e     .    (17) 

A solution of Inequalities (17) is given by (see Ap-
pendix A). 

5 3 1
0 ,

32 32 4
C C D

              (18) 

1 3 9 1
,

8 32 32 4
C C C D

            (19) 

with the following additional conditions (see Appendix 
A): 

5 3

8 8
C C D   .             (20a)  

3 5

8 8
C C D    ,             (20b) 

1 3 3
0 .

2 8 8
D C C              (20c) 

Inequalities(20a)-(20c) give an allowance domain for 
the Courant numbers (C+, C- ) and the diffusion number 
D, which is shown in Figure 2, where the allowance 
domain disappears as D goes to 0 corresponding to Go-
dunov theorem. 

Next, we determine the optimum values of (   , ) 
at the local point 1 2ix   so that the absolute value of 
truncation errors associated with the numerical fluxes 
may be minimum while keeping the allowance domain 
given by Inequalities(18), (19) and (20). 
 

 

Figure 2. Stability domain in one-dimension. 
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2.3.3. Optimization 
1) Optimum value of   

Here we consider the coefficient associated with 

1 2iTE  given by Equation (11). The absolute value of this 
coefficient is given by  

3
3

1/2 1/2 3
1/2

3 3 3 3
1 3 1 1 1 1 1 3

,
3! 2 3! 2 3! 2 3! 2

1 1
.
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i i
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   
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 
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   




 
    

                  
       


  


 

(21) 

Under the condition given by Inequality(19), the op-
timum value  

opt
 of α so as to minimize 1 2iCTE   is 

classified by the following three cases:  
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where  

0
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, 

In case of (b), 1 2iCTE   becomes zero and the accu-
racy of

 

1 2i   turns up to the 4th-order. 
2) Optimum value of   
In the same manner as the case of  , the optimum 

value  
opt

 of α so as to minimize the coefficient as-
sociated with 1 2iTE  is classified by the following three 
cases:  

       

       

     

Max Max 0

0 Min 0 Max

Min 0 Min

a for 3rd-order ,

b for 4th-order ,

c (for ) 3rd-order ,

opt

opt

opt

   

    

   

   

    

   

 

  

 

(23) 

where  

0

1 1

16 24

0,

5 3 1
.

32 32 4

Min

Max

C D

C C D













 

    
 



  

 

2.3.4. Determination of ,t x   
From the stability domain given by Equations (20a) and 
(20b), the allowable space mesh increment x  is de-
termined by 

.
Max

x
u

 
    

 
              (24) 

After the allowable space increment x  is deter-
mined by Inequality (24), the allowable temporal incre-
ment t  is determined by using Inequality (20c) as 
follows:  

1 2 1 2

2

1

2 3 3
max

4 4
i i

i

t
u u

x xx

  

 
                     

    (25)  

The allowable x  and t  given by Inequalities 
(24) and (25) depend on the diffusivity ν. If the diffusiv-
ity ν is small, which means convection-dominated flows, 

x  and t  must be small according to ν. Thus the 
allowable x  and t  determined by the above in-
equalities from the view point of numerical stability are 
to be small value in case of DNS (Direct Numerical Si-
mulation), in which the diffusivity ν is the molecular 
viscosity and the small mesh increments x  and t  
are required to dissolve the small scale eddies from the 
physical point of view also. But in case of using a turbu-
lence model based on a viscosity model with ν including 
the turbulence effect, considerably large values of mesh 
increments x  and t  are to be allowed.  

2.3.5. Accuracy for Temporal Term 
When we perform numerical calculations of advection- 
diffusion equations, at least second-order schemes for the 
temporal term should be used. As long as the positive 
coefficients condition is satisfied at each Euler step in the 
second-order Runge-Kutta method or Crank-Nicholson 
scheme, the positivity condition can be maintained over 
the whole steps (see Appendex B). According to this fact, 
we employ the second-order Runge-Kutta method for 
linear equations and the Crank-Nicholson scheme for 
nonlinear equations, respectively in numerical experiments. 
We call this FLUX scheme. 

2.3.6. Comparison with Conventional Schemes 
We compare the present scheme given by Equations (15), 
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(16), (18) and (19) with KAWAMURA scheme in a fam-
ily of the conventional polynomial schemes in case of 

1 2 1 2 0i iu u u    . Both schemes employ the same 
number 5 of stencils. Apply the KAWAMURA scheme 
and the fourth-order central scheme for the convection 
term and for the diffusion term, respectively, yields 

 

1
2 1 1 2

2 1 1 2
2

1
2 1 1 2

2 10 9 2

6

16 30 16
, 0

12( )

,

/ 3 /12, 5 / 3 4 / 3,

3 / 2 5 / 2 1,

/ 3 4 / 3,

n n n n n n n
i i i i i i i

n n n n n
i i i i i

n n n n n n
i i i i i i

f f f f f f f
u

t x

f f f f f
u

x

f a f b f c f df e f

a C D b C D

c C D

d C D e




   

   


   

     
  

  
     

  
 

    

     
   
    / 6 /12.C D

 

The first coefficient a  is always negative although 
the other coefficients can be positive. Thus the KA-
WAMURA scheme does not guarantee the positivity 
conditions, while the present scheme does the positivity 
of all difference coefficients. 

2.4. Two-Dimensional Case 

2.4.1. Finite Difference Equation 
According to Equation (4a), the numerical flux in the 
direction ey is given by  

   

 

, 1/2 , 1/2, 1/2
, 1/2

1/2at ,

ye
i j y i ji j

i j

j

f
J e f v

y

y y

  




 
      

　

 (26) 

   , 1 2 , 1 2, 1 2
, 1 2

1 2(at ),

ye
i j y i ji j

i j

j

f
J e f v

y

y y

  




 
      

　

 (27) 

where ey means a unit vector in the y-direction. Hereafter 
we omit the superscript ey. By making use of those fluxes 
and employing the same approximation for the time and 
space integrations as those used in one dimension, we 
obtain the finite difference equation for the two-dimen- 
sional conservation equation as follows:   

1
1 2, 1 2, , 1 2 , 1 2 ,n n n n n n

i i i j i j i j i j

t t
f f

x y
   

   
            

 

(28) 

in which the averaged value of   over the control vo-
lume surface is approximated by the value of   at the 
surface center such as: 

 
2

1 2, 1 2
2

, , .
i

i

y y

i j i
y y

t x y dy y 


 


   

In the same manner as that in one dimension, we appro- 
ximate 1 2,

n
i j   and , 1 2

n
i j   by using  , 0, 1, 2n

i jf       

and  , 0, 1, 2n
i j kf k    , respectively. Then we obtain 

the finite difference approximation as follows: 

 
 

 

1
, , 1, , 1, 2,

2, 1, , 1,

, 1 , , 1 , 2

, 2 ,

         

         

         

n n x n x n x n x n
i j i j i j i j i j i j

x n x n x n x n
i j i j i j i j

y n y n y n y n
i j i j i j i j

y n y
i j i j

t
f f f f f f

x

f f f f

t
f f f f

y

f f

   

   

   

 

 

   

   

 


    

  

  

 

     
    

    

  1 , , 1

2, 1, , 1, 2,

, 2 , 1 , , 1 , 2

      

        .

n y n y n
i j i j

x n x n x n x n x n
i j i j i j i j i j

y n y n y n y n y n
i j i j i j i j i j

f f

a f b f c f d f e f

a f b f c f d f e f

 
 

 



   

   

  
    

    

 

(29) 

Here we have 

1 2

1 2 1 2

1 2 1 2

1 2

1 2

1 2 1 2

3
, 3 ,

8
1 3 3

3 3 2 ,
2 8 4

3 1
3 ,

4 8
1

,
8

3
, 3 ,

8
1 3 3

3 3 2 ,
2 8 4

3

i

i i

i i

i

j

j j

x x x x
x x x

x x x x
x x

x x x x
x x

x x
x

y y y y
y y y

y y y y
y y

y

a b C D

c C C D

d C C D

e C

a b C D

c C C D

d

  

  

 



  

  





 

 





 

  

 

 



  

 

     

      

     

 

     

      

 
1 2 1 2

1 2

3 1
,

4 8
1

,
8

j j

j

y y y
y y

y y
y

C C D

e C





 



 



   

 

(30)
 

with the definition 

1 2,

1 2

, 1 2

, 1 2

1 2,

1 2,
, 2

, 1 2

, 1 2

2

, , ,

, ,

, , ,

, .

i j

i

i j

i j

x x
i jx

x x

i jx x
j

y y
i jy

y y

i jy y

t t u t
C

x x x
u t t

C D
x x

t t t
C

y y y

t t
C D

y y

 
 



  
 

 

 





 





 



 



  
  

  
 

 
 

  
  

  
 

 
 

 

In Equation (30),   is an arbitrary parameter. Here 
x


and x


 are adjusting parameters so as to minimize 
the truncation errors for 1 2,

n
i j  and 1 2,

n
i j  , respectively 

while keeping the stability condition. Further y


and 
y


 also are adjusting parameters so as to minimize the 
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truncation errors for , 1 2
n
i j  and , 1 2

n
i j  , respectively 

while keeping the stability condition. 

2.4.2. Stability Domain 
From the positive (nonnegative) coefficients condition, 
we obtain inequalities such as  

0, 0, 0, 0, 0,x x x x xa b c d e        (31a) 

0, 0, 0, 0, 0.y y y y ya b c d e        (31b) 

In a special case of ξ = 0, which would be enough in 
practical calculations, we can solve separately Inequali-
ties (31a) and (31b). Consequently, in the same manner 
as that in case of one-dimensional equations, the solution 
of Inequality (31a) is given by  

1 2 1 2, 1 2,,

1 9 3 1
,

8 32 32 4i i j i j

x x x x
j xC C C D

  

        (32a) 

1 2, 1 2,

3 5 1
0 ,

32 32 4i j i j

x x x
x C C D

 

         (32b) 

with the following additional conditions (the allowance 

domain for Cx and Dx): 1 2, 1 2,

5 3
,

8 8i j i j

x x xC C D
 

            

(33a) 

1 2, 1 2,

3 5
,

8 8i j i j

x x xC C D
 

             (33b) 

1 2, 1 2,

1 3 3
0.

4 8 8i j i j

x x xC C D
 

          (33c) 

The solution of Inequality (31b) is given by  

, 1 2 , 1 2 , 1 2

1 9 3 1
,

8 32 32 4i j i j i j

y y y y
yC C C D

  

       (34a) 

, 1 2 , 1 2

3 5 1
0 ,

32 32 4i j i j

y y y
y C C D

 

         (34b) 

with the following additional conditions (the allowance 
domain for Cy, and Dy): 

, 1 2 , 1 2

5 3
,

8 8i j i j

y y yC C D
 

           (35a) 

, 1 2 , 1 2

3 5
,

8 8i j i j

y y yC C D
 

            (35b) 

, 1 2 , 1 2

1 3 3
0.

4 8 8i j i j

y y yC C D
 

          (35c) 

The allowance domain for Cx and Dx given by Equa-
tion (33) is shown in Figure 3, in which CPX, CMX and 
DX denote 

1 2,i j

xC


, 
1 2,i j

xC


 and xD , respectively. 

2.4.3. Optimization 
1) Optimum value of x  

We consider the coefficient associated with the lowest  

 

Figure 3. Allowance domain in two dimensions. 

order term of truncation errors for the numerical flux 

1 2,
n
i j  . The absolute value of this coefficient is given by  

3
3

1 2, 1 2, 3
1 2

3 3 3 3

,

1 3 1 1 1 1 1 3
,

3! 2 3! 2 3! 2 3! 2

1 1
.

16 24

i j i j

i

x x x x

x x
x

f
CTE TE x

x

x
C D

t
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

 


   




   
  

                  
       


  


 

(36) 

In the same manner as that in case of one dimension, 
the optimum value  x opt

 of x
  so as to minimize the 

coefficient 1 2,i jCTE   under the condition given by In-
equality (32a) is classified by the following three cases: 

   
   

   
   

   
   

Max

Max ,0

,0

Min ,0 Max

Min

,0 Min

a

      3rd-order ,

b

      4th-order ,

c

      3rd-order ,

x xopt

x x

x xopt

x x x

x xopt

x x

for

for

for

 

 

 

  

 

 

 

 

 

  

 

 







 





(37) 

where 

,0 Min

Max

1 1 1
,

16 24 8

3 9 1
.

32 32 4

x x x
x x

x x x
x

C D C

C C D

 



 
 


 

      
 

   
, 

In case of 37(b), the coefficient of truncation errors 
becomes zero and the accuracy for the numerical flux 

1 2,
n
i j   turns up to the 4th-order.

 

 
2) Optimum value of x  
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In the same manner as the case of x , the optimum 
value  x opt

 of x
  so as to minimize the absolute 

value of the coefficient associated with the numerical 
flux 1 2,

n
i j  is classified by the following three cases:  

   
   

   
   

   
   

Max

Max ,0

,0

Min ,0 Max

Min

,0 Min

a

       for              3rd-order ,

b

       for 4th-order ,

c

       for              3rd-order ,

x xopt

x x

x xopt

x x x

x xopt

x x

 

 

 

  

 

 

 

 

 

  

 

 







 





(38) 

where  

,0 Min

Max

1 1
0,

16 24

5 3 1
.

32 32 4

x x
x x

x x x
x

C D

C C D

 



 



 

     
 

  
, 

In case of 38(b), the truncation error becomes zero and 
the accuracy for the numerical flux 1 2i   turns up to the 
4th-order. 

3) Optimum value of y  
The optimum value of y  so as to minimize the ab-

solute value of the coefficients associated with the lowest 
order term of truncation errors is obtained by replacing 
the subscript or superscript x in Equation (37) with y. 

4) Optimum value of y  
The optimum value of y  so as to minimize the ab-

solute value of the coefficients associated with the lowest 
order term of truncation errors is obtained by replacing 
the subscript or superscript x in Equation (38) with y. 

In the same manner as that in case of two-dimensional 
equations, we can straight-forwardly extend our opti-
mized scheme into three-dimensional equations. 

3. Numerical Experiments 

3.1. One-Dimension 

3.1.1. Linear Advection-Diffusion Equation 
When the initial distribution is given by  0δ x x  in an 
infinite region and the boundary values at x    are 
zero, the analytical solution of Equation (2) with the 
constant velocity u is given by the following Gaussian 
distribution:  

 
 20

41
, e

2 π

x x ut

tf x t
t





 


           (39) 

We employed the total cell number N = 100. The 
Courant number and diffusion number are C = 0.1 and D 

= 0.1, respectively. We set 0 10x x  . As the initial 
condition for numerical experiments, we use the Gaussian 
distribution given by Equation (39) with 10t t  , in 
which x  is multiplied to Equation (39) to make the 
solution be non-dimensional. The boundary conditions 
are    ,0 0 and , 0.f t f t N x    Hence we limit the 
computational time so that this boundary condition is 
consistent with the exact solution. We employ the second- 
order Runge-Kutta method for the time discretization. 
Figure 4 shows the numerical solutions with the analy- 
tical solution at the time step number n = 100, 300 and 
600. The present scheme shows good solutions free from 
numerical oscillations. 

3.1.2. Nonlinear Burgers’ Equation 
In one dimension, Burgers’ equation is 

2
2

2

1
.

2

u u
u

t x x
        

            (40) 

We separate the flux term  2 2u  in Equation (40) 
into  2u u    and count 2u  as a transport velocity 
on the computational cell surface, which is approximated 
as an averaged value between the adjacent cells, namely 
 1 4i iu u   on the surface between the cell i and the 
cell 1i  . We employ 0 0.1C u t x     and D   

2 0.1v t x   , where 0u  is a reference velocity. For 
the time discretization, we employ the second-order 
Crank- Nicholson scheme. 

1) Shock wave propagation problem 
We solve Equation (40) under the initial condition at t 

= 0: 

     
   

00, . for 0 ,

0, 0 for 0 ,

u x u const x

u x x

   

   
     (41) 

and the boundary conditions at x   :  
 

 

Figure 4. Comparison of numerical solutions with the ana-
lytical solution. 
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 
 

0, ,

, 0.

u t u

u t

 

 
                (42) 

At t = 0 the shock wave is located at x = 0. For this 
combination of initial and boundary conditions, Equation 
(40) has the exact solution given by 

 

 

1

0 0
0

0

,

1 erf 2
1 exp

2 2 1 erf 2

u t x

x tu u t
u x

x u t t



 





                    

, 

(43) 

where exp and erf denote the exponential function and 
the Gaussian error function, respectively. 

In numerical experiments, the boundary condition u(t, 
x) = 0 at x = 100Δx is employed. Hence we limit the 
computational time so that this boundary condition is 
consistent with the exact solution. 

a) Convergence check 
For the time discretization, we employ the second- 

order Crank-Nicholson scheme, whose computational 
algorithm is simple and convenient for iterative cal- 
culations to take account the nonlinear effect involved in 
Burgers’ equation. Namely, the difference coefficients (a, 
b, c, d and e) given by Equation (16) depend on u and are 
updated in each iterative calculation at every time step 
until the solution converges. In this connection with the 
discussion in Introduction, our policy for the application 
of a scheme based on a frame of linear theory to non- 
linear equations is justified as long as the numerical 
solution converges in iterative calculations at every time 
step. Hence we check this convergence . 

We continue the iterative calculations at each time 
step number n until the relative error of solutions reaches 
the pre-asighned limit ε for all spatial mesh numbers i; 
namely: 

    
  ,1

1






kn
i

kn
i

kn
i

f

ff
          (44) 

where k denotes the iteration step number. In actual 
calculation, a small value 10–20 is added to avoid the 
denominator being zero. Figure 5 shows the iteration 
numbers for ε = 10–6, 10–8, 10–10 and 10–12 at the time 
step number n = 1-100. The calculation were performed 
on Fortran Compiler by using double precisions. In the 
following numerical experiments, all numerical solutions 
converged. 

b) Results 
Figure 6 shows the comparison of numerical solutions 

with the exact solution at time step number n = 500, 
1000, 1500. The numerical solutions with the present 
FLUX scheme are free from numerical oscillations and 

are in good agreement with the analytical solution.  
2) Steep gradient formation problem 
In Figure 7, initially the velocity u is zero at the origin 

x = 0 and the quantity u propagates toward the origin x = 
0 from both right and left outsides, resulting in forming a 
steep distribution of u at the origin. Figure 7(b) shows 
the result after a lot of elapsed time n = 10000, in which 
the advection of quantity u is almost balanced to its dif-
fusion and the solution attains to an almost steady state. 

When the diffusivity ν goes to 0, Burger’s equation 
approaches an advection equation, which may include 
many weak solutions inclusive of an upright wave for 
this initial condition. The present FLUX scheme needs 
nonzero diffusivity and is not applicable to such pure 
advection equation. But a vanishing viscosity approach 
using the present scheme would be available and we 
could expect to get a unique and physically relevant so-
lution among many weak solutions.  

3) Rarefaction wave propagation problem 
In Figure 8, initially the velocity u is zero at the origin 

x = 0 and the quantity u propagates toward the both out-
sides (x = 0 and x = 100Δx) from the inside, resulting in 
forming a rarefaction wave. Figure 8 shows the result at 
 

 

Figure 5. Convergence check in iterative calculations. 
 

 

Figure 6. Comparison of solutions with analytical solution 
for nonlinear Burgers’ equation. 
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(a) 

 
(b) 

Figure 7. Solution for steep gradient formation. 
 

 

Figure 8. Solution for expansion wave. 
 

n = 170. All numerical solutions obtained in the above 
numerical experiments are free from numerical oscilla-
tions. 

3.2. Two Dimensions 

We solve a two-dimensional advection-diffusion equation 
given by Equation (2). Figure 9 shows the computational 
geometry and the boundary conditions. We employed a 

computational cells 50 × 50 with uniform meshes and 
Dirichlet boundary conditions on all boundaries. Namely, 
f = 0 on the bottom and right boundaries and f = 100 on 
the left and top boundaries. Outside the boundaries, the 
same values as those on each boundary are set at mesh 
points near the boundaries. Hence any special treatment 
near the boundaries is not necessary, resulting in keeping 
the third-order accuracy all over the computational do-
main. We would rather focus to confirm the monotonici-
ty properties of solutions with the present 2-D scheme. 
Initially, the values of f are set 0 all over the inner do-
main. Thus, the solution of this problem approaches a 
stationary solution. The velocity distribution is uniform, 
and the Courant numbers and the diffusion numbers are 
Cx = Cy = 0.1 and Dx = Dy = 0.1, respectively. These val-
ues satisfy the 2-D allowance domain of C and D given 
by Inequalities (33a), (33b) and (33c). 

Both solutions with the KAWAMURA scheme and 
the UTOPIA scheme suffered from the numerical insta-
bility and diverged at a few time steps. The present 2-D 
optimized scheme showed stable solutions in Figure 
10(a) at the time step number n = 500, and in Figure 
10(b) along a diagonal line with  

 51 1, 2, ,51j i i     at n = 100, 200, 300 and 500. 
The solution along a diagonal line at n = 300 is almost 
same as that at n = 500, which seems to approach the 
stationary solution.  

4. Conclusions 

We discussed higher-order computational schemes for 
numerical flux   with a form of  e uf e   


 

  v f e    in a direction e within a frame of linear 
theory. We proposed a third-order polynomial scheme 
for numerical fluxes to guarantee the positive difference 
coefficients of resulting finite difference equations for  
 

 

Figure 9. Computational domain and boundary conditions. 
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(a) 

 
(b) 

Figure 10. Solution for 2-D advection-diffusion equation. (a) 
Distribution in 3-D view at n = 500. (b) Distribution along 
the diagonal line. 

 
advection-diffusion equations. We found a function to 
regulate the positivity of the numerical scheme in terms 
of local Courant numbers and diffusion numbers and to 
optimize the scheme with respect to the numerical stabil-
ity and the truncation errors. The feature of the present 
optimized scheme consists in keeping the third-order 

accuracy anywhere without any numerical flux limiter by 
using the same stencil numbers as conventional third- 
order schemes such as KAWAMURA and UTOPIA 
schemes. 
Further, we extended the present method into multi- di-
mensional advection-diffusion equations. We performed 
numerical experiments for linear and nonlinear Burger’s 
equations taking account the feedback of nonlinear ef-
fects in iterative calculations, resulting in numerical so-
lutions free from unphysical oscillations. 
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Appendix A 

From the positive coefficients condition (nonnegative 
condition), we have the following stability condition: 

0, 0, 0, 0, 0a b c d e     .     (A-1) 

We let the minimum value of   be Min , the 
maximum value of   be Max , the minimum value 
of   be Min  and the maximum value of   be 

Max . Once we find Min , Max , Min
 and 

Max  in terms of C  , C  and D, we obtain the so-
lution for Inequality (A-1) as follows: 

,Min Max                  (A-2) 

.Min Max                  (A-3) 

From Inequalities (A-2) and (A-3) and Equation (16), 
we get 

0Mina                 (A-4) 

3
3

8
3

  3 0
8Max Max

b C D

C D

 

 

 


 


    

     
      (A-5) 

3 3
1 3 3 2

8 4
3 3

  1 3 3 2 0
8 4Min Min

c C C D

C C D

 

 

 
 

 
 

     

      
  (A-6) 

3 1
3

4 8
3 1

  3 0
4 8Max Max

d C C D

C C D

 

 

 
 


 

     

      
   (A-7) 

1 1
0

8 8Mine C C  
             (A-8) 

From Inequality(A-4), we obtain  

0.Min                  (A-9) 

From Inequality(A-8), we obtain 

1
.

8Min C
              (A-10) 

Applying Inequalities(A-9) and (A-10) into the right- 
hand side inequality in Inequality(A-6) yields  

3 3
1 3 3 2

8 4
1 3 3

1 3 ( ) 2
8 8 4

3 3
1 2 0.

4 4

Min Min C C D

C C C D

C C D

  
 

  

 

    

      

    

    (A-11) 

The right-hand side inequality in Inequality (A-11) is 

one of the allowance conditions among C+, C- and D. 
If we replace the right-hand side inequality in the 

above Inequalities (A-5) and (A-7) with equality, we get 
simultaneous equations with respect to Max , and 

Max  as follows: 

3
3 0

8Max Max C D  
            (A-12) 

3 1
3 0

4 8Max Max C C D  
           (A-13) 

From Equations (A-12)-(A-13), we obtain the solu-
tions 

5 3 1
,

32 32 4Max C C D
           (A-14) 

3 9 1
.

32 32 4Max C C D
           (A-15) 

Although Max  and Max  given by Equations 
(A-14) and (A-15), respectively are one of the solutions 
for Inequalities (A-5) and (A-7), these solutions surely 
satisfy the second and fourth Inequalities (A-1), namely 
( 0, 0b d  ). Namely, Equations (A-14) and (A-15) are 
the sufficient solution to guarantee 0b   and 0d  . 

Combining Inequalities (A-2) and (A-3) and Inequali-
ties(A-9) and (A-10) with Equations (A-14) and (A-15), 
we obtain the formal solutions for the stability conditions 
given by Inequality(A-1) as follows: 

5 3 1
0 ,

32 32 4
C C D

            (A-16) 

1 3 9 1

8 32 32 4
C C C 

             (A-17) 

with an additional condition of the right-hand side In-
equality in Inequality(A-11) 

1 3 3
0 . ,

2 8 8
D C C D             (A-18) 

In order for Inequalities(A-16) and (A-17) to hold 
substantially, the right-hand side equations of those In-
equalities must be greater than each of the left-hand side 
equations. From this requirement, we obtain   

3 5

8 8
C C D               (A-19) 

5 3

8 8
C C D             (A-20) 

Inequalities (A-18), (A-19) and (A-20) are the ad- di-
tional conditions among C+, C- and D.  

In conclusion, Inequalities (A-16) and (A-17) with the 
additional allowance conditions given by Inequalities 
(A-18), (A-19) and (A-20) give a sufficient solution to 
guarantee Inequality(A-1). 



K. SAKAI  ET  AL. 
 

Copyright © 2011 SciRes.                                                                                AJCM 

38

Appendix B 

An advection-diffusion equation in one-dimension is ex- 
pressed by  

  ,f
F f

t





              (B1) 

    2

2

uf f
F f

x x


 
  

 
         (B2) 

Discretizing Equation (B1) by using the Crank- Ni-
cholson scheme and Equation (B2) by using the present 
FLUX scheme yields 
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(B3) 

In Equation (B3), 1 1 1 1 1, , , ,n n n n na b c d e      are the 
difference coefficients evaluated at the time step n + 1 
and calculated iteratively based on the values at earlier 
iteration step at the same time step n + 1 untill 1n

if
  is 

converged within a pre-asighned value εgiven by Equation 
(44). From Equation (B3), we obation 
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