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Abstract
The design of materials structure for optimizing functional properties and potentially, the
discovery of novel behaviors is a keystone problem in materials science. In many cases
microstructural models underpinning materials functionality are available and well understood.
However, optimization of average properties via microstructural engineering often leads to
combinatorically intractable problems. Here, we explore the use of the reinforcement learning (RL)
for microstructure optimization targeting the discovery of the physical mechanisms behind
enhanced functionalities. We illustrate that RL can provide insights into the mechanisms driving
properties of interest in a 2D discrete Landau ferroelectrics simulator. Intriguingly, we find that
non-trivial phenomena emerge if the rewards are assigned to favor physically impossible tasks,
which we illustrate through rewarding RL agents to rotate polarization vectors to energetically
unfavorable positions. We further find that strategies to induce polarization curl can be
non-intuitive, based on analysis of learned agent policies. This study suggests that RL is a
promising machine learning method for material design optimization tasks, and for better
understanding the dynamics of microstructural simulations.

Properties of a broad variety of structural materials are ultimately underpinned by their microstructure,
including phase morphologies, compositions, and interface properties. Among the historically recognized
examples are unique mechanical properties of Damascus steel, one of the most closely-held secrets of Middle
Ages. Another example of unique mechanical properties enabled via complex architectures are biological
tissues, particularly bones [1]. Similar behaviors manifest for functional materials, including ferroelectric [2]
and thermoelectric [3] materials, batteries and fuel cells [4, 5], and many others. For these materials, local
morphologies control the phonon, electron, and chemical transport, enable mechanical stability and stress
accommodation, and often give rise to novel interface-controlled functionalities. Critical for optimization of
these materials is establishing the microstructure-property relationships and especially, the mechanisms
behind the enhanced properties.

Similar challenges emerge on the nanometer and atomic level. Properties of spin and cluster glasses
[6, 7], morphotropic ferroelectric materials [8, 9], and nanophase charge separated materials [10, 11] are
ultimately determined by microscopic details of the interactions between disorder and order parameters and
electronic concentration, that give rise to degenerate, inhomogeneous ground states. The presence of almost
degenerate states corresponding to strongly dissimilar ground states is one of the mechanisms behind
enhanced properties, including giant magnetoresistance, strong electromechanical couplings, and dielectric
responses. Similarly, the material design in these systems has come to the forefront of scientific research [12].

Both for mesoscopic and atomically inhomogeneous systems, of interest are the details of local
mesoscopic structure and mechanisms that connect microstructure to properties. Traditionally, local
structures can be visualized using multiple imaging methods, ranging from optical and electron microscopy
to x-ray tomography and atom probe tomography. Similarly, local functionalities can be addressed by
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functional probes ranging from nanoindentation to tunneling spectroscopy or electron energy loss
spectroscopy. Combining these data allows establishing local structure-property relationships, either via
manual analysis or recently via machine learning methods. However, the limitation of the correlative
approaches is that they are generally insufficient to address the interventional and counterfactual questions,
e.g. predict the materials responses outside of the parameter interval at which measurements were taken, or
predict the effects of the phase substitution or introducing the microstructures outside of the training set.

The alternative and far more established approach for exploration of these systems is physics-based
analysis, aiming at the development of the lumped or distributed physical models that allow the construction
of structure–property relationships. The examples of the former are the classical mixture models for
dielectric properties as a function of dielectric properties of individual phases. However, it is well recognized
that many such descriptions are very sensitive to the specific morphologies, necessitating distributed physical
models. For these, the classical example are the finite-element analyses for prediction of properties when the
microstructure is known, and phase field models that allow to predict the morphogenesis and properties
alike. However, while the distributed models allow to explore the arbitrary morphologies and resulting
functionalities, the analysis of the response to derive relevant mechanisms is often intractable due to very
high dimensionality of data (i.e. microstructure representation) and high computational complexity.

Here we propose an approach for the microstructure optimization towards target functionality and
discovery of relevant physical mechanisms via reinforcement learning (RL). We note that recently, RL has
been utilized in design and optimization Kirigami structures [13], as well as for determining synthesis
conditions in simulated environments [14, 15]. In this letter, we introduce the distributed model of the
system and define the range of possible microstructure modifications. The RL aims to learn the relationship
between microstructure modifications and properties over multiple modification steps, thus precluding
trapping in local minima. The resultant microstructures provide insight into the favorable physical
mechanisms behind the property evolution.

1. FerroSIM RL environment setup

As a model system, we explore the lattice-based continuum model for ferroelectrics proposed by Ricinschi
et al [16] and previously used for exploration of Bayesian optimization methods [17]. Note that the
underlying simulation used here has been described in [17]. Here we extend this model to create an RL
environment for the training of agents for defect positioning. RL ‘environments’ differ from conventional
simulations in the sense that they allow external input to modify the trajectory of the simulation, and provide
feedback in the form of rewards, as well as states to the agent. Briefly, the underlying ferroelectrics simulation
is performed on a discrete pre-defined square lattice of side length N, with a free energy functional given by:
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where pxi,j , pyi,j are the x-component and y-component of polarization at the lattice site (i,j), K is a
nearest-neighbor coupling term that effectively induces a gradient energy (with the sum taken over nearest
neighbors of the lattice site, (k,l)), and the Landau parameters are α1, α2. Hence, this model effectively
represents the Landau double well potential at each site, interacting via nearest-neighbor coupling. The local
electric field Eloc = Eext + Edep + Ed (i, j) where the first term is the externally applied electric field, the second
term is a depolarization term Edep = −αdep⟨P⟩ where αdep is a depolarization factor, ⟨P⟩ is the average
polarization, and the third term is the local random-field disorder induced by defects. As such, this simulator
offers the possibility to explore both random bond disorder (through the coupling constant, K) as well as
random field disorder effects.

Here, we focus on the effects of random field disorder. Each defect in the environment has the same x, y
components of electric field (to within∼1%). Note also that here we consider x and y components to be
decoupled entirely. The system is evolved based on the time-dependent Landau–Ginzburg equation, namely
by computing the gradient at each lattice site via (2):

dpi,j
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= −λ−1(α2 p
3
i,j + α1pi,j + 2K

∑
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(
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)
− Eloc), (2)
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Note that the dynamic equation (2) is calculated separately for the x and y components. This is then used to

update the local polarization, pi,j (tn+1) = pi,j (tn)+∆t · dpi,jdt at each time step. The applied electric field is
kept at 0 in this study, to study defect-induced polarization patterns. The simulation is sped up through only
updating some fraction of lattice sites at every time step. This fraction can be changed, but we found that it
was generally stable to only update 25% of the lattice sites, leading to about a 4x speedup. Future versions
maybe able to incorporate order of magnitude greater speedups by leveraging GPUs and programming
frameworks such as JAX. All simulation code is posted online [18]. Supplementary table S1 lists the
parameters of the simulation that are used in this paper. It should be noted that this is for all intents a ‘toy
model’ and the purpose is not to definitively perform simulated defect design on a standard ferroelectric but
to show the potential for its use in real settings. That said, defect patterns discovered here could most
certainly be used as inputs to more technically rigorous simulations, such as well-established phase-field
models, when the necessary computational resources are available.

The RL environment is built on top of the simulation by providing intermittent rewards as well as states
to the agent and allowing the agent to perform actions on the environment. The actions are to move any
existing defect by one position on the lattice (up, right, left or down), as well as to ‘pass’ and not move any
defects. This therefore defines a discrete action space, which is equal to (nd × 4+ 1), where nd is the number
of defects present in the simulation. The agent performs an action, and then the simulation runs from that
point forward, returning a new state and (possibly) a reward. This continues until the end of the episode. The
episode is terminated once a given number of moves have been made. This is pre-defined by the user.

Several reward choices are built into the environment, including where the reward is the (absolute
magnitude) of the curl of the polarization field, as well as the absolute magnitude of the remanent
polarization, and one where the reward is the magnitude of polarization aligned to a specified orientation. In
this environment, the reward can be given at the end of each episode or periodically (after each action) in the
episode.

The general workflow for training RL agents in this environment is shown in figure 1. The state function
itself consists of the 2D polarization map (which is a matrix of size (2,N,N)), with a tuple at each (N,N) site
denoting the (Px, Py) components of polarization at that site, and a ‘defects table’ which lists the position of
the defects present, as well as their electric-field strengths. A third input is the step number in the episode.
We added this as an input because of the kinetic nature of the problem, i.e. it may be advantageous to know
how long the simulation has been ongoing to formulate the right action choice. These are fed through a
neural network with both convolutional and dense layers, and then outputted to estimate Q-values from
which actions are selected. After an action is selected, this is used to update the simulation, and the
simulation runs a certain number of time steps (typically 100–200) before halting to provide the next state
and (if appropriate), reward.

2. DeepQ learning

For the agents, we utilize deep Q learning to learn an implicit policy to select actions that maximize the
cumulative discounted reward. Policies govern how agents act in the environment. Deep Q learning is a
model-free method that is, compared to other RL methods, generally sample efficient. The idea behind Q
learning is to learn the action-value function (or ‘Q’ function) that determines the value of taking a
particular action at a given state. The Q function of policy π is defined as:

Qπ (st,at) = E
[
rt + γrt+1 + γ2rt+2 + . . . |st,at

]
, (3)

And computes the expected return of taking a given action, assuming the policy π is followed. Note that
0⩽ γ ⩽ 1 is a discount factor, which weights the value of immediate and future rewards, and the Q function
is an expectation conditioned on both the state and action. The simplest policy is one where the agent selects
the action that provides the largest Q value at every state. Note that we can rewrite (3) as:

Qπ (st,at) = rt + γmax
a

Q(st+1,a) , (4)

After repeated interactions with the environment, we use the accumulated data on the states, actions, and
rewards to update the Q function via the simple weighted update rule,

Q′ (st, at)← Q(st,at)+αlr ·
(
rt + γmax

a
Q(st+1,a)−Q(st, at)

)
,

where αlr is the learning rate. The second portion constitutes the loss that is minimized, and after many
iterations, ideally the Q function approaches the true action-value function. Deep Q learning builds on
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Figure 1. Q-network and state functions. The polarization map, position of defects, and step number are all input to a neural
network, which sends the input data through multiple convolutional and fully connected layers to generate a list of Q-values for
that state. The index corresponding to the largestQ value is used and converted to an action (see action table). The action is taken,
and the simulation is updated and run for a pre-set number of time steps, to generate the next state. The process repeats until the
episode ends, which is usually a pre-determined number of steps.

Q-learning via several updates, including using neural networks as function approximators that can model
this Q function, and using so-called ‘experience replay’ to reduce correlations in the data. This involves
storing the ‘experiences’, i.e. the states visited and actions taken and rewards received, of the agent in a
memory bank and then sampling this experience in batches randomly for the Q-function update step. Here,
we utilized the Adam optimizer for optimizing the neural network representing the Q function
(‘Q-network’), and used experience replay with a batch size of 16–32, with a memory of 128–256 (problem
dependent).

3. Three defect curl maximization

As a test problem, we explore the best strategy of positioning defects to maximize polarization curl, which for

a 2D situation is defined as∇× P=
∂Py
∂x −

∂Px
∂y , resulting in a scalar field along the z-direction. The reward is

given at the end of each episode, as the sum of the (absolute value) of this scalar field, divided by the
magnitude of the polarization. Each episode starts with the polarization in a random configuration at each
lattice site, and with three defects placed in locations shown in figure 2(a), i.e. the starting position of the
defects does not change each episode. The agent has 15 moves in total each episode, and the simulation is run
for 100 time steps after each move. The goal is to find the best way to behave on average, to accumulate the
maximum reward. The stochasticity of the simulation means that this is a difficult optimization problem:
small changes in initial polarization can make considerable changes to later time steps. Degeneracy of states
is also a complicating factor, and the smaller number of iterations (100 as opposed to say, 1000) is
insufficient to ensure that the actual minima are reached. That said, this scenario is highly reminiscent of
realistic applications where the systems are often in kinetically-frozen states. For example, slow motion of
charged defects in ferroelectric oxides has been instigated as a reason for ‘persistent’ domain wall
conductivity in BiFeO3 [19].

It should be noted here that the 15 moves are not pre-distributed amongst the defects, i.e. the agent can
choose, at each ‘move’, to select any of the three defects (or indeed, none), and move them along any of the
four cardinal directions by one lattice position. A ‘random agent’ is one which randomly selects an action at
each of these moves. Examples of the final state, for a random agent, are shown in supplementary S3.
Further, even randomly moving defects in this environment will generate a reward, given the nature of the
problem (there will always be some curl in the polarization field). The highly stochastic nature of the
simulation complicates the performance evaluation. A metric that we propose to distinguish a good policy in
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Figure 2.Maximizing curl via movement of three defects. (a) Starting configuration, before any time steps, shows the initial
positions of the defects and the random initialization of the polarization at each lattice site. (b) Final state of one run of the
trained agent, showing that the agent has preferred to move the defects to large triangular configuration. (c) Comparison of
rewards after 1000 episodes. The distribution of the rewards for the agent acting randomly is shown in blue, and the trained
agent’s rewards are shown in red. The mean of the random agent’s rewards is shown as a black dashed line. The trained agent’s
reward is virtually always (>99%) higher than the random agent’s mean reward.

such an environment is one where the rewards obtained are consistently higher than the mean reward
obtained from a randomly acting agent.

After training, we test the agent in the environment and provide five example runs in the supplementary
information. An example of the state at the end of one run is shown in figure 2(b) and indicates an intriguing
pattern where the defects are arranged at large distances from each other, resulting in a curved domain wall
and considerable curl (and thus high reward). It should be noted that the defects have E-fields aligned along
[10] and [01̄], thus the P vector would want to rotate such that it can ideally be along [11̄]. This is achieved for
more than half of the lattice sites in figure 2(b), but not near the defect at the upper right. This is transient
behavior likely caused by favorable initialization of polarization in the [1̄0] direction, that seeded a small
domain that is overall unstable, but nonetheless exerts considerable influence due to strong nearest neighbor
coupling term.

When tested against the actions of a random agent for 1000 episodes, as a comparison, we plot the
distribution of rewards for the trained agent and the random agent in figure 2(c). The mean reward received
by the random agent is shown as a dashed black line. Clearly, the trained agent learns a policy where the
reward is consistently higher than the mean of the rewards received by following the random agent’s policy.
This shows that the trained agent is indeed learning a superior policy for this setting, in a highly stochastic
environment.

To gain more insight, we show four alternative endpoints for episodes where the trained agent’s policy is
used and plot the results in in figure 3. The initial seeding of the domains has severe consequences for the
final polarization state in each episode. At the same time, three of the four final states have overall P vectors
towards the energetically favored orientation, indicating some relaxation towards the thermodynamic
minimum. Notably, the majority of runs end with the defects positioned in some type of triangular, but
spatially distant, pattern which would seem to indicate the length scale for defect positioning for optimal
polarization curl is quite large. One way to understand this is by considering the free energy functional
equation (1), which can be written as FLandau + FCoup + FElec. Given the choice of strong nearest neighbor
coupling (k= 22.5), when compared to the Landau coefficients, the FCoup and FElec terms exert stronger
influence. There will exist a considerable drive to rotate polarization quickly towards the direction of the
defect-induced field, given that the field strengths are high. The strong coupling then drives nearest
neighbors to quickly align with the polarization at the defect site. Away from the defect, the effects of this
coupling gradually decay. The same phenomena can cause the ‘kinetically stuck’ configuration where the
strong neighbor coupling prevents rapid reversal of the polarization from the unfavorable orientation.

4. Comparison to simpler single-defect optimization

To attempt to validate the learned policy, we performed a simple test where we fixed two defects near
opposite corners, and then investigated the reward surface for positioning the remaining defect at all the
other lattice sites. That is, the two red defects in figure 4(a) are fixed, and we simulate the reward the agent
would have received if a third defect is moved to any of the other unoccupied lattice positions. This
simulation is conducted 10 times for each lattice site, for 500 time steps for each run, and the averaged
reward surface is shown in figure 4(a). Interestingly, this plot shows the maximum reward is found with

5



Mach. Learn.: Sci. Technol. 3 (2022) 04LT03

Figure 3. Final states and their respective rewards, for four runs of the (trained) RL agent are shown in (a)–(d). Triangular
configurations appear to be preferred.

positioning reminiscent of the agent’s learned policy, in that the three defects adopt a large-scale triangular
placement. An example of the polarization profile with the defect placed in the most favorable position is
shown in figure 4(b) (marked as (1) in figure 4(a)). The reward surface indicates that the regions to the lower
right of the static (immobile) defects are where the next defect should be placed to maximize reward. Moving
the defect to a more central location, as in the position marked (2) in figure 4(a), leads to a situation where
the polarization becomes more uniform and is visualized in figure 4(c). To investigate the origin of this
behavior, we plotted |∇×P| for both situations, in figures 4(d) and (e) corresponding to the states in
figures 4(b) and (c), respectively. Although moving the defect to the more central position does induce
higher magnitudes of curl to the lower-right side of the defect, it also significantly reduces the magnitude of
the curl to the upper left side. As a guide to the eye, the area enclosed by the dashed line polygon shows the
considerably reduced curl in this region in figure 4(e) as compared to (d). As such, we also do not see many
runs where the trained agent adopts a configuration such as the one in figure 4(c).

5. Attempting energetically unfavorable configurations

We are not limited to only maximizing the polarization curl. The environment can be modified to suit any
reward. Here, we can for instance try to reward the agent for aligning the polarization along given directions,
such as the [10] direction. This is calculated by simple dot product of the polarization with this target vector.
Since there is no external applied field the default direction will be somewhere along [11̄], so aligning the P
vector along [10] is an inherently energetically unfavorable situation, i.e. we would not expect positive
rewards.
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Figure 4. (a) Reward surface for moving a defect to any of the (unoccupied) lattice sites, given two fixed defects shown in red.
(b) Polarization map of simulation assuming the defect is placed in the site marked (1) in (a). (c) Polarization map of simulation
assuming the defect is placed in the area marked (2) in (a). (d) The curl magnitude map of the configurations in (b) and (c) are
shown in (d) and (e), respectively.

Nonetheless, it can be interesting to observe the strategies used to minimize the loss. Shown in
figures 5(a) and (b) are two example runs of the trained agent. The x-component is already favorably
aligned, but the y-component of polarization attempts to account for the negative Ey component of each
defect and rotate down. Large rotations in this orientation will result in more negative rewards. To minimize
this, one strategy that appears to be followed is to position defects in such a way so as to induce a substantial
region with minimal polarization magnitude (shaded triangles in figures 5(a) and (b)). When compared to
random movement of the defects, this strategy appears to be somewhat more successful, and incur less
extreme losses, as shown in figure 5(c).

The same arguments apply to the case of aligning the polarization along [01]. Since this is impossible, the
default method to minimize the loss appears to be to try to induce large regions of very small or zero
polarization, as indicated by the shaded rectangular regions in figures 5(d) and (e). When compared to the
random agent, this is substantially more helpful (figure 5(f)).

6. Discussion

This study illustrates how recent advancements in machine learning can be used to aid in microstructural
design, by reformulating the problem as a RL environment. It is expected that such a strategy will be
beneficial for a variety of inverse materials design and optimization problems, although significant challenges
remain with respect to underlying simulations being fast enough to enable RL agents to operate within them.
In this respect, recent successes in utilizing deep neural networks for surrogate modeling, as well as fully
differentiable programming frameworks that are GPU-accelerated can be expected to provide the necessary
bridge [20]. From an experimental point of view, it is already possible to insert and create defects locally,
e.g. with a scanning probe microscopy tip to inject oxygen vacancies [21]. Similarly, the electron beam in
scanning transmission electron microscopy can be used to inject local charges, and subsequently read out
polarization. Here, the polarization read-out has been demonstrated by multiple groups for over a decade
[22–26], and electron beam manipulation via e-beam has been demonstrated by e.g. Ferris et al [27] and
Hart et al [28]. From a purely simulations point of view, RL agents can provide significantly improved
understanding of the underlying dynamics of the system. This is because RL policies are required, explicitly
or implicitly, to be able to model state transitions and therefore future outcomes to current actions.
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Figure 5. Training agents to try to reach unfavorable states. (a), (b) Two final states of a trained agent attempting to maximize the
polarization along [10] direction. (c) Comparison of rewards after 100 episodes, for the trained as opposed to random agent.
(d), (e) Two final states of a trained agent attempting to maximize the polarization along the [01] direction. (f) Comparison of
rewards after 100 episodes, for the trained as opposed to random agent. In both violinplots in (c) and (f), the means are plotted as
solid blue horizontal lines, and the mean of the trained agent is extended as a dashed purple line.

Therefore, inspection of the derived strategies can be highly useful in determining features such as
characteristic length scales and the effects of local fluctuations in the functional response.
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