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Abstract
Given the vast amounts of data generated by modern particle detectors, computational efficiency is
essential for many data-analysis jobs in high-energy physics. We develop a new class of physically
interpretable boost invariant polynomial (BIP) features for jet tagging that achieves such efficiency.
We show that, for both supervised and unsupervised tasks, integrating BIPs with conventional
classification techniques leads to models achieving high accuracy on jet tagging benchmarks while
being orders of magnitudes faster to train and evaluate than contemporary deep learning systems.

1. Introduction

The study of jets generated at particle colliders is a fundamental tool for understanding subatomic
interactions and probing the standard model (SM). During experiments at high-energy colliders, a collection
of the detected particles is analyzed, recording approximately 105 events per second, from which only a small
percentage contain helpful physical information. The detection of events of interest in the myriad of
observations has motivated the creation of novel algorithmic approaches to perform a classification given the
particles that originated the detected shower, known as jet tagging. The task consists of the classification of
cascades of particles generated after the beams collide. The cascade of generated events, known as the jet,
comprises a set of particles described by their four-momentum (E, p) and possibly additional features as they
are reconstructed in the detectors.

The difficulty in the classification arises from the similarity in the structure of detected jets at relativistic
energies as measured in the laboratory reference frame. This means that the jets substructure is not fully
accessible to the detector, as it would be on the center of mass of the interactions; cf figure 1.

The first approaches to tackle the jet tagging task were clustering algorithms based on features derived
from quantum-chromodynamic (QCD) theory [1–4]. Recently, a range of deep learning algorithms have
been proposed, including convolutional neural networks (CNNs) [5, 6] or graph neural networks
(GNNs) [7–13]. Some efforts have also turned towards the usage of physically inspired features via so-called
energy flow polynomials (EFPs) [14, 15], or novel QCD-inspired features [16, 16, 17]. Currently, the most
accurate machine learning approaches on jet tagging benchmarks are Lorentz group equivariant message
passing networks (LE-MPNNs) [7, 18, 19]. Recently, such an injection of Lorentz invariance into the models
has been shown to considerably improve the performance and data efficiency of taggers [20]. LE-MPNN
models are computationally highly demanding as both symmetrization to the full Lorentz group is costly, in
addition to a large number of parameters and hence the need for large amounts of training data.

In this letter, we propose the boost invariant polynomials (BIPs) a new framework for the jet tagging
problem: we construct N-body polynomial features that are invariant under (a) permutations of the detected
particles in the jet; (b) boosts in the mean jet direction; and (c) rotations around the jet mean axis. By
adapting ideas from the atomic cluster expansion (ACE), [21–23] we achieve this in a computationally
efficient, systematic, and general way. Since the three groups (permutations, boosts, rotations) completely
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Figure 1. Illustration of the difference between the same decay process at low (high) transverse momentum in the left (right).
Intuitively, the non-boosted jets are more easily distinguishable by a classifier than the ones on the right.

Figure 2. State-of-the-art jet tagging models are compared in terms of the number of parameters. While accuracy per parameter is
not the key measure to judge the quality of some models, it serves as an illustration of the high performance of BIP relative to the
required computational resources as well as the fact that BIP provides an entirely new design space for jet tagging models.

decouple our resulting features are particularly straightforward to derive and implement. We demonstrate
the expressiveness of our novel representations by using them as input features for a range of standard
classifiers, for both supervised and unsupervised learning. Our emphasis is on simplicity, for example
avoiding extensive hyperparameter tuning. Nevertheless, our proposed method achieves excellent accuracy at
a computational cost several orders of magnitude lower than state-of-the-art LE-MPNNs, reducing the
training time on a large data set to minutes and inference time per jet to tens of microseconds, all on
standard CPU hardware and with a small number of parameters (figure 2). At the same time, we maintain
excellent interpretability and nearly state-of-the-art accuracy in both labeled and unlabeled tasks.

2. Methodology

2.1. Boost-invariant polynomials
2.1.1. Coordinate transform
For each (detected) particle i in the jet, experiments or simulations are able to extract their four-momentum,
and possibly also additional features ξ (highly application dependent) such as the particle-id, charge, mass,
or flavor. A jet can then be understood as a collection of particles {Ei, pi, ξi }Ni=1, where N is the number of
detected particles in the jet. Themean direction of the jet is given by the mean direction of the detected
particles, i.e.

rjet = N−1
∑
i

pi. (1)

We transform the spatial momentum pi to cylindrical coordinates(
p⊥,i,φi, p∥,i

)
corresponding to transverse, angular, and parallel components relative to the jet axis rjet. We define the angle
via a Householder reflection, which we detail in the SI.
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Recall that we wish to impose boost invariance in the jet direction which effectively transforms a jet into
its center-of-mass frame; cf figure 1. To give the boost operation a particularly simple form, we introduce the
(regularized) rapidity and transverse energy,

yi =
1

2
log

(
δ1 + Ei + p∥i
δ1 + Ei − p∥,i

)
,

E⊥,i =
√

m2
i + p2⊥,i,

(2)

where δ1 > 0 is a regularization parameter to ensure that yi is well-defined as Ei − p∥,i → 0. (We take a fixed
value of 10−4 throughout). Provided that rjet 6= 0, the mapping (Ei, pi) 7→ (E⊥,i, p⊥,i,φi,yi) is injective, i.e. it
is a genuine coordinate transformation. In the coordinates (E⊥,i, p⊥,i,φi,yi) the effect of a boost Λβ in the
direction r̂jet of the jet, and a rotation R∆φ about the boost axis becomes

R∆φΛβ

(
E⊥,i, p⊥,i,φi,yi

)
=
(
E⊥,i, p⊥,i,φi +∆φ,yi + tanh−1βi

)
.

(3)

Thus, we only consider the product of two one-dimensional translation groups which will make it
particularly straightforward to construct invariant features in a systematic way. We refer to the SI for further
explanation of this selection.

2.1.2. Many-body polynomial expansion
The ACE approach [22, 24] was proposed as a complete set of polynomial basis functions invariant to
rotations and permutations to parameterize a many-body expansion of local interatomic interaction for
molecular simulation. Our polynomial construction takes heavy inspiration from the ACE expansion,
applying analogous techniques globally rather than locally, and adapting them to the different coordinate
systems and symmetry groups that arise in the jet tagging context.

First, we expand the coordinates of each jet into power sum polynomial type permutation invariant
features

Anlk =
N∑
i=1

Qn(p⊥,i,E⊥,i, ξi)e
ilφie−λkyi , (4)

where we have canonically chosen trigonometric and Morse polynomials (with λ> 0, though we use λ= 1
throughout) to embed the angle and rapidity, ensuring the simplest representation of the rotation and boost
groups. The features (p⊥,i,E⊥,i, ξi) are already invariant, hence we can embed them using a general basis Qn,
for which there is considerable design freedom. This freedom makes it possible to account for any additional
detected features, ξi, of particles in a jet. We discuss concrete choices in § 2.3.1.

We seek permutation-, boost- and rotation-invariant features of jets. All Ankl features are permutation
invariant, but only the An00 features are also invariant under rotations and boosts. We can generate a much
richer set of permutation-, rotation- and boost-invariant polynomials by forming the product basis

Anlk =
ν∏

t=1

Antltkt , where

nlk= (n1l1k1, . . . , nν lνkν) and ν > 0.

(5)

Only the basis functions satisfying the constraints∑
t

lt =
∑
t

kt = 0 (6)

which encode, respectively, rotation and boost invariance are retained. The correlation order ν indicates how
many particles are directly interacting in such a feature. We proceed to further inspect the impact of this
parameter in section 3.2.

With a suitable choice of Qn, the Anlk features form a complete basis of invariant polynomials (cf SI),
hence any (smooth) property of a jet that satisfies the same invariance can be represented to within arbitrary
accuracy as a linear combination,

f
(
{Ei, pi, ξi}i

)
=
∑
nlk

wnlkAnlk, (7)
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where wnlk are the model parameters (or, weights). We call such linear models invariant polynomials. The
specific selection of feature multi-indices nlk is again application-dependent; we present a simple and general
strategy in § 2.3.2. Equation (7) expresses the fact that the BIP features form a complete linear basis of the
space of permutation-, boost-, and rotation- invariant set functions.

2.2. Interpretation
Two intuitive interpretations of the features (5) are related, respectively, to signal to process and to the
many-body expansion. In the context of molecular simulation, analogous connections were explored in
detail in [25]. For the sake of a more succinct notation, we now identify v= (n, l,k) and xi = (Ei, pi, ξi).

Signal processing interpretation: Instead of a set of particles, a jet can also be identified with a density

ρ(x) =
N∑

i=1

δ(x− xi),

which can be thought of as a signal. Defining the one-particle basis function ϕv(x) = Qn(p⊥,E⊥, ξ)ei lφe−ky

the features Av can be written as a projection of the signal onto that basis,

Av = 〈ϕv |ρ〉.

That is, the features Av represent the signal ρ. Invariant representation can be obtained by taking the
projected ν-correlations, 〈

ϕv1 ⊗ . . .⊗ϕvν

∣∣ρ⊗ . . .⊗ ρ
〉

=
∏
t

〈ϕvt |ρ〉=
∏
t

Avt = Av,

and then averaging them over rotations and boosts. In our current setting, this simply results in the
constraint in equation (6). For this reason, we often call the features (5) symmetry-adapted ν-correlations.

Many-body expansion interpretation: Let f be a property of a jet that is invariant under permutations,
rotations about the jet direction, and boosts in the jet direction. Then we can approximate it to within
arbitrary accuracy using a many-body expansion,

f
(
{xi }i

)
= f0 +

∑
i

f1(xi)+
∑
i1,i2

f2
(
xi1 ,xi2

)
+ . . .+

∑
i1,...,iν̄

fν̄
(
xi1 , . . . ,xiν̄

)
.

(8)

Crucially, we include self-interaction in this expansion by allowing the indices i1, i2, . . . to be unordered and
repeated. Expanding each f ν in terms of the tensor-product basis ϕv1 ⊗ . . .⊗ϕvν and reorganizing the
summation (see the SI in IV for the details) results exactly in equation (7) with the ν-correlation features Av

arising exactly from the expansion of f ν . Thus, we can alternatively interpret equation (7) as an efficient
linear parametrization of the many-body expansion in equation (8) and the ν-correlation features as natural
basis functions for the ν-body term.

2.3. Jet tagging with BIPs
The BIP basis is a complete linear basis and therefore expressive enough to contain information about the jet’s
substructure, regardless of the frame observing the interactions. Any classification technique, either linear or
nonlinear, can be used to produce a probability score. To that end, we discuss how to select a finite subset of
the BIP features, and then explain how we will use them for jet tagging in supervised and non-supervised
manners. We emphasize that we will employ no hyper-parameter tuning for the BIP methods that we report.

2.3.1. The invariant embedding Qn

There is significant freedom in the design of the embedding Qn of the invariant features p⊥,i,E⊥,i and ξi, and
for the most challenging data analysis tasks or in the absence of a clear intuition we advocate that it is chosen
trainable, e.g. a classical multilayer perceptron (MLP). However, we found that much simpler specifications
may often suffice.

We focus on the case when only the four-momentum is detected (thus ignoring ξi) as in the top-tagging
benchmark; cf § 3.1. In this case, we choose

Qn(E⊥,i, p⊥,i) = Bn( p̃⊥,i) log(1+ E⊥,i), (9)
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Figure 3. Impact of the hyper-parameters for sparsification Γ and ν̄ to the number of BIP features.

where Bn are the Bessel polynomials applied to the log-transverse momentum

p̃⊥,i = A log

(
p⊥,i∑
i p⊥,i

+ δ2

)
+B. (10)

Here, δ2 is another regularization parameter that ensures p̃⊥, j remains bounded as p⊥,i → 0. (We choose

δ2 = 10−2 throughout). Also, A,B defines an affine transformation to ensure that p̃⊥,i belongs to the domain
of orthogonality of the Bessel polynomials. The logarithmic transformation is suggested by analyzing the
distribution of the p⊥,i in the top-tagging dataset. The factor log(1+ E⊥,i) imposes a form of infrared safety
(cf SI) ensuring that particles with low transverse energy do not contribute significantly to the features. We
explain in the SI that the resulting embedding Qn is not theoretically complete as it does not give full
flexibility to dependence on E⊥,i. We found empirically that providing additional flexibility led to overfitting,
and speculate that enough information about the energy of a particle may already be contained in the
rapidity variable.

As an example, how to incorporate additional particle features ξi into the embedding Qn we consider the
case when the particle’s charge qi is known. We then set ξi = qi and incorporate it through a one-hot
embedding,

Qnq(E⊥,i, p⊥,i,qi) = Bn( p̃⊥,i) log(1+ E⊥,i)δq,qi ,

also changing n to a multi-index (n, q).

2.3.2. A priori sparse feature selection
The infinite set of possible BIP features in (5) is indexed by a high-dimensional multi-index. We use a
common sparse grid technique to select which features to employ for classification tasks. First, we fix an
upper bound ν̄ on the correlation order, which is a measure of how strongly correlated groups of particles
are. Secondly, we specify a level Γ, which is primarily an approximation theoretic parameter. We now select
all features nlk satisfying

ν∑
t=1

|lt|+ |kt|+ nt ⩽ Γ and ν ⩽ ν̄. (11)

In the limit as ν̄ →∞ and Γ→∞, we recover all possible features, and in this limit our model becomes
universal. The choice of both parameters determines the total number of features in the basis, as shown in
figure 3. We label the resulting model a BIP (ν̄,Γ,method) where ‘method’ stands for the technique used to
create a classifier from the features and which we detail next.

2.3.3. Supervised learning
To classify jets, we arrange the BIP basis as a vector and use it as input into standard classification schemes.
For each data point, the label contains the expected classification to a selection of standard classifiers without
any modification from the default values in the published implementation in [26]. Our method of choice is
ensemble learning (gradient boosting), but we also test BIP features in conjunction with neural networks
(a standard multi-layer perceptron), and linear classifiers (with logistic regression and support vector
machine). We observe that the accuracy does not change significantly between all of these classifiers. A
further examination of this phenomenon and a description of the models is given in the SI § C.

5
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Table 1. Performance comparison between BIP classifiers and a range of other classifiers taken from [7, 32, 33]. We report the results as
BIP(ν̄ = 3,Γ = 6, architecture); in all cases, 312 BIP features are used, and the results are evaluated over 3 folds.

Architecture #Params Accuracy AUC Rej30%

partT [8] 2.14M 0.940 0.986 1602± 81
EGNN [7] 120k 0.922 0.970 540± 49
PCT [33] 139.3k 0.940 0.986 1533± 101
EFN [34] 82k 0.927 0.979 888± 17
ParticleNet [33] 498k 0.938 0.985 1298± 46
LGN [19] 4.5k 0.929 0.964 435± 95
P-CNN [6] 348k 0.918 0.980 732± 24
TopoDNN [35] 59k 0.916 0.972 295± 5

Supervised
BIP(MLP) 4k 0.931 0.981 853± 68
BIP(XGBoost) 312 0.929 0.978 600± 47
BIP(LogReg) 312 0.927 0.977 576± 34
BIP(SVM) 312 0.927 — —
Unsupervised
BIP(UMAP+GMM) 5 0.864 0.898 —
BIP(UMAP+KNN) 2 0.845 — —

2.3.4. Unsupervised learning
Following proposals in [27, 28], we study unsupervised learning using the BIP method. Unsupervised
learning is of interest for several reasons: it can identify deviations between observed and simulated data and
could therefore be employed to detect physics beyond the SM. It avoids bias towards the detector’s nuisance
parameters, which heavily increase systematic uncertainties. Finally, it helps reduce the need for training data
in order to perform phenomenological analyses.

Since higher-dimensional spaces tend to make distance metrics asymptotically indistinguishable [29], we
first perform a uniform manifold approximation and projection (UMAP) developed in [30] for
dimensionality reduction inspired by the t-distributed stochastic neighbor embedding (t-SNE) approach
used in [31]. After the embedding has been projected, we show the expressiveness of this ultra-compact
feature set by training a Gaussian mixture model (GMM) and a k-means clustering algorithm. Further
details are given in the SI, § C.

3. Results

3.1. Top tagging benchmark
The top tagging dataset was proposed in [32]. It consists of 1.2M training, 400 k validation, and 400 k. Each
data point represents a jet whose origin is a top quark, a light quark, or a gluon; each of them, contains only
the kinematic information of up to 200 particles, but a mean of only 30. The events were generated at 14 TeV,
also including a simplified simulation of the ATLAS detector in Delphes. After that, the jets were processed
and cuts were added on ‖η‖< 0.2 and∆R= 0.8 for the top quark ones; considering only the range
pT ∈ [550,650] GeV.

Table 1 shows that our BIP embedding, together with a linear classifier, can reach excellent accuracy using
several orders of magnitude fewer parameters resulting in a total training time of under 50 s. The
unsupervised setting shows BIP’s full expressivity, enabling the GMM classifier to reach excellent accuracy
with only five parameters.

We show a selection of BIP model results for jet tagging, comparing them to previous approaches. We
compare the classification performance of a range of models via the accuracy, area under the curve (AUC),
and background rejection rate at 30% signal efficiency (Rej30%) measures and contrast this against the number
of parameters employed. We also present the background rejection rate as a function of signal efficiency in
figure 4 for the two best-performing out-of-the-box classifiers on the BIPs features.

3.2. Versatility and efficiency
Our model is highly computationally efficient; to demonstrate this we performed a performance benchmark
on an AMD EPYC-Rome Processor using a fully serial framework and with no GPU usage. The
computational pipeline involves custom data processing and internal transformations explained in section 2.
This stage of the computation, including the Householder transformation, takes between 1.9 and 6.3µs per
jet at 68% C.L.

The density projections Anlk, as well as the ν-correlations (5), are both fast to evaluate, even without the
optimal algorithm proposed in [23], meaning that no usage of a GPU is required to obtain excellent
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Figure 4. Comparison of the background rejection rate against signal efficiency between the MLP and the XGBoost models fitted
on the BIP(ν̄ = 3,Γ = 6,) basis.

Figure 5. Performance of the construction of the BIP features at different correlation order ν and level Γ, the standard deviation is
calculated by performing the transformation for all the training sets in a sequential mode with no parallelization.

Figure 6. The accuracy as a function of the sparsification parameters, where increasing the number of features is obtained via
increasing Γ. See the Text for more details.

performance, as shown in figure 5. While the number of BIP features increases rapidly with the correlation
order, ν̄, the computational expense of embedding the jets scales only linearly; see [23] for a deeper analysis
of this fact. The implementation of the BIP embeddings is publicly available [36].

The performance depends on the correlation order ν̄ and level Γ parameters of the BIP framework,
which gives a variable basis size as shown in figure 3 and allows us to trade efficiency against the
computational cost (cf figure 6). As the level and correlation order of the BIP basis increase, the jet descriptor
becomes a complete linear basis, as explained theoretically in section 2.3.2. The well-known curse of
dimensionality still arises but only for large correlation order ν and large levels Γ; this is a consequence of the
total degree approach combined with the exploitation of symmetries and is explained in detail in [22].

As a general rule, the accuracy vs computational cost trade-off can be tuned according to the application.
For instance, for trigger-level applications or prototyping for model searches, computational performance
may be the main requirement, while the trade-off might be slanted toward accuracy when final statistical
analyses are conducted.

4. Conclusions and outlook

We introduced the BIPs model, a systematic, interpretable, and highly efficient jet tagging architecture
employing polynomial features that are invariant under permutations, rotations about the jet direction, and
boosts in the jet direction. The framework draws many ideas from the ACE model [21, 22] to achieve its
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generality and efficiency. While our approach does share concepts with EFPs [14] due to the fact that both
are building polynomial features, our architecture is entirely different, employing different coordinate
systems, invariances, and without the requirement for pairwise metrics.

We speculate that due to the simplicity of its architecture it might be easily implemented using
field-programmable gate arrays as dedicated hardware for employing our framework in an experimental
setting. In addition, our construction is highly versatile and enables us to easily incorporate additional
measured particle properties (e.g. charge, spin, flavor).

Despite the simplicity of our approach, we achieve close to state-of-the-art accuracy while gaining several
orders of magnitude of speedup in the training and inference stages. It is maybe particularly remarkable that
we achieved those results without employing any hyper-parameter tuning.

There are numerous improvements to our models that can still be explored, including extensive
hyperparameter tuning, as well as employing alternative classifiers. For example, preliminary experiments
suggest that basic hyperparameter tuning leads to modest accuracy improvements (ca. 0.1% improved
accuracy and 10% increase in background rejection). However, for bigger gains, we believe that more
significant changes to the proposed architecture of the models are needed. For example, a promising pathway
is to extend our BIPs model to the recently proposed framework for equivariant higher-order message
passing [37, 38] that has proven highly successful for modeling inter-atomic interactions [39, 40], typically
outperforming other approaches despite employing much shallower architectures. This work suggests that
the BIP model could also be extended to a geometric deep-learning framework which would naturally lead to
the automated discovery of the embedding Qn, and generally open up further model tuning possibilities that
will likely significantly improve the already excellent accuracy we obtain with BIP models.
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