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Abstract
We introduce a machine-learning (ML) framework for high-throughput benchmarking of diverse
representations of chemical systems against datasets of materials and molecules. The guiding
principle underlying the benchmarking approach is to evaluate raw descriptor performance by
limiting model complexity to simple regression schemes while enforcing best ML practices,
allowing for unbiased hyperparameter optimization, and assessing learning progress through
learning curves along series of synchronized train-test splits. The resulting models are intended as
baselines that can inform future method development, in addition to indicating how easily a given
dataset can be learnt. Through a comparative analysis of the training outcome across a diverse set
of physicochemical, topological and geometric representations, we glean insight into the relative
merits of these representations as well as their interrelatedness.

1. Introduction

Making accurate predictions of materials and molecular properties while using minimal computing and
experimental resources continues to be a grand challenge in the chemical sciences. Machine learning (ML)
has emerged as a promising tool to address this challenge by performing statistical learning on relatively few
data points, and then inferring the properties of new examples. In the past decade, ML methods for
chemistry have yielded remarkable accuracy for a wide array of materials properties—from atomization
energies, to forces, spectra, stability, optical properties, drug activities and many more [1–6].

Broadly speaking, an ML regression model of a chemical system operates in two key stages: First,
translating the data samples (i.e. molecules or materials) into appropriate mathematical representations;
second, applying a regression algorithm to these representations. ML for chemistry is thus somewhat
different from many traditional ML tasks in natural language or image processing where the input tensors
are usually well-defined—i.e. there is a meaningful ‘native’ representation of the input data that is by and
large unambiguous. Driven by the observation that the choice of representation plays an outcome-
determining role in a chemical model [3], a large range of (competing) representations have been developed
for describing materials and molecules, complemented by neural-network based approaches that learn their
representations on the fly [7].

At a coarse level, the representations of chemical systems we consider fall into three main categories
(figure 1): (a) physical- or chemical-property-based ‘1D’ representations, incorporating, e.g. measures of
polar surface area or lipophilicity [8, 9], (b) topological ‘2D’ fingerprints such as the ECFP family of
fingerprints [10], and (c) atomic-coordinate-based ‘3D’ representations, such as the Coulomb Matrix (CM)
[11], Smooth Overlap of Atomic Positions (SOAP) [12] or Atom-Centered Symmetry Functions (ACSF)
[13]). It is worth noting that these named representations are by no means exhaustive, and interested readers
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Figure 1. Taxonomy of atomic and molecular representations. We distinguish between: 1D physicochemical representations, 2D
topological representations, and 3D geometric representations. The latter includes two subtypes: Atomic-neighbourhood-based
and interaction-matrix-based descriptions. The descriptor families differ in particular with respect to (i) the structural
information they use (atomic identities, chemical bonding, atomic coordinates); (ii) how they process the structure (property
calculators, graph partitioning, neighbourhood expansions); and (iii) how they form a global representation (hashing, pooling,
etc). Their dimensions can also differ drastically, with 1D physicochemical fingerprints typically being relatively compact
(d= 101 − 102), and geometric representations usually high-dimensional, in particular for multi-element structures
(d= 103 − 105).

may refer to recent reviews [5, 7] for a more comprehensive account. Moreover, more developments are
constantly made in the field, and some recent prominent examples of 3D representations include the atomic
cluster expansion [14], atomic features built by the hierarchically interacting particle neural network [15],
and the N-body iterative contraction of equivariants [16].

For each choice of representation, there is typically still significant freedom (i.e. complexity) in
assembling its components and selecting its hyperparameters. For physicochemical representations this
freedom consists in particular of what system properties to include in the final set of features. For 2D
topological fingerprints, parameters such as the topological radius as well as, at a lower level, the hash
function itself may need to be customized. For 3D representations, basis functions and/or length-scale
hyperparameters need to be specified, including, in particular, the cutoff that defines the size of an atomic
neighbourhood.

Building and validating a predictive ML model for chemical systems will typically imply running an
objective benchmark in which disparate models compete against each other. This can be much harder than
what one might expect: ‘Objectivity’ is a tough objective, simply due to subjective choices with regards to
dataset compilation, test set generation, and ‘favourite’ metrics. The key difficulty, however, lies in investing
an equal amount of effort into the fine-tuning of the competing models. In this regard, when faced with a
multitude of hyperparameters, some deriving from the representation itself, and others inherited from the
predictor, the modeller typically needs to draw a dividing line between hyperparameters that are treated as
‘constant’ (having gone through, for example, a manual refinement loop) versus those that are considered
‘fluid’ and can thus be dealt with in a nested on-the-fly hyperparameter search.

Regarding the regression stage, further design choices range from how to normalize the representation
(i.e. design) matrix; whether and, if so, how to perform feature selection; how to summarize (‘pool’) atomic
representations of a system into a single global representation vector; which kernel and kernel normalization
to use; as well as whether or how to incorporate regularization and variance reduction techniques. Not all of
these choices can be easily treated as model hyperparameters without combinatorially inflating the
hyperparameter search and rendering model training cumbersome and expensive.

In order to compare disparate models on the same footing we need to make the distinction between the
merits of the representations themselves, versus the surrounding data pipeline and infrastructure used to
embed them in a final ML model. For example, when comparing a model that uses a particular topological
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representation with a second model that embeds a SOAP descriptor into a kernel ridge regressor using a
specific pooling step, it will not be immediately clear whether the observed difference in performance is a
result of the choice of representation, the postprocessing and regression algorithms placed thereon, or a
combination of the two.

Beyond these confounding factors that complicate the analysis of a benchmark, there are other hazards
that can bias the benchmark’s outcome. A grey area, for example, is applying standard scalers to the
representation matrix before entering a train-test loop, thus leaking information from the test data into the
training. Another pitfall concerns non-identical test-train splits when comparing different models, which
can randomly but noticeably bias the benchmark results in particular for smaller datasets. One more serious
and probably not uncommon hazard concerns manual hyperparameter fitting, as partially touched upon
above: In order to avoid a combinatorially expensive grid optimization, a modeller may choose to handpick
some parameters or manually tune aspects of the overall architecture (including the representation itself) in
a trial-and-error fashion, while tracking its performance on a particular dataset. This can result in a model
performing particularly well on this specific dataset, due to some model parameters having been
‘accidentally’ optimized—through manual refinement—across the entire set rather than just a subset.

Finally, additional performance bias may come from the datasets themselves, if, somehow, they allow ML
models to take shortcuts and exploit unintended systematic trends—resulting in ‘Clever-Hans’ models [17]
that perform well while learning little. As an example, in qm9 (a popular benchmark set in chemistry that
contains 13k organic molecules composed of up to nine heavy atoms C, N, O, and F), there is a spurious trend
that the atomization energy per atom scales inversely with the total number of atoms [18, 19]. This turns out
to be the result of most molecules containing nine heavy atoms, with molecules sampled in a way that those
with fewer atoms tend to have more double and triple bonds. This trend may be picked up by an ML model,
in which case it would harm the model’s ability to generalize to real-world examples once deployed.

Partially because of such intricacies, some doubt has been cast on the viability of ML models in chemical
research [20]. As one example, in a study of a Buchwald–Hartwig cross-coupling reaction, the authors
reached the conclusion that the combination of physicochemical descriptors and random-forest regression
significantly improved predictions of reaction yields [21]. Later, however, it was suggested that the good
metrics obtained by the authors were in fact a Clever-Hans-type artifact—with the model basing its
predictions on the presence of certain tell-tale reactants—and that a similar accuracy could thus be achieved
using one-hot molecular encodings or random features [22].

To address some of these complexities around building and benchmarking of ML models for materials
and molecules, we here introduce BenchML, a machine-learning framework designed to turn benchmarking
of chemical representations into a routine task. In essence, BenchML implements a pipelining model that
allows us to design and evaluate ML architectures of tunable complexity, and study performance trends
across diverse collections of representations and datasets. The framework is highly extensible due to its use of
modular data transforms that make up the expression graph of the pipeline. Precomputation of expensive
transformations is thus managed automatically in order to speed up the training-test loop as well as any
nested grid-based or Bayesian hyperparameter search. We stress that the scope of BenchML extends beyond
performing benchmark tests of chemical representations. Besides providing a convenient way to engage with
a new, unfamiliar dataset, the ML models of the default BenchML model library are also intended to serve as
baselines for more sophisticated, and particularly newly developed, supervised ML models—including, but
not limited to, convolutional neural networks.

This paper is organized as the follows: In section 2 we introduce the design principle and the architecture
of BenchML. In section 3 we demonstrate a specific application with detailed analysis. In section 4 we
illustrate an example benchmark on some widely used as well as specialized chemical datasets—covering the
prediction of energetics, thermodynamics and reactivity in molecular and crystalline systems.

2. Methods

2.1. Overview of the BenchML framework
BenchML is a framework designed to address some of the hidden complexities around data-driven materials
and molecular modelling, and turn embedding of new representations into general predictors into a routine
task. From a conceptual point of view, BenchML enables the transition from the low-level ‘fit—predict’
approach (as represented, e.g. by scikit-learn and related libraries) to a higher-level ‘build—benchmark—
deploy’ framework, that allows for releasing robust, finely tuned, well-tested models. In an industrial setting,
where ML life-cycle management—typically referred to as ‘MLOps’ – is crucial, this BenchML workflow can
be easily incorporated into any MLOps infrastructure (such as MLFlow [23]) for organization-wide
deployment.
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Figure 2. BenchML design schematics. Left: a model BenchML pipeline, consisting of interconnected data transforms Ti. Each
transform can have several input and ouput channels. Dependency hashes Hi help identify which data objects can be
precomputed and cached. The pipeline acts on a data stream from/to which the transforms read/write in a controlled fashion. The
streams are used for storing precomputed data (such as kernel or design matrices), which are sliced appropriately during splits.
Right: benchmarking workflow with four stages: Caching (precomputation), tuning (hyperparameter optimization), fitting (with
the optimal set of parameters), and testing on withheld test data. Note the coloured rectangles which indicate individual data
samples. Angular brackets denote model execution (fitting or mapping). The bars below the model symbol (‘M1’) indicate the
parametrization and cache state.

BenchML sits on top of lower-level plugin libraries such as dscribe, asaplib, or gylmxx that specialize in a
particular set of representations, transformations, regression or filtering techniques. As a key design
objective, adding a new data transform that wraps external methods comes with minimal overhead and is
achievable with just a few lines of code.

2.2. The BenchML pipeline
BenchML follows a simple pipelining concept: Pipelines are directed graphs of data transforms that act on an
input data stream, keeping track of dependencies, caching results (where appropriate) and enabling
hyperparameter optimization via grid-based and Bayesian techniques. The transforms encapsulate a variety
of ML methods, from representations, matrix reductions, data filtering, feature selection to regressors,
classifiers, ‘ensemblizers’ and ‘conformalizers’ (the latter take a predictor and turn it into a confidence-
calibrated estimator). For a more detailed discussion of the transforms implemented to date, we refer the
reader to the library’s online documentation (https://github.com/capoe/benchml).

A schematic representation of the pipelining approach and benchmarking framework is shown in
figure 2. During the training (‘fitting’) and prediction (‘mapping’) stage, the data transforms (labelled T1

to T5) read from and write to a data stream that stores intermediate results (such as a normalized design
matrix). Importantly, the streams implement data splitting, which is crucial for constructing, tuning and
testing ML models efficiently and in a way that prevents cross-contamination. These splits can occur at
various stages of model execution and testing. They include: training-test splits to measure prospective
performance, training-validation splits to select hyperparameters, training-calibration splits to gauge
confidence predictors, and bootstrapped ‘splits’ for ensembling and variance estimates.

With splits being so essential, caching and precomputation of data is necessary to be able to train and
evaluate models quickly and with minimal computational expense. Consider, for example, a standard
benchmarking loop consisting of 100 different train-test splits. For each split, 10–100 different
hyperparameter settings are subjected to ten-fold nested validation (figure 2). This means that just this single
model gets retrained on the order of 104–105 times, resulting in a potentially considerable computational
cost. Dependency hashing within the BenchML pipelines helps to easily identify which parameters and
transforms can be precomputed, and which ones need to be re-evaluated during the hyperparameter search.

To enable caching and precomputation, when implementing a new transform, all that is required is to
specify what data the transform reads from and emits into the stream, as well as the type of that data
(see listing 1 for an example). This informs the pipeline how to process the data when a certain split is
applied. Frequently, precomputed fields are either a design matrix or kernel matrix, with the required slicing
operations differing between these two types. Finally, beyond annotating the input and output data types of
the new transform, what is needed additionally is to specify required and default parameters, and overload

4

https://github.com/capoe/benchml


Mach. Learn.: Sci. Technol. 3 (2022) 040501 C Poelking et al

Listing 1. Implementation of a RandomDescriptor transform (example only).

themap and (optionally) fit operations. The transform can then be incorporated into a pipeline or ‘module’,
as exemplified in listing 2.

2.3. Representations of chemical systems
Thus far we have described the pipelining approach behind BenchML, which is of course a general concept
and not specific to the modelling of chemical systems. For the purpose of this benchmark, as its core
component, each model is based on a single chemical representation of one of the types shown in figure 1.
An overview of the set of models considered in the benchmark is provided in figure 3. Here we will discuss in
more detail aspects of the model architectures, in particular the different pooling, post-processing and
regression rules. For a detailed technical discussion of the representations themselves, we refer the reader to a
recent review on the topic [7].

2.3.1. Global and atomic representations
Global as opposed to atomic representations are intended to capture the overall configuration of the whole
molecule or bulk material. Some representations are global to begin with—consider, e.g. Morgan
fingerprints that record the presence or absence of specific atomic fragments [25]), or the Coulomb Matrix,
which sequences the pairwise distances between atoms of the structure [26] into a global array. In cases such
as these, the global representations can be used as the raw input of BenchML, subject only to potentially
different normalization rules, such as the p-norm or feature-wise whitening.

Some representations will, however, describe the system as a set of individual atomic environments,
X1, . . .Xi . . .XN, each consisting of the atoms (chemical species and position) contained in their
neighbourhood defined by a cutoff radius rcut centered around atom i. There are many ways how the
resulting matrix of atomic descriptors can be reduced into a single molecular vector. In a model pipeline
these reduction or pooling rules can be shared across representations and are thus encapsulated in separate
data transforms that for atomic representations directly succeed the descriptor calculation step (see the
second level of the 3D branch of figure 3).

One of the options used by the models in the benchmark is to derive the intensive representation for a
structure A by averaging over the atomic representations,

Φ(A) =
1

NA

NA∑
i∈A

ψ(Xi), (1)

where the sum runs over all NA atoms i in structure A; Xi is the environment of atom i. When there are
multiple chemical species, the representations for the local environments of different species can either be
included in the single sum, or the averaging can be performed for the environments of each species
independently, with the final molecular vector obtained by concatenating their averaged local
representations. Toggling between these two options can be dealt with as part of the hyperparameter search.
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Figure 3.Model phylogeny: ‘1D’ physicochemical models (black tree), ‘2D’ topological models (blue tree), ‘3D’ geometric models
(red trees). In addition to a descriptor (top level) and regressor (bottom level), each model may additionally specify a descriptor
sub-type (minimal, extended, etc) and a pooling (extensive, intensive, pair correlation) or other reduction rule (sorting, spectral
projection). In the pooling category, the ‘pair spectrum’ refers to the pair contraction rule in equation (3). For the Coulomb and
Ewald matrix, ‘sorted (L2)’ and ‘spectral’ specify how the interaction matrix is flattened into a single representation. For SOAP,
‘no-cross’ vs ‘cross’ determines whether element cross-channels in the power spectrum are included. 1D physicochemical
representations consider four different subsets of standard molecular properties. The 1D crystal representation on the other hand
builds on a subset of the atomic features considered by SISSO [24]. The branches are annotated with acronyms that are
concatenated to produce a unique model tag for later reference (example: soap-l_int_krr, which corresponds to a kernel-ridge
model with a long-range SOAP descriptor and intensive global representation).

Alternatively, the extensive global representation uses

Φext(A) =
NA∑
i∈A

ψ(Xi). (2)

For this benchmark, we assume the intensive representation by default. Models using an extensive
representation will thus be explicitly annotated with a subscript ext.

Note that there are several other ways how to construct these global representations—for example, by
using an RMSD-based best match assignment between the environments of separate structures (resulting in
an implicit global feature space), or combining local representations using a regularized entropy match
(REMatch) [18]. However, besides being computationally expensive, these methods are highly nonlinear
adaptations of the underlying descriptor, and are thus beyond the scope of this benchmark study.

As a test, we incorporate one novel way of obtaining the global representation for those atomic
descriptors that are based on expansions of the atomic density in terms of spherical harmonics. These
descriptors have components ψnlm, where n is now a summary index over radial components and atomic
species, and lm indicates the angular momentum channel. A generalization of the SOAP power spectrum
then uses non-local contractions over the magnetic quantum numberm to arrive at a global representation
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Φnkl(A)∝
NA∑
i∈A

NA∑
j∈A

ψnlm(Xi) ψ
∗
klm(Xj). (3)

This non-local contraction can be interpreted as a generalized form of a pair-distribution function (PDF)
that simultaneously captures species, radial and angular cross-correlations. For our benchmark, we have
included such non-local extensions for the SOAP [12] and GYLM [27] descriptor in our model library
(see the pair-spectrum node in figure 3). As this PDF contraction changes the representations’ behaviour on a
basic level, we treat the resulting models as a separate family, referred to in the benchmark of section 4 as
pdf-soap and pdf-gylm.

2.3.2. Length-scale hyperparameters
Many atomic representations (e.g. ACSF, SOAP, GYLM) use length-scale hyperparameters that need to be
appropriately chosen for a given problem and system. To a limited degree, these hyperparameters can of
course be addressed within the hyperparameter search. However, a complete combinatorial sweep is usually
expensive given the large set of hyperparameters associated with basis-function-based representations. The
computational cost grows further as representations at multiple resolutions are joined together in order to
build yet more powerful and flexible models. It is then desirable to use heuristics to automatically select these
hyperparameters. The set of heuristics used here has previously been described in [19], who based the
length-scale hyperparameters for a system with arbitrary chemical composition on characteristic bond
lengths estimated by computing a minimal bond length rZmin and typical bond length rZtyp for each species Z
from a set of equilibrium structures with varying coordination numbers. These characteristic scales are
finally compiled into a look-up table to be queried at training time.

For the SOAP representation, the standard ‘smart’ selection thus involves two sets: The first SOAP has
r1cut =max(1.56×minZ rZmin, 2 Å), which focuses on the shortest length scale of the system. The second SOAP
has r2cut =max(1.56×maxZ rZtyp, 1.2× r1cut), which is usually large enough to capture at least the second
neighbour shell. The long-range variant combines two SOAP representations: The first has a shorter range
rscut =max(2.34 minZ rZmin, 3 Å), the second a longer range r

l
cut =max(2.34 maxZ rZtyp,1.2 r

s
cut), both with

basis dimensions are nmax = 8 and lmax = 4. The minimal variant includes one representation with a range of
rlcut = 1.1 maxZ rZtyp, nmax = 4, and lmax = 3. The Gaussian function width σ is always set to σ = rcut/8.

2.4. The regressors in BenchML
In the absence of confidence calibration or attribution steps, the regressor serves as the final output node of a
model (figure 3). In principle any regressor, such as a neural network, support vector machine, Gaussian
process, etc can be incorporated into a BenchML pipeline. For the sake of benchmarking representations
rather than predictors, however, we here resort to only simple and widely used regressors that allow us to
emphasize the raw performance of the underlying representation. We briefly recapitulate ridge regression
and kernel ridge regression—two of the three regression types employed in our benchmark. The third
type—random forest regression, an ensemble technique based on decision trees—is used only in
conjunction with 1D physicochemical fingerprints, and we refer the interested reader to the original paper by
Breiman for details [28].

2.4.1. Ridge regression
Given N data samples {(yi,xi)}, a linear regression model uses the ansatz

y= Xw+ ϵ, (4)

where y≡ (y1, . . . ,yN)T is the dependent variable, the design matrix X= (x1, . . . ,xN)T is the d-dimensional
independent or input variable, and ϵ is a random variable with zero mean. The coefficients wi are the
parameters of the model. Whereas a traditional least-squares fit is obtained by minimizing the data-
dependent square error over all training examples, in ridge regression, this loss function furthermore
includes the L2-norm of the parameters w, thus resulting in a regularized linear fit

wridge(λ) = argmin
w∈Rd

1

2
||Xw− y||2 + λ

2
||w||2, (5)

with an appropriately chosen regularization strength λ. We can solve for w by equating the gradient of
equation (5) with respect to w to zero. This leads us to the closed-form expression for the fit coefficients

w= (XTX+λI)−1XTy, (6)

where I is the d-rank identity matrix.
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Figure 4. Distribution of the MSE for the aqsol dataset, generated from 1000 randomly drawn hyperparameter settings. The four
models, from left to right, are: a physicochemical (1D) random forest, a 2D-topological, and two 3D-convolutional kernels
(GYLM and SOAP). Note that the hyperparameter settings are sampled from a large combinatorial space, but that—
importantly—the regularization strengths of the regressors are tuned for each setting independently using nested splits. For each
distribution, the dashed horizontal lines indicate, from top to bottom: the variance of the targets across the entire dataset, the
observed model-specific median and minimum of the MSE.

2.4.2. Kernel ridge regression
Kernel ridge regression (KRR) is the analogue of ridge regression over an implicit feature space induced by a
positive semi-definite kernel function k(xi,xj). This function measures the pairwise similarity among data
samples. For the purpose of our benchmark, we use a simple dot-product kernel k(xi,xj) = (xixTj )

ν suited for
descriptors with positive components xiα ⩾ 0. A positive integer exponent ν controls the nonlinear degree of
the regression. The coefficients α of the KRR models are determined using

α=−(K+λI)−1
λy, (7)

where K is the kernel matrix with components Ki,j = k(xi,xj). For a prospective sample x, the prediction can
be expressed as

f(x) = k(K+λI)−1 y, (8)

where k= (k(x1,x), . . . ,k(xn,x)) is the vector of inner products between the training data and the probe x.
Note that in both ridge and kernel ridge regression, the regularization strength λ is a hyperparameter that

typically has a major impact on a model’s performance. Even though heuristics informed by the data
distribution and descriptor characteristics can often be used to select this parameter with adequate accuracy,
we here incorporate λ into each model’s automatic hyperparameter search, sweeping a broad range from
λ= 10−9 to 107.

Naturally, even with the regularization strength adjusted optimally, a model’s performance will still
fluctuate significantly subject to how its other hyperparameters are set. The range of this fluctuation gives
some insight into how parametrically ‘robust’ a particular model is. Indeed, one of the reasons why random
forests and topological fingerprints have established themselves as staple techniques in cheminformatics has
to do with their tendency to produce reliable models that are unlikely to yield divergent predictions—a trait
not easily reproduced with more complex geometric representations. To illustrate this, figure 4 shows the
error distribution measured over a large number of random hyperparameter settings for four models when
trained on solubility data (ESOL dataset): A physicochemical random forest regressor, a topological kernel,
and two geometric kernels (SOAP and GYLM). The geometric kernels feature heavy tails in their error
distribution that are indicative of ‘divergent’ models that completely failed to train. These long tails are
absent for both the physicochemical and topological framework. Nevertheless, the geometric models display
a significantly improved peak performance if their hyperparameters are set adequately. Furthermore, for
SOAP, the heuristic rules for basis-function selection outlined above are able to almost precisely pinpoint the
optimal setting, as indicated by the dashed red horizontal line.
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Listing 2. Definition of a simple topological kernel regressor.

2.5. BenchML in practice
BenchML is focused on straightforward customization. New data transforms (listing 1) are automatically
registered upon import, and new ML pipelines (listing 2) can be added to the BenchML model library for
immediate use. The default library contains many dozens of prebuilt models that can be applied quickly to
new datasets. Some of these models are intended to serve as sensible baselines against which literature results
can be compared.

The models benchmarked in this study are all part of this BenchML model library. The pipelines defined
therein can be invoked from the command line or imported into a custom python script should this be
desired. The models are tagged in a way that allows the user to run only a subset against a particular dataset.
To give an example, the command

bml---models "acsf.*" --mode benchmark \
--meta qm7b_meta.json

would benchmark all models derived from the ACSF representation against the qm7b dataset, referenced
here via its metadata file. BenchML uses these metadata files to specify raw file paths, provide instructions for
the train-test splitting procedure, as well as convey certain prior information, which may be used by the
model to intelligently select some of its hyperparameters. Listing 3 exemplifies the metadata format in full
detail. Whereas some of the metadata fields (such as the list of atomic elements) serves a mere practical
purpose in that it informs the model about aspects of the dataset that cannot always be adequately inferred
from a single training subset, other fields, in particular the ‘scaling’ attribute provided for each target, assist
the model in taking shortcuts through the hyperparameter search.

If, for example, an additive (extensive) property such as an energy is to be regressed using an intensive
representation (such as a topological molecular fingerprint), then a sizable performance boost can be gained
by first normalizing the target by molecular size, regressing the resulting intensive property, and then
multiplying again by size. Clearly this kind of standardization could be made part of the preprocessing of the
data, except that the appropriate preprocessing procedure will typically depend on the model architecture, as
well as that externally performed preprocessing interferes with an end-to-end philosophy that is often
desirable from a deployment point-of-view. Other metadata fields are designed to check scope of
applicability, by indicating whether the data is amenable to SMILES representations, or whether the objective
is classification or regression. Finally, the metadata also specify training-test splits: Appropriate testing
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Listing 3.Metadata specification for the qm7b dataset.

procedures will often vary from one dataset to another. Common approaches are random, chronological and
group-based splitting. The example in listing 3 uses a sequential splitting mode for learning curve
generation, where each training fraction f ∈ [0.1,0.9] is repeated n= ⌊

√
4/f(1− f)⌋ times in order to ensure

adequate sampling.
We now give a very brief demonstration how the BenchML model library can help us to quickly and

easily gauge the predictive performance achieved by a novel ML technique. Clearly baseline selection is a key
issue in evaluating the merit of a newly published technique. Even when comparing with sensible baseline
methods, a comparison can be flawed if those baselines have not been carefully trained, or if hyperparameter
tuning has been skipped. The example we use here stems from the domain of ligand-protein activity
predictions. An earlier study [29] has found that a Random Matrix Discriminant (RMD) displayed superior
performance in classifying compounds into actives and inactives for a set of five protein targets. Among one
of the baseline models that was drastically outperformed by the RMD was a topological SVM based on ECFP
fingerprints. Having downloading the underlying dataset, we can in three simple steps benchmark the
BenchML version of that SVM against the literature data:

binput --from_csv activity.csv \
--output activity.xyz
bmeta --extxyz activity.xyz \
--meta input.json
bml --mode benchmark --meta input.json \
--models "ecfp_svm_class"

Here the first command converts the csv into an extended-xyz input file; the second command generates
a metadata file; the third command invokes the benchmark. The results, summarized in table 1, clearly show
that the conceptually simpler SVM in fact outperforms the RMD by a small but significant margin, contrary
to the authors’ original claim.

As another example where a novel method is easily outperformed by simpler approaches, we point to the
prediction of log solubility on the ESOL dataset using a regression model with a Marchenko–Pastur filtering
step (a variant of principal-component analysis [30]). Again, a simple topological kernel outperforms the
authors’ original model, achieving a reduction in mean absolute error (MAE) from 0.61 to 0.54. A geometric
kernel pushes this even further down to an MAE of 0.43 (see table 1, bottom).

These examples highlight that the development of novel performant methods is hard and becoming even
harder as the field reaches maturity. Detailed benchmarking is thus an increasingly important tool that helps
us to build confidence in the merit of new ideas and approaches.
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Table 1. Performance baseline correction of literature results using BenchML models. Top: classification of ligands into ‘actives’ and
‘inactives’ based on random 90%:10% train:test splits. Shown is the comparison of ROC-AUCs measured for three 2D-fingerprint-based
architectures: RandomMatrix Discriminant (RMD), Support Vector Machine (SVM) as reported by Lee et al, and a standard SVM from
the BenchML library. The datasets are taken from Lee et al [29]. Bottom: prediction of log solubility on the ESOL dataset [31]. MPR
denotes the Marchenko-Pastur regression model by Lee et al [30], which is based on topological fingerprints (ECFP6, among others).
ECFP-KRR and GYLM-KRR denote two kernel-ridge regressors from the standard BenchML model library. The metrics correspond to
the models’ test performance at a training fraction of 90%.

Activity prediction RMD [29] ECFP-SVM [29] ECFP-SVM (BenchML)

MOR1 0.99 0.70 0.995± 0.002
5-HT2B 0.93 0.67 0.979± 0.004
ADRA2A 0.90 0.61 0.928± 0.008
HistH1 0.97 0.65 0.987± 0.003
hERG 0.83 0.60 0.851± 0.013

Solubility prediction MPR [30] ECFP-KRR (BenchML) GYLM-KRR (BenchML)

MAE 0.61 0.54± 0.02 0.430± 0.003
R2 0.85 0.87± 0.01 0.908± 0.003

3. A specific application with detailed analysis

We here illustrate several analysis endpoints that allow us to study model performance in absolute and
relative terms, as based on the output of a BenchML benchmark. This example is based on the qm7b dataset
(a molecular dataset of molecular properties, in particular DFT-based atomization energies) and considers
most of the available representations implemented to date. A more comprehensive benchmark spanning
various datasets and models will be presented in section 4.

We first focus on learning curves (LCs) for the regression of atomization energies of qm7b structures. LCs
simulate model performance across multiple training regimes (from low to dense data) and are therefore a
rigorous way of assessing model quality. These learning curves can be easily constructed and visualised
starting from the output of a benchmark via

bplot---input output.json.gz---output lcs.pdf

Figure 5 shows LCs generated accordingly for eight model families, with each panel grouping models
according to individual branches of the ‘phylogenetic’ tree from figure 1. The panels are arranged such that
the peak performance (i.e. the performance achieved by the best model within each family) decreases from
top-left to bottom-right. Notice that for each representation, there is significant spread in performance
across the family members (each of which corresponds to a different pooling rule, regression technique, as
well as descriptor-specific hyperparameter settings). The spread affects both mean performance and learning
efficiency and thus highlights the challenge in performing an objective benchmark, as even minor
misalignment and poor choices in how a representation is embedded in an ML model can potentially ruin
that model’s performance.

3.1. Model-model error correlation
Benchmarks typically focus primarily on estimating relative model performance—as is achieved, for
example, by comparing learning curves. A more fine-grained analysis is however needed to understand how
models relate to each other on a mechanistic level—i.e. how their predictions and their errors correlate on a
sample-by-sample basis. This type of analysis can inform future method development, by shedding light on
model bias and failure modes. Furthermore, we should be able to use this relatedness between models to
construct ensembles of models that yield robust low-variance estimators by compensating for outlier
predictions made by their individual members.

We first study model similarity based on their ability to rank samples of a test set according to their target
values. Take two regression modelsA and B. We denote their predictions on a test set (which is used neither
during the hyperparameter search nor training) yAtest = fA(Xtest) and yBtest = fB(Xtest), respectively. We
quantify the similarity kmodel(A,B) among the set of predictions via their Spearman’s rank correlation
coefficient R ∈ [−1,1] between yAtest and y

B
test. Invariant with respect to target scale, domain, and to some

degree, distribution, the rank correlation is attractive in that it allows us to aggregate similarity statistics
across several datasets in a balanced way. Note that, even though R can be negative, in practice, even
disparate models achieve R(yAtest,y

B
test)≫ 0.
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Figure 5. The learning curves (LCs) of the different models for the qm7b dataset. Each panel shows the test RMSE results for
predicting atomization energy (AE) using the same representation, but different sets of hyperparameters, Each thin line shows the
LC of a specific model. The LCs of the ‘best-in-class’ models are highlighted using thick lines. For clarity, we only show the
legends for the best model for each representation. The learning rate (LR) in the legends is defined as the slope of the learning
curve of the best model in each panel.

Figure 6. Similarity among models (a) and representations (b). Panel (a): KPCA projection of the kernel matrix Kmodel that
measures the similarity between pairs of sets of model predictions (e.g. kmodel(A,B) = R(yAtest,y

B
test)) on a (possibly unlabeled)

test set X. Each point denoting one model is colored according to the RMSE of the model on the same test set. Panel (b): KPCA
projection of the kernel matrix Kdesc that measures the similarity between pairs of representations (e.g. kdesc(Φ,Φ ′) =

R(KΦ(X(M)),KΦ ′
(X(M))), computed from 100 randomly selected samples from the qm7b dataset. Each point is annotated by

the label of the model it corresponds to; the points are coloured according to RMSE of the KRR fits. In each panel, the inset is a
zoom-in of the area enclosed by the small rectangle.

We compute R(yAtest,y
B
test) for every ML model pair, and thus obtain an nmodel × nmodel kernel matrix

Kmodel, where, for the example of the qm7b dataset, nmodel = 72. Notice that the actual labels of the test set
ytest were not needed in the construction of Kmodel. In fact, evaluating the correlation matrix on the true
errors of the predictions (which additionally require the data labels) results in a very similar kernel matrix.

To visualize Kmodel, we use kernel principal component analysis (KPCA) to construct the two-
dimensional map shown in figure 6(a). Each point on the map is annotated with the label of the model it
corresponds to, and is coloured by its RMSE measured on the test set. Models that use the same
representation tend to be grouped close together on the KPCA map, as well as have similar test errors. For
example, the two topological representations, ECFP4 and ECFP6, that differ only with respect to their
topological diameter (4 vs 6), form their own cluster that is locally well separated from the other models.
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Meanwhile, models using the ACSF, SOAP, GYLM or MBTR descriptor—all of which are atom-density-based
representations—form a dense cluster with additional substructure resulting from the pronounced similarity
between SOAP and GYLM, and from ACSF being the ‘outsider’ within this clique of models.

As a dominant characteristic of the map in figure 6(a), the ‘good’ models with low RMSE cluster very
closely together, whilst models that are farther from the center of mass of the map have progressively worse
performance. In other words, the good models are all alike, while the bad models are all bad in their own
way. This implies that, if the actual labels of the qm7b test set ytest were not available, just by comparing the
similarities between the model predictions on the unlabeled test set one can make an educated guess as to
which models are likely to have better accuracy for these test samples.

3.1.1. Model-model feature-space correlation
We next investigate model similarity via their respective feature spaces. Clearly models based on similar
representations should yield similar predictions, whilst the converse—similar predictions implying similar
representations—is less certain. In this benchmark, the regressors are simple linear regression or kernel ridge
regression models, such that correlations in the feature spaces are clearly expected to carry over to the output
layer of a model. Directly comparing different representations is not entirely straightforward, as they will
typically differ in terms of both dimension and domain. We therefore cast each representationΦ into a kernel
matrix KΦ of a fixed sizeM×M, and base the comparison on this dual-space representation. For a given
dataset, we randomly selectM samples X(M) = (x1, . . . ,xM)T and compute the kernel matrix between these
M samples using the kernel

KΦ(X(M)) = Φ(X(M))
[
Φ(X(M))

]T
. (9)

This dot-product kernel matrix is the same as used in the kernel-ridge regressors of the benchmarked models
(figure 3. We measure the similarity kdesc(Φ,Φ ′) between pairs of representations Φ and Φ ′ by calculating
their Spearman’s rank correlation coefficient R from the flattened kernel matrices KΦ and KΦ ′

.
To visualize Kdesc, we use KPCA to produce a two-dimensional map as shown in figure 6(b) for qm7b

dataset. The axes of the KPCA map are seen to be correlated with the measured test-set RMSE of the models.
Once again, models with similar performance remain close on the map. These observations are reminiscent
of figure 6(a): We stress, however, that the construction of the KPCA map in figure 6(b) does not rely on
fitting of the models. This means that one can anticipate performance clusters among the models from their
induced kernel space—indicating that within the context of this benchmark representations and predictions
are very much linked together, and that, importantly, drawing conclusions regarding the merits and
drawbacks of different representations is justified.

4. Examples applications of BenchML on popular chemical datasets

We applied BenchML to a number of chemical datasets as summarized in table 2. These datasets are classified
into two categories,molecular and bulk, with bulk datasets consisting of periodic (amorphous, disordered
and crystalline) structures as opposed to isolated molecules or clusters. All the datasets as well as their
metadata specification are included in the supplementary data.

For the molecular datasets, the representations (see figure 3) considered in the benchmark include the
physicochemical (PhysChem), ECFP, MBTR, GYLM, ACSF, SOAP, and Coulomb matrix representations. As
the PDF contraction of SOAP or GYLM change the nature of the representations in a fundemental way, we
treat them as a separate class. Note that for datasets that contain dissociated molecules with broken or
dangling bonds (qm9 and rad6), representations that rely on a healthy chemical topology (i.e. PhysChem
and ECFP) are excluded.

The learning curves for the molecular datasets are provided in figure 7. For each representation, LCs
corresponding to its model variations (which combine descriptor subtypes with different pooling and
regression rules) are displayed separately. Additionally, the LC corresponding to the ‘best-in-class’ model is
highlighted with a thicker line width.

For the bulk datasets we considered six families of models adapted from the PhysChem, MBTR, GYLM,
ACSF, SOAP, and the Ewald matrix representation. The corresponding LCs are shown in figure 8. Note that,
as indicated in figure 3, the PhysChem representation for these periodic systems is no longer based on
physicochemical molecular features, but a smaller set of SISSO atomic features [24].

As previously observed in the qm7b case study, there is considerable variation in the learning outcome
even within each model family. This variation is most pronounced for the 3D geometric representations,
where length-scale hyperparameters appear to be particularly decisive—once again highlighting the need for
appropriate hyperparameter selection. It is worth noting that, for ACSF, besides the length-scale
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Table 2.ML datasets in computational chemistry that formed part of the benchmark, ordered from largest to smallest.

Database Size Description

Molecular
qm9 133 885 Hybrid DFT derived structures and properties of drug-like molecules with up to nine

heavy atoms (C, O, N, or F). Initial configurations are taken from a subset of the
GDB-17 data-set [32]. Properties have been calculated for all molecules, including:
energies of atomization, as well as other electronic and thermodynamic properties.
Here we fit the atomization energies.

chembl_ki 11 444 Binding affinity data (inhibition constants K i) for seven selected protein targets
(5HTT, ADA3, BACE, GR, HERG, HIV1PR, VEGFR, thrombin).

rad6 10 712 Molecules consist of H,C,O elements up to 6 heavy atoms. The database comprises
9179 radical fragments and 1533 closed shell molecules [33]. Here we fit the
atomization energies.

singlet-triplet-fission 9919 Singlet and triplet band gaps of indolonaphthyridine thiophene materials calculated
using time-dependent density functional theory (TD-DFT) on DFT-optimized
structures [34]. Here we fit the singlet band gap.

qm7b 7211 Small molecules with up to 7 heavy atoms, an extension for the qm7 dataset with
additional properties [35]. Here we fit the atomization energies.

qm7 7165 Small molecules selected from GDB-13 (a database of nearly 1 billion stable and
synthetically accessible organic molecules) containing up to 7 heavy atoms C, N, O,
and S [11]. Here we fit the atomization energies.

aqsol 2906 Aqueous solubility dataset, incorporating the ESOL dataset by Delaney [31] and
public domain data.

small-molecules 985 Selected from qm7b set using the farthest point sampling algorithm.
asymmcat 53 Asymmetric hydrogenation: dependence of the diastereoselectivity on ligand structure

(Poelkinget al [36]).
FH51 51 Reference reaction energies of 51 reactions for small molecules [37, 38]. From

GMTKN55 [39](a database for general main group thermochemistry, kinetics, and
non-covalent interactions).

MCONF 51 Reaction energies of melatonin conformers [40]. From GMTKN55 [39].
WATER27 27 Energies of 27 water clusters, up to 20 water monomers [41, 42]. From GMTKN55

[39].
Bulk
ba10-18 15 950 Energies for 10 binary alloys (AgCu, AlFe, AlMg, AlNi, AlTi, CoNi, CuFe, CuNi, FeV,

NbNi) with 10 different species and all possible face-centered cubic (fcc),
body-centered cubic (bcc) and hexagonal close-paced (hcp) structures up to 8 atoms
in the unit cell [43].

TAATA 12 823 Consists of DFT predicted crystal structures and formation energies from the
Ti-Zn-N, Zr-Zn-N, and Hf-Zn-N phase diagrams [44].

iron 12 193 The training set of a GAP ML potential for bcc ferromagnetic iron, which contains
configurations with different number of atoms ranging from 1–130 [45].

silicon 2475 Training set of the a Gaussian approximation potential for silicon [46].
revpbe0d3-water 1593 The training set of a ML potential for bulk liquid water [47]. Contains 1593

configurations of 64 molecules each.

hyperparameters discussed above, there is the option to fine-tune the exact specifications of the symmetry
functions. The models studied here do not exploit this option. Instead, the function parameters are selected
from a uniform grid, which may explain why the ACSF representation (which was originally designed for use
in neural-network architectures) underperforms in this benchmark. Even though this poor performance
could thus potentially be remedied using more sophisticated heuristics for selecting the basis functions,
neither standard grid nor Bayesian hyperparameter optimization on a single-task level are particularly well
suited for this purpose, due to the large size of the parameter space. It is therefore naturally appealing when a
representation with lower parametric complexity manages to perform well even without complicated
heuristics and routines for selecting these parameters (as accomplished, e.g. by SOAP).

Note that in both figures 7 and 8, the datasets are sorted from largest to smallest, as quantified by the
number of distinct structures contained therein; additionally, the model families are ranked from best
(left-most column) to worst (right-most column), as judged from the RMSE achieved at the largest training
fraction by the best-in-class model of each representation. Systematic trends around the learning outcomes
with respect to dataset type and size are thus easy to discern. In the high-data-volume regime, SOAP is
consistently the top-performer, whereas with the smallest datasets, the 1D physicochemical representations
prevail. This robust performance of 1D representations for smaller datasets is well-known, and rationalized
by their low dimension and high information density.
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Figure 7. Learning curves (LCs) measured for the molecular datasets, showing the dependence of the test-set RMSE on the
training set size N. AE: atomization energy; TE: total energy. Each panel incorporates the results for one of the datasets described
in table 2. Each thin line corresponds to the LC of a specific model. For each dataset, we computed the LCs for 72 models. For
clarity, we only show the curve label of the best model in each model family, with the corresponding LC of this ‘best-in-class’
model highlighted with a thicker line width. The datasets are sorted from largest to smallest from top to bottom, and the model
families are ranked from best to worst from left to right. The zoomed-in LCs for each dataset are provided in the supplementary
information.

A notable exception to this trend is, however, the regression of binding affinities (chembl_ki dataset).
Recall that we considered only simple pooling rules to derive a molecular representation from individual
atomic vectors. As a result, the identity and characteristics of molecular subgroups are not necessarily well
preserved, so that straightforward identification of the motifs that form key interactions with the protein is
unlikely. Detection of such motifs is more easily—and virtually by design—achieved by hashed topological
fingerprints, which are geared towards substructure recognition, as reflected by the superior performance
that this family of models achieves on this particular dataset. We point out, however, that pairing
local-environment-based representations with more sophisticated (nonlinear) pooling rules significantly
improves the performance of 3D descriptors, albeit at a significantly increased computational cost [27, 48].

Finally, among the 3D representations, we note that SOAP and GYLM perform quite similarly across
several of the datasets included in this benchmark. Both of these representations are based on spherical
harmonics, with GYLM furthermore adopting SOAP-type contractions to enforce rotational invariance.
Even though there are key differences in how these representations achieve regularization (i.e. dampening of
high-frequency structural features) and prioritise close over far neighbours, their similarity in performance
points to the merits of the power spectrum in crafting expressive representations from basis-function
expansions of the nuclear density. Interestingly, extending this power-spectrum to include non-local pairwise
contractions in the form of equation (3) does not appear to be remotely beneficial, as highlighted by the poor
performance of the PDF family of models. Local pooling rules thus remain particularly attractive for
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Figure 8. Learning curves (LCs) measured for the bulk-material datasets, showing the dependence of the test-set RMSE on the
training set size N. FE: formation energy; TE: total energy. Each panel incorporates the results for one of the bulk datasets
described in table 2. Each thin line corresponds to the LC of a specific model. For each dataset, we computed the LCs for 70
models. For clarity, we only show the curve label of the best model in each model family, with the corresponding LC of this
‘best-in-class’ model highlighted with a thicker line width. The datasets are sorted from largest to smallest from top to bottom,
and the model families are ranked from best to worst from left to right. The zoomed-in LCs for each dataset are provided in the
supplementary information.

regressing additive properties (which are often of a surprisingly local nature), in that they naturally avoid the
distraction presented by irrelevant long-range structural correlations and global conformational flexibility.

5. Conclusions

The tremendous progress that has been made over recent years in the area of chemical ML has provided us
with a wealth of chemical representations and predictive models. As a result, benchmarking is becoming ever
more important in order to evaluate the benefits of new approaches and, in doing so, differentiate anecdotal
from statistically relevant progress. Here we presented BenchML—a general, extensible pipelining
framework designed with both model validation and deployment in mind. Intended to provide a simple
route how to make large-scale benchmarking against multiple datasets part of the method development
process, the framework also allows for integrating performant models with confidence prediction and
attribution—both of which are common prerequisites for successful model deployment.

Our benchmark highlighted that there is significant complexity in how representations can or should be
embedded even in very simple ridge and kernel ridge regressors, with significant variation in performance
observed within individual model families. Casting ML models as pipelines thus comes with the key benefit
that even complex approaches that embed a given representation into a predictive architecture can be
explored concurrently and with ease. The layout of the pipeline, the parameters of the pre- and
post-processing stages (such as pooling and reduction rules), as well as the parameters of the representations
themselves can be tuned either automatically or preset by the modeller.

Learning curves that we recorded for a variety of datasets illustrated the relative merits of atomic,
molecular and bulk representations. KPCA approaches furthermore allowed us to visualise relationships
between models based on their error and feature-space correlations. Geometric representations, in particular
SOAP, excelled at regressing additive properties for high-volume datasets. Topological fingerprints
performed well in predicting non-additive properties, as shown here for binding affinity modelling.
Physicochemical representations dominated in ultra-low-data settings. Apart from the representation itself,
the choice of pooling and contraction rules proved most important in determining the modelling outcome.
The top-performing representations, SOAP and GYLM, are fundamentally related in that they both use the
power spectrum to construct their atomic descriptions. Deviations from this local, pairwise contraction rule
proved harmful, as indicated by the performance downturn of models that limit the number of
element-element cross-channels or that adopted non-local contractions.

In this vein, we hope that large-scale benchmarks can be used not only to verify the merit of novel
methods and representations, but also to further our mechanistic understanding of atomic and molecular
representations in a way that over time allows for targeted improvement of their form and function.
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