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ABSTRACT 
 

Aim: Hydraulic conductivity following the Hagen-Poiseuille Law is a quantitative approach to 
determine the treatability of wood by chemicals. The hydraulic conductivities of the ten selected 
Nigerian hardwood timber species to four wood treatment chemicals were estimated, using Hagen-
Peiseuille equation. 
Materials and Methods: Ten timber species of marketable size and age were sourced from the 
forestry Departments of Enugu, Anambra and Abia States of Nigeria. Maceration were carried out 
following standard procedures. The viscosities in centipoises (cp) of the four wood treatment 
chemicals were measured in a viscometer test, while the hydraulic conductivities were calculated 
using the Hagen-Peiseuille equation. 
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Results: The results obtained show that the different woods responded differently to the chemicals. 
Treatment with Folithion 200 showed higher conductivity in Triplochiton scleroxylon (9.01 mm

-3
S

-1
× 

10
-5

), followed by Mansonia altissima, Milicia excelsa and Terminalia superb. The order of 
conductivity to treatment with Actellic 25EO was Terminalia superba > Mansonia altissima > 
Gmelina arborea, > Khaya ivorensis. Ceiba pentandra gave the highest conductivity of 8.58 mm

-3
S

-

1× 10-5, followed by Afzelia africana and Canarium schwenfurthii to the chemical Termitox. While 
Triplochiton scleroxylon gave the highest conductivity of 6.52 mm

-3
S

-1
×10

-5
, followed by Milicia 

excels and Terminalia superba to the chemical Solignum. 
Conclusion: Folithion 200 would be effective on Milicia excels, Mansonia altissima and Gmelina 
arborea, Actellic 25 EO would be effective on Khaya ivorensis, Terminalia superb and Antiaris 
toxicaria while Termitox would be effective on Ceiba pentandra, Afzelia Africana and Canarium 
schweinfurthii. 
 

 
Keywords: Hagen-poiseuille law; wood vessels; treatability. 
 

1. INTRODUCTION 
 
Timber is wood specially prepared for building, 
carpentry and many other uses. It is strong, 
absorbs shocks, is not affected by normal 
variations in temperature and is a good insulator 
[1]. It has been estimated that of the roughly 
374,000 species of plant in the world, 308,312 
are vascular plants of which 45 – 48% are 
woody, and of these, only a few are used for 
timber purposes [2,3]. As the demand for timber 
is rapidly increasing, new species are considered 
as alternatives for the fast depleting known 
commercial timbers [4]. Timber is obtained 
almost exclusively from coniferous and 
dicotyledonous trees. Conifers have more 
uniform structures with fewer wood elements. In 
contrast, the dicotyledons have coarse structure 
with many wood elements. Wood from conifers is 
commercially known as softwood, while those of 
the dicotyledons are called hardwood, though 
these terms do not translate to physical strength 
[5]. 
 
Wood scientifically is the secondary xylem of 
gymnosperms and woody dicots. It is derived 
from the activities of the vascular cambium, 
which is one of the lateral meristerms in trees 
that undergo secondary growth. It effects the 
translocation of water and dissolved minerals 
from the root to stems and leaves [6-8]. Wood is 
a biological material, and is prone to degradation 
by both micro and macro- organisms. The 
primary metabolites: Soluble sugars, lipids and 
peptides, together with the major storage 
compound starch provide the main supply of 
readily assimilable carbon sources for fungi and 
other organisms growing on wood. However, with 
seasonally sugary sap (e.g. Acer sp.), these 
substances occur in relatively small amounts, 
and are found almost exclusively in living or 

recently dead sapwood parenchyma. They 
enable development of certain micro fungi such 
as those causing blue stain in conifers, which 
cannot degrade cell wall components, and may 
also facilitate establishment of decay fungi, but 
are rapidly depleted during fungal colonization 
[9,10]. The amount of primary metabolites vary 
according to seasonal and other factors, but may 
be as high as 7% for starch and 2.5% for lipids, 
with the amount of starch sometimes being 
maximal in the middle sapwood and declining to 
zero at the heartwood boundary [10,11]. 
 
Structural cell wall components form the 
dominant available carbon sources for fungi 
growing in wood, but in being relatively refractive 
impose a degree of nutritional stress. The major 
types are cellulose, the Hemicelluloses and 
lignin, each of which can be utilized to different 
extents by different fungi and whose relative 
proportions can vary considerably in wood both 
from the same and different trees [9,12]. 
Cellulose is usually the dominant constituent, 
accounting for 40-50% of dry weight of extractive 
free materials in undecayed wood of both 
angiosperm and gymnosperm trees. It also 
occurs in higher proportions in tension wood than 
in normal wood [7]. Cellulose is based on a 
straight-chain molecule arising from β 1:4 linkage 
of glucose units. The chains are in turn organized 
into a crystalline or miceller substructure within 
the microfibrils. Their fibrilar structure is of 
particular importance in providing tensile strength 
in wood, and cellulose has in consequence 
sometimes been classified as a framework 
substance. When bound together with matrix 
substances- the hemicelluloses and lignin, this 
makes for a mechanically strong material. This 
material is the major constituent of the secondary 
xylem-wood [6]. Hemicelluloses, which are of 
relatively low molecular weight, are branched-or-
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straight-chain polymers of hexose, pentose or 
uronic acid subunits. They tend to occur at 
somewhat higher levels (25-40%) in temperate 
angiospermous woods than in coniferous woods 
(25-30%) [13,14]. Lignins are aromatic 
substances resulting from the polymerization of 
phenyl propanoid subunits to for a very complex 
type of molecules [13]. They are usually present 
in larger amounts (25-30%) in coniferous woods 
than in temperate angiosermous woods (18-
25%), but may occur in substantial quantity in 
certain tropical angiosperms [15,16]. 
 
Besides structural cell wall components, primary 
metabolites and storage compounds, wood 
contains a wide range of extraneous materials 
known as extractives, which can be removed 
using either neutral organic solvents or water [9]. 
The presences of some extractives in wood play 
a major role in the natural wood durability [17]. 
Wood as a material is made up of various wood 
elements (cells), of which most of them are axial 
in orientation, these include various fibres, 
vessels and various parenchyma cells. These 
elements have lumens, which gives the wood its 
porous nature [8]. Treatment of timber with 
preservative chemicals takes the advantage of 
this porous nature wood. The treatability of any 
wood species largely depends on the nature of 
the various wood elements present in that 
species and on the nature of the preservative 
chemical involved [18]. In the present work, an 
attempt has been made to the hydraulic 
conductivities of vessels in ten Nigerian 
hardwood timber species to four chemical wood 
preservatives using the Hagen-Peiseuille 
equation. 
 

2. MATERIALS AND METHODS 
 
Ten timber species of (Table 1) marketable size 
and age were sourced from the forestry 
Departments of Enugu, Anambra and Abia 
States of Nigeria. The species are wildly 
distributed in the natural rain forest zones of 
Nigeria and elsewhere in West Africa, where the 
annual rainfall is about 1500 mm and above. 
 
The ten species were selected due to their high 
frequency in usage in the Eastern Nigeria. Milicia 
excels, Khaya ivorensis, Gmelina arborea and 
Triplochiton scleroxylon are highly sought after in 
building construction; Mansonia altissima and 
Afzelia africana in furniture-making; Terminalia 
superba and Canarium schwenfurthii as cores in 
plywood making and in flush-doors, while Ceiba 
pentandra and Antiaris toxicaria are used in 

making formers for concrete casting during 
structural construction works. 
 
Small portion of each of the species (3 cm×6 
cm), were cut off and oven-dried for several 
hours at 80°C and weighed at intervals until no 
net change in weight was recorded. This was 
done to reduce the moisture content of the 
species to the barest minimum in readiness for 
wood maceration process. The Schultz’s method 
of wood maceration as adopted by Ajuziogu et al. 
[19] was used. This method included chopping of 
the wood into small sizes of about the size of a 
match-stick into a test tube, and adding KClO3 
crystals and Conc. HNO3 into the test-tubes and 
allowed to react in a fume cupboard, until all the 
chips were softened and bleached. 
 
After the reactions, excess solutions were 
decanted off from each test-tube, and the soft 
bleached chip (then in form of pulp) were washed 
several times in distilled water to prevent further 
reactions. The pulps were transferred separately 
into well-labeled specimen bottles – two bottles 
(A and B) for each specimen, bringing the total 
number of specimen bottles to twenty. Two drops 
of phenol and glycerin were added into each of 
the bottles respectively. The phenol prevents 
molding, while glycerin removes air bubbles in 
the bottles. The pulps were shaken with glass 
beads to help tease out the wood elements in 
separate units for ease of measurements. The 
contents of the bottles were stained with brilliant 
crystal blue and safranine for groups A and B 
respectively. Stained vessel members were 
isolated and mounted on a slide in 30% glycerin, 
and carefully covered with cover slip. 
Examinations and measurements were made 
under a calibrated light microscope at 100× 
magnification. The microscope used was a 
KYOWA TOKYO JAPAN monocular microscope 
to which a calibrated ocular micrometer was 
fitted in the ocular-tube. 
 
The measurement taken were Vessel member 
length (l) and Vessel lumen diameter (d) while 
the vessel member radius (r) was calculated by 
dividing each lumen diameter by 2: r = d/2. Thirty 
measurements were made for each of vessel 
parameter per wood species and the means and 
standard error noted. 
 
The viscosities in centipoises (cp) of the four 
wood treatment chemicals, namely Solignum; 
Termitox; Actellic 25EO and Folithion 200 were 
measured in a viscometer test, using Ferranti 
Bitable Viscometer Model VL at 29°C. 
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Table 1. The timber species, families and their common names 
 

Serial number Timber species                                                  Families Common names 
1. Milicia excelsa   (Welw.) Cl Berg. Moraceae Iroko 
2. Khaya ivorensis    A. Chev. Meliaceae African mahogany 
3. Mansonia altissima A. Chev. Sterculiaceae African  walnut 
4. Gmelina arborea Roxb. Verbenaceae Melina 
5. Terminalia superba Engl. & Diels. Combretaceae Afara 
6. Ceiba pentandra (Linn.) Gaerth. Bombacaceae Silk cotton tree 
7. Triplochiton scleroxylon K. Schum. Sterculiaceae Obeche 
8. Antiaris toxicaria var. africana Moraceae Bark cloth tree 
9. Afzelia africana  Sm. Fabaceae-

Caesalpinoidae 
Apa 

10. Canarium schwenfurthii   Engl. Burseraceae Bush candle tree 
 
The hydraulic conductivity (K) of the vessels 
members of the ten species were calculated 
using the Hagen-Poiseuille equation: Q = πr4/8lŋ, 
 

Where Q = Hydraulic conductivity; r = Vessel 
lumen radius; l = vessel member Length; Ŋ = 
Viscosity [20].  
 

Data collected were subject to analysis of 
variance (ANOVA) while significant means were 
separated using Duncan Post Hoc Test using 
Statistical Package for Social Sciences software 
(IBM SPSS, Ver 20). 
 

3. RESULTS AND DISCUSSION 
 

A key factor used in determining hydraulic 
conductivity in wood vessels is the vessel lumen 
radius (r) [21]. This is a factor inherent in trees, 
and this could be inferred from Table 2. The 
dimensional characteristics of the vessel 
members in the ten timber species are presented 
in Table 2. It was observed that the vessel lumen 
radius ranged from 0.05 to 0.126 mm across the 
ten species evaluated with Ceiba pentandra 
recording the widest radius. Therefore, it is 
expected that Ceiba pentandra would give 
greater conductivities. 

Another factor that plays an important role in 
hydraulic conductivity is the viscosity of the fluid 
being conducted. Low viscous fluids tend to 
penetrate or move through pipes quite easier 
than fluids with high viscosity [22]. As observed 
on Table 3, the viscosities of the fluids ranged 
from 2.06 in Termitox to 11.95 in Solignum and 
fluids with lower viscosities (Termitox) would be 
expected to have the highest conductivity. 
However, this was not the case as results in              
Fig. 1 showed that Folithion 200 recorded              
higher conductivity across most of the plant 
species. There were variations in the response of 
the different plants species with different 
chemicals with Triplochiton scleroxylon showing 
higher conductivity (9.0167 mm-3S-1×10-5) with 
Folithion 200 (Fig. 1). More so, Milicia excels, 
Mansonia altissima and Gmelina arborea 
showed significantly (P < 0.05) higher 
conductivity with Folithion 200 than the other 
chemicals. Khaya ivorensis, Terminalia superb 
and Antiaris toxicaria showed significantly              
(P < 0.05) higher conductivity with Actellic 25 
EO, Ceiba pentandra, Afzelia Africana and 
Canarium schweinfurthii with Termitox while 
Solignum had lower conductivity across the 
plants. 

 
Table 2. Dimensional characteristics of vessel members of the species in millimeters (mm) 

 
Species Mean vessel 

member length (l) 
Mean vessel member 
diameter (d) 

Mean vessel lumen 
Radius (r) 

Milicia excelsa  0.405 ± 0.091c 0.198 ± 0.038bc 0.091± 0.020bc 

Khaya ivorensis 0.432 ± 0.107bc 0.160 ± 0.057c 0.076 ± 0.017cd 

Mansonia altissima 0.380 ± 0.046c 0.087 ± 0.027d 0.050 ± 0.008f 

Gmelina arborea 0.286 ± 0.085d 0.156 ± 0.048 0.072 ± 0.013de 

Terminalia superba 0.489 ± 0.125ab 0.204 ± 0.055ab 0.088 ± 0.022bc 

Ceiba pentandra 0.560 ± 0.100a 0.232 ± 0.053a 0.126 ± 0.020a 

Triplochiton scleroxylon 0.186 ± 0.039e 0.152 ± 0.030c 0.078 ± 0.010cd 

Antiaris toxicaria 0.236 ± 0.033de 0.181 ± 0.026bc 0.060 ± 0.011ef 

Afzelia Africana 0.233 ± 0.062de 0.195 ± 0.035bc 0.098 ± 0.021b 

Canarium schweinfurthii 0.205 ± 0.046de 0.174 ± 0.037bc 0.091 ± 0.015bc 

*means with different alphabet along each vertical array represents significant differences at P < 0.05 
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Table 3. Viscosities of the chemicals at 29°C in Centipoises 
 

Treatment chemicals Viscosities 
Solignum 11.95 ± 0.15a 

Termitox 2.06 ± 0.006d 

Actellic 25 EO 6.59 ± 0.04c 

Folithion 200 8.65 ± 0.07b 

*means with different alphabet represents significant differences at P < 0.05 

 
In the present study, the expectations of wood 
with larger vessel lumen radius should give 
grater conductivity to the treatment fluids with 
lower viscosity was only met in Termitox with the 
lowest viscosity of 2.06 ± 0.007 with Ceiba 
pentandra, Afzelia Africana and Canarium 
schweinfurthii. However, the conductivities 
recorded were not the highest. 
 
Alternatively there were non-conformities with 
this trend as Triplochiton scleroxylon having an 
average radius value of 0.078 ± 0.010 mm, had 
the highest conductivity with Folithion 200 which 
also had higher viscosity. All these non-
conformities with the expected results cannot be 
explained by the vessel lumen radius and 
viscosity values alone. There could be other 
factor responsible for them. 
 
Tyree and Ewers [23] affirmed that the hydraulic 
architecture in trees (wood) may have some 
salient influence in their water relations 
(conductivity). This could come in the manner in 
which the inner secondary walls of the vessel 

Lumina were laid down during secondary wall 
formation. Evert [6] recognized four patterns to 
which the secondary wall or the wall next to the 
vessel lumen of could be laid. These include 
annular, helical, scalariform and reticulate. They 
show great diversity in their architecture, and as 
such could give diverse resistances to fluid 
conductivity. The affinities of the various 
treatment fluids to the lumina walls could equally 
be a factor contributing to conductivity, as 
capillary pressure varies greatly in different wood 
species [24]. According to Sperry et al. [25] end-
walls contribute 56–64% to total xylem resistance 
in vessel and tracheids, indicating that length 
limits conducting efficiency. The cohesion forces 
between fluid molecules and their adhesion to 
the vessel lumen wall is of great importance [26]. 
Therefore, these factors (hydraulic architecture, 
affinities of the various treatment fluids to the 
lumina walls, end-walls) and some others may in 
one way or the other influence the non-
conformities of the various wood species to their 
expected hydraulic conductivity to the various 
treatment fluids. 

 

 
 

Fig. 1. The hydraulic conductivity of vessel to the treatment chemicals (bars with different 
alphabets are significantly different at P < 0.05) 
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4. CONCLUSION 
 
According to Ajuziogu et al. [27] the hydraulic 
conductivity following the Hagen-Poiseuille Law 
is a quantitative approach to determine the 
treatability of wood by chemicals. Following this 
provision, it could be concluded that, folithion 200 
would be effective on Milicia excels, Mansonia 
altissima and Gmelina arborea, Actellic 25 EO 
would be effective on Khaya ivorensis, 
Terminalia superb and Antiaris toxicaria while 
Termitox would be effective on Ceiba pentandra, 
Afzelia africana and Canarium schweinfurthii. 
 
This study could be improved if the vessels 
measurements could be done with electron 
microscope to ensure higher precision. More so, 
since this study was based on quantitative 
analysis, the penetratability of preservatives on 
the different wood species using pressure 
treatment methods should be evaluated and 
compare. 
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