

Annual Research & Review in Biology

14(6): 1-20, 2017; Article no.ARRB.34797 ISSN: 2347-565X, NLM ID: 101632869

Aflatoxigenic Fungi Associated with Some Medicinal Plants

Fatma F. Migahed¹, Manar. M. Abdel-Gwad¹ and Sherif R. Mohamed^{2*}

¹Department of Botany, Faculty of Science, Mansoura University, Mansoura, Egypt. ²Department of Food Toxicology and Contaminants, National Research Centre, Dokki, Giza, Egypt.

Authors' contributions

This work was carried out in collaboration between all authors. Authors MMAG, FFM and SRM designed the study. Author MMAG performed the statistical analysis, wrote the protocol and wrote the first draft of the manuscript. Authors FFM and SRM managed the analyses of the study. Author SRM managed the literature searches. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/ARRB/2017/34797 <u>Editor(s):</u> (1) Zeb Saddiqe, Phytochemistry Lab, Department of Botany, Lahore College for Women University, Lahore, Pakistan. (2) George Perry, Dean and Professor of Biology, University of Texas at San Antonio, USA. <u>Reviewers:</u> (1) Ilham Zahir, Sultan Moulay Slimane University, Beni Mellal, Morocco. (2) Julia Pérez Ramos, Universidad Autónoma Metropolitana-Xochimilco, Mexico. (3) Uzairue, Leonard Ighodalo, International Foundation Against Infectious Diseases in Nigeria. Complete Peer review History: <u>http://www.sciencedomain.org/review-history/20199</u>

Original Research Article

Received 12th June 2017 Accepted 20th July 2017 Published 25th July 2017

ABSTRACT

Aim: A total of one hundred and forty four samples belonging to 48 kinds of dried medicinal plants collected from different markets in Mansoura city, Dakahlia governorate were examined for the natural occurrence of molds and aflatoxins.

Methods: All the samples were analyzed for aflatoxin contamination using TLC and HPLC techniques.

Results: There is a high occurrence of the various fungal population of the analyzed samples and their counts ranged between 5-100 colonies/g. Thirty six species and 1 variety belonging to 11 genera were isolated using standard potato dextrose agar plate method. The most heavily contaminated samples were observed in anise and linseeds in order of magnitude of 95 and 100 colony/g, while sumac, clove and cinnamon revealed no fungal contamination indicating their antifungal properties. The genus *Aspergillus* (91.7%) was encountered as the most frequent fungal genus recorded, followed by *Penicillium* (68.8%). The most frequent fungal species were

^{*}Corresponding author: E-mail: sheriframzy4@gmail.com;

Aspergillus niger, Penicillium chrysogenum, Aspergillus flavus var columnaris and Aspergillus flavus comprising 75%, 56.3%, 41.7% and 33.3% in their frequency of occurrence. Out of 151 isolates of *Aspergillus flavus* group isolated from various samples, 67 isolates (44.4%) were found to be toxigenic and their potential to produce aflatoxins was in the range of 0.1 to 818.2 ng/ml of culture filtrate. Of 30 medicinal plant samples screened, 19 samples (63.3%) were found contaminated with aflatoxins in the range of 1.5 to 724.6 ng/g.

Conclusion: These results revealed that the selected medicinal plants are heavily contaminated with fungal strains and more strict measures must be taken to prevent mold contamination and hence aflatoxins production in medicinal plants.

Keywords: Medicinal plants; Mycoflora; Fungi; Aspergillus flavus; Aflatoxins.

1. INTRODUCTION

The safety of medicinal plants has been increasingly concerned worldwide as the number of people using such plants as alternative therapy or self-medication increases [1]. They are used for therapeutical and medicinal purposes due to the active ingredients. However, like many other agricultural products medicinal plants and spices may be contaminated by a wide range of fungi [2,3], such as Aspergillus flavus section and Alternaria alternate section, as well as Penicillia and Scopulariopsisetc [4,5], from soil or plants during the procedure of growth, harvest, process, storage under favorable conditions of temperature and humidity and transportation [5,6]. Therefore, fungal contamination is very critical for the economic, food safety and human health perspectives [5]. Fungal contamination of stored medicinal plants is not only linked to discoloration, quality deterioration, reduction in commercial value as well as in therapeutic potential, but also causes the hazard of mycotoxins production [7-9]. Mycotoxins are toxic secondary metabolites produced by some species of fungal genera such as Aspergillus, Penicillium, Fusarium and Alternaria [10]. Among all mycotoxins, aflatoxins are naturally occurring secondary metabolites from some species of Aspergillus and they are carcinogenic, mutagenic, teratogenic and immunosuppressive to most animal species and humans [11,12]. Aspergillus flavus and Aspergillus parasiticus are the main producers of AFs: aflatoxin B1 (AFB1), B2 (AFB2), G1 (AFG1) and G2 (AFG2) [13].

The main purpose of this investigation was to evaluate the mycoflora associated with some medicinal plants and their potential to produce aflatoxins in order to achieve some notes on the presence of a health hazard to individuals consuming these plants and to use this information in disease prevention or control.

2. MATERIALS AND METHODS

2.1 Collection of Samples

One hundred and forty four samples of 48 different types of dried and powdered medicinal plants were collected randomly from different herbal markets in Mansoura city, Dakahlia governorate, Egypt during the period from December, 2013 to February, 2015.

2.2 Isolation and Identification of Fungi

The total number of fungal colonies was determined by agar plate method [14]. About 0.2 gram of each sample was transferred with sterile forceps into a Petri dish containing sterilized potato dextrose agar medium (PDA) (200 g potato, 20 g dextrose, 20 g agar and 1 L distilled water) containing 0.5 mg chloramphenicol/L medium to suppress bacterial growth. Three replicates were made and the plates were incubated at 28±2°C for 5-7 days. After incubation, the growing fungal colonies were isolated and the purity of each isolate was examined by streaking the isolate over Czapeck-Dox agar medium (30 g sucrose, 3 g sodium nitrate, 0.5 g potassium chloride, 0.5 g magnesium sulfate, 0.01 g ferrous sulfate, 1 g dibasic potassium phosphate, 20 g agar and 1 L distilled water) then it was transferred to potato dextrose agar medium (PDA) slants which kept at 4°C until identification. The number of fungal colonies was counted and calculate/g of each sample. The relative density (RD) and frequency of occurrence (FR) of species were calculated as follows [15]:

$$RD (\%) = \frac{Number of isolates of a species or genus}{Total number of fungal isolates} \times 100$$

$$FR(\%) = \frac{Number of samples with a species or genus}{Total number of samples} \times 100$$

The identification of fungi was done based on morphological and microscopic characteristics,

sporulation and colony color with the help of universally accepted keys for identification [16-25].

2.2.1 Aflatoxins analysis

2.2.1.1Extraction of aflatoxins from the culture media

The extraction was performed according to the procedure offered by Kumar, A., et al. [26]. with some modifications. The cultures were filtered and mycelial mats were collected. Aflatoxins were extracted from culture filtrates with chloroform. A known volume of filtrate (25 ml) was added to 10 ml chloroform and was shaken for half hour. The chloroform contained aflatoxins were separated by separating funnel which was allowed to stand for some time until the two layers appeared. The upper aqueous layer was re-extracted many times with chloroform for complete separation. The lower chloroform layer was filtered over anhydrous sodium sulfate in 250 ml beaker, evaporated in a water bath (70-80°C) near dryness and the residue was washed twice with chloroform (1-2ml) into a glass vial which evaporated till dryness (dry film). The dried extract was kept in the refrigerator at -5°C until analysis.

2.2.2 Extraction of aflatoxins from medicinal plant samples

Extraction of aflatoxins from medicinal plant samples were carried out according to the best foods (BF) method [27]. Twenty-five grams of each homogenized sample was weighed and transferred to 500 ml glass-stoppered Erlenmeyer flask and 125 ml methanol-water (55+45), 100 ml hexane and 2 gm sodium chloride were added. Shaking vigorously for 30 min on an orbital shaker then the mixture was filtered through Whatman No.1 filter paper and the filtrate was allowed to stand and separation occurred within 30 minutes. The 25 ml of lower aqueous methanol phase was taken in a separating funnel and 10 ml chloroform was added then shaken for 30-60 seconds. The process was repeated several times with chloroform for complete separation. The separating funnel was allowed to stand for some time until the two layers formed, then the lower chloroform layer was drained over anhydrous sodium sulfate into a 250 ml beaker. Collected in a beaker and evaporated combined chloroform extract in a water bath (50-60°C) near dryness and the residue was washed twice with chloroform (1-2 ml) into a glass vial which was evaporated till dryness (dry film).

2.2.3 Thin layer chromatography (TLC) analysis

Aflatoxins were detected according to the method of Calvo, AM., et al. [28]. Extracts of fungal cultures grown on broth media and extracts from selected substrates were screened for aflatoxins production. Volume of 20 µl of each extract and aflatoxins standards were spotted on thin layer chromatography silica gel plate and was then transferred to a jar containing the following solvent system, toluene: ethyl acetate: formic acid (6:3:1), which was found to be the most favorable for resolution. The solvent system was allowed to rise until it almost reached the top of the plate, which will give the maximum separation of the extract components. The plate was then observed under long wave ultraviolet light for the presence of aflatoxins by their distinctive fluorescence properties. The blue fluorescence corresponding to aflatoxins B1 and B2 while the green fluorescence corresponding to G1 and G2. The intensity of fluorescence and colors of the were compared with various extracts concentrations of aflatoxins standards. The sample extracts which were positive for the presence of aflatoxins were taken for HPLC analysis.

2.2.4 High performance liquid chromatography (HPLC) analysis

According to AOAC [29]. The HPLC system used was a water 600-pump system equipped with model 474-flourescence detector (water) set at 360 nm for excitation and 440 nm for emission wavelength. Water Nova-pack C18 column (150×3.9) was used for aflatoxins separation. The mobile phase (water: Acetonitrile: Methanol, 65: 5: 30) was isocratically flow at rate of 1.0 ml/min. Data were collected and integrated with a waters Millennium 32 chromatography Manager software program.

3. RESULTS AND DISCUSSION

3.1 Mycoflora Associated with Medicinal Plants

The fungal populations isolated from the medicinal plant samples are shown in Table (2). In all cases, a total of thirty six species and 1 variety belonging to twelve genera were isolated and identified as: Acremoniella, Alternaria, Aspergillus, Botryotrichum, Fusarium, Myrothecium, Penicillium, Rhizopus,

Scopulariopsis, Torula, Trichoderma, Ulocladium and sterile mycelium (dark colour). Similar observations were reported by [30-34] and several others. [35] reported that the major field

fungi genera are: *Alternaria*, *Helminthosporium*, *Fusarium*, and *Cladosporium* and the storage molds are principally species of *Aspergillus* and *Penicillium*.

Table 1. Types of medicinal plants used in the study
--

No	Common name	Scientific name	Part of plant used
1	Ammi	Ammi majus	Leaves & flowers
2	Anise	Pimpniella anisum	Seeds
3	Bay leaf	Laurus nobilis	Leaves
4	Black tea	Thea sinensis	Leaves
5	Black pepper	Piper nigrum	Dried fruits
6	Cacao	Theobroma cacao	Seeds
7	Caraway	Carum carvi	Seeds
8	Cardamom	Elleteria cardamomum	Seeds
9	Carob	Ceratonia siligua	Dry fruits
10	Castor beans	Ricinus communis	Seeds
11	Chamomile	Metricaria chamomile	Leaves & stems
12	Cinnamon	Cinnamomum zeylanicum	Stem bark
13	Clove	Eugenia Caryophyllus	Flower buds
14	Coriander	Coriandrum sativum	Seeds
15	Cress seeds	Lepidium sativum	Seeds
16	Cumin	Cuminum cyminum	Seeds
17	Dill	Anethum graveolens	Seeds
18	Eucalyptus	Eucalyptus globulus	Leaves
19	Fennel	Foeniculum vulgare	Seeds
20	Fenugreek	Trigonella foenum-graecum	Seeds
20	Garlic	Allium sativum	Bulb
22	Ginger	Zingiber officinale	Dry rhizomes
23	Green te	Camellia sinensis	Leaves
23	Guava leaf	Psidium guajava	Leaves
25	Karkade	Hibiscus sabdariffa	Flowers
26	Linseed	Linum usitatissimum	Seeds
20			
28	Liquorice	Glycyrrhiza glabra	Rhizomes
	Majoram Maghat	Origanum majorana	Leaves
29	Moghat	Glossostemon bruguieri	Roots
30	Mustard	Brassica alba	Seeds
31	Nigella	Nigella sativa	Seeds
32	Nutmeg	Myristica fragrans	Peeled seeds
33	Parsley	Petroselinum sativum	Seeds
34	Pepper mint	Mentha spicata	Leaves
35	Radish	Raphanus sativus	Seeds
36	Red pepper	Capsicum frutescens	Fruits
37	Rocket	Eruca sativa	Seeds
38	Rosemary	Rosmarinus officinalis	Leaves
39	Safforn	Crocus sativus	Flowers
40	Sagebrush	Salvia officinalis	Leaves
41	Santonica	Artemisia absintham	Flowers
42	Senna	Cassia italic	Leaves
43	Sumac	Rhus coriaria	Dried fruits
44	Sweet basil	Ocimum basilicum	Leaves
45	Tamarind	Tamarindus indica	Seeds
46	Thyme	Thymus vulgaris	Leaves
47	Tilia	Tilia ulmifolia	Leaves
48	Turmeric	Curcuma longa	Rhizomes

Medicinal plants Genera & species	Anise	Bay leaf	Black tea	Black pepper	Cacao	Caraway	Cardamom	Carob	beans	Chamomile	Cinnamon	Coriander	Cress	Cumin	Dill	Eucalyptus	Fennel	Fenugreek	Garlic	Ginger	Guava Guava	leaves Karkade	Khella	Linseeds	Liquorice	Majoram Machat	Mugnat	Nigella	Nutmeg	Parsley	peppermint	Radish	Red pepper Dockot	Rosemarv	Saffron	Sagebrush	Santonica	Senna	Sumac Sweet hacil	Tamarind	Thyme	Tilia	Turmeric	% тс
Acremoniella spp	I	I	I	I	10	I	I	I	I	I	I	I		I	I	I	I	I	I	I	I		I	I	I	I	I		I	I	I	I	I	1 1		I	I	I	1 1	I	I	I	I	0.48
Alternaria	5	I	I	I	I	I	I	I	2	10	I	I	20	S	I	I	I	8	I	I	I		I	Ι	I	1 4	<u>0</u> ư	ו כ	I	I	I	I	0	ו כ		I	I	I	1 1	I	I	I	I	3.5
A. alternata	2	I	I	I	I	I	I	I	2	I	I	I	20	2	I	I	I	ω	I	I	I		I	I	I	1 4	<u>0</u> ư	ו כ	I	I	I	I	0	וכ		I	I	I	1 1	I	I	I	I	3.1
A. cineraria	I	I	I	I	I	I	I	I	I	10	I	I		I	I	I	I	I	I	I	I		I	I	I	I	I		I	I	I	I	I	1 1		I	I	I	1 1	I	I	I	I	0.48
Aspergillus	68	28	44	55	47	20	37	25	18	18	I	۵ ا	° 6	15	15	13	51	31	ω	30	2	- 25	15	80	17	35	4 ς Ο α	45	12	51	30	26	ΩÇ	<u>, r</u>	<u> </u>	55	70	24	50	16	55	33	15	64.3
A. avenaceus	I	I	7	I	I	I	I	I	I	I	I	I		I	I	I	I	I	I	I	I		I	I	I	I	I	1 1	I	I	I	I	I	1 1		I	I	I	1 1	I	I	I	I	0.34
A. clavato-flavus	I	I	I	I	I	I	I	I	I	I	I	I		~	I	I	I	I	I	I	I		I	Ι	I	I	I	1 1	I	I	I	I	I			I	I	I	1 1	I	I	I	I	0.05
A. flavus	I	I	I	7	I	I	20	I	I	I	I	I		7	I	I	I	S	I	I	I	on ا	I	30	7	1 0	<u>o</u>	1 6	I	I	I	Q	וע	ו כ		ო	15	12	1 1	I	5	ю	I	7.1
A .flavus var columnaris	10	I	I	I	5	I	I	20	œ	I	I	I	ى ا	I	I	I	5	2	I	20	I		5	20	I	u u	nα	о <u>6</u>	I	ю	I	Ŋ	4	n n		I	25	12	1 1	I	I	I	I	9.1
A. fumigatus	ø	ß	I	I	18	I	I	I	I	I	I	I		I	I	I	I	I	I	I	I		I	Ι	ო	I	I		I	I	ъ	I	I			~	I	I		-	5	I	I	2.2
A. glaucaus	I	I	I	I	I	I	I	I	I	I	I	I		I	I	I	5	I	I	I	I		I	Ι	I	I	I		I	I	I	I	I	1 1		I	I	I	1 1	I	I	I	I	0.24
A. nidulans	Ι	I	I	I	5	I	I	I	I	I	I			I	I	I	I	I	I	I	I		I	I	I	I	I		I	I	I	I	I	1 1		I	I	I	1 1	I	I	I	I	0.24

Table 2. Total count (colonies/g) of fungi isolated from different medicinal plant samples by agar plate method at 28±2°C

Medicinal plants				er			_		าร	ø	_		s			6		~			es										2	L				- -			=					
Genera & species	Anise	Bay leaf	Black tea	Black pepp	Cacao	Caraway	Cardamon	Carob	Castor bean	Chamomile	Cinnamon	Coriander	Cress seed	Cumin	Dill	Eucalyptus	Fennel	Fenugreek	Ginger	Green tea	Guava leave	Karkade	Khella	Linseeds	Mcican	Moghat	Mustard	Nigella	Nutmeg	Parsley .	peppermin Radish	Red peppe	Rocket	Rosemary	Saffron	Sagebrush	Santonica	Senna	Sweet basi	Tamarind	Thyme	Tilia	Turmeric	% TC
A. niger	30	10	27	15	11	15	10	5	I	8	I	1 03	5	с	10	5	25	ω	n I	10	I	20	I	1 1	\ \	30 15	5	17	I	4 4	0 4	2 G	I	10	8	26	25	1	22	10	25	7	I	23.1
A. ochraecous	5	9	10	20	I	I	I	I	I	I	I		I	с	I	S	I	I		I	I	I	I			I	Ι	I	I	22			I	I	I	с	I	I	25	ю	5	10	2	5.9
A. ornatus	5	I	I	5	I	I	I	I	5	I	I	1 1	ø	I	I	ო	1 3	<u>6</u>		I	I	I	L	30	I	1 1	10	I	9	6 r	n I		I	I	I	I	I	I	I	I	I	I	I	5.5
A. oryzae	I	I	I	I	I	I	I	I	I	I	I	1 1	I	I	5	I	I	I		I	I	I	I	I c	N	o ا	I	I	I	I			I	I	5	I	I	I	I	2	I	I	£	1.2
A. parasiticus	I	I	I	I	I	I	I	I	I	I	I	LC	I	I	I	I	I	I	on ا	I	I	I	I	I	I		5	I	9	I	1 1		I	I	I	I	I	I	I	I	I	I	Ð	1.3
A. sulphureus	I	I	I	I	I	I	I	I	I	I	I	1 1	I	I	I	I	I	וע	D I	I	I	I	I	I	I	1 1	I	I	I	I	1 1		I	I	I	I	I	I	I	I	I	I	I	0.24
A. tamarii	10	I	I	Ι	I	I	I	I	I	I	I	1 1	I	-	I	I	I	I		I	I	I	10	0	n	1 1	I	I	I	2	1 1		I	I	I	I	I	I	I	I	I	I	I	1.3
A. terreus	I	7	I	I	ø	S	I	I	5	10	I	1 1	I	I	I	I	ო	I		I	I	I	I	I	I	1 1	I	I	I	I	1 1		I	I	I	15	5	I	I	I	I	I	I	2.8
A. versicolor	I	I	I	8	I	I	7	I	I	I	I	1 1	I	5	I	I	I	۱ (r	b 1	I	I	I	I	I	I		I	5	I	1	<u>2</u> 1		I	I	e	7	I	I	с	I	15	13	I	3.8
Botryotrichum piluliferum	I	I	I	I	I	I	I	I	I	I	I	1 1	I	I	I	I	œ	I		I	I	I	I	I	I	1 1	I	I	I	I	1 1		I	I	I	œ	I	I	I	I	I	I	I	0.77
Fusarium	I	I	I	I	I	I	I	I	I	I	I	1 1	I	I	I	I	I	I		I	I	I	I	I	I	15	I	Ι	I	I	1 1	1 6	I	I	I	I	I	I	I	ю	5	I	I	1.6

٢a	h	ما	2	со	nti	n	
a	D	IE.	~	υu	111		ue

Medicinal plants Genera & species	Anise	Bay leaf	Black tea	Black pepper	Cacao	Caraway	Cardamom	Carob	Castor beans	Chamomile	Cinnamon	Clove	Coriander	Cress seeds	Cumin	Dill	Eucalyptus	Fennel	Fenugreek	Garlic	Ginger	Green tea	Guava leaves	Karkade	Khella	Linseeds	Meionom	Majoram Ma≊hat	Mustard	Nigella	Nutmeg	Parsley	peppermint	Radish	Red pepper	Rocket	Rosemary	Saffron	Sagebrush	Santonica	Sumac	Sweet basil	Tamarind	Thyme	Tilia	Turmeric	% ТС
F. moniliforme		I	1	ш 	1	1	1	1	1		I	I	I		1	1			I	I	I		<u> </u>	1	I	I	I	I	I		1	I	-	I	10	1	1	1	1	I			1	5	1	I	0.73
F. oxysporum	I	I	I	I	I	I	I	I	I	I	I	I	Ι	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	1 1	I	I	I	I	I	I	I	I	I	I	1 1		с	I	I	I	0.15 (
F. solani	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	1 4	<u>0</u>		I	I	I	I	I	I	I	I	I	I	1 1		I	I	I	I	0.73
Myrothecium spp	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	ן ע	ו כ	I	I	I	I	I	I	I	I	I	I	1 1		I	I	I	I	0.24
Penicillium	10	15	S	5	I	20	ъ	S	9	40	I	I	I	20	10	7	S	œ	25	I	10	I	Ŋ	1	4 r	<u>1</u> 2	ςς γ	4 7 V C	<u></u>	1 5	15	12	ß	I	I	10	I	S	I	10	1 1	LO LO	I	15	I	25	20.5
P. chrysogenum	10	10	S	I	I	20	ъ	I	9	15	I	I	I	20	10	I	I	œ	25	I	6	I	Ŋ	1	<u>4</u> ;	<u>6</u>	ŝ		2	1 6	15	12	ß	I	I	10	I	S	I	6	1 1	LO LO	I	15	I	I	15.9
P. citrinum	I	I	I	I	I	I	I	S	I	S	I	I	I	I	I	I	S	I	I	I	I	I	I	I	I	I	ı ç	7	1 0	4 I	I	I	I	I	I	I	I	I	I	I	1 1		I	I	I	25	3.1
P. purpurogenum	I	5	I	2	I	I	I	I	I	10	I	I	I	I	I	2	I	I	I	I	I	I	I	I	I	I	I	I	I	1 1	I	I	I	I	I	I	I	I	I	I	1 1		I	I	I	I	1.1
P. raistrickii	I	I	I	I	I	I	I	I	I	S	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	1 1	I	I	I	I	I	I	I	I	I	I	II		I	I	I	I	0.24
P. waksmanii	I	I	I	I	I	I	I	I	I	S	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	1 1	I	I	I	I	I	I	I	I	I	I	1		I	I	I	I	0.24
Rhizopus	ъ	ი	I	I	I	I	9	I	I	I	I	I	I	I	9	с	с	I	I	10	I	9	I		~ '	۵	I	I	ן ע	ו כ	I	I	I	5	2	7	I	I	I	1	n I		ę	I	ი	I	4. 4.

1 3	n	2	-,	-	nt	ın	110
Ta	U		~	LU			ue

Medicinal plants Genera & species	Anise	Bay leaf		Black tea	Black pepper	Cacao	Caraway	Cardamom	Carob	Castor beans	Chamomile	Clove	Coriander	Cress seeds	Gumin	Dill	Eucalvotus	Fennel	Fenugreek	Garlic	Ginger	Green tea	Guava leaves Varbodo	Khella	Linseeds	Liquorice	Majoram	Moghat	Mustard	Nigella	Dareley	peppermint	Radish	Red pepper	Rocket	Rosemary	Saffron	Sagebrush	Santonica	Sumac	Sweet basil	Tamarind	Thyme	Tilia	Turmeric	% ТС
R. nigricans		I		I	I	I	I	I	I	I	I				(C	b		I	I	I	I	I	I		. 1	I	I	I	Q	I	I		I	I	I	I	Ι	Ι	I		I	I	I	I	I	0.87
R. stolonifer	5	с		I	I	I	I	9	I	I	I	1 1				°	იი) I	I	10	I	9	I	I I	2	I	I	I	I	I	I		5	2	7	I	I	I	ן ע	וכ	I	ი	I	6	I	3.5
Scopulariopsis	I	I		I	I	I	I	I	I	1	۵			I 00	b			I	I	Ι	I	I	I		I	I		I	20	I	I		I	I	I	I	I	7	I		I	I	Ι	Ι	I	2.1
S. brevicaulis	I	I		I	I	I	I	I	I	1	۵			I 00	b			I	I	Ι	I	I	I		I	I	I	I	20	I	I		I	I	I	I	I	I	I		I	I	I	I	I	1.6
S. brumptii	I	I		I	I	I	I	I	I	I	I	1 1						I	I	I	I	I	I	1 1	I	I	I	I	I	I	I		I	I	I	I	I	7	I		I	I	I	I	I	0.53
Torula graminis	I	I		I	I	I	I	I	I	I	I	1 1	Ľ	ו כ				I	I	I	I	I	I	1 1	I	I	I	I	I	I	I		I	I	I	I	I	I	I		I	I	I	I	I	0.24
Trichoderma harzianum	I	I		I	I	I	I	I	I	I	I		l				I თ) I	I	Ι	I	I	I	1 1	I	I	I	I	I	I	I		I	I	I	I	I	I	I		5	I	I	5	I	20.5
Ulocladium alternaria	7	I		I	I	I	I	I	I	(x		l					I	I	Ι	I	I	I	I	I	I	I	I	I	I	I		I	I	I	I	I	I	I		5	I	I	Ι	I	0.97
Sterile mycelium	I	I		I	I	I	I	I	I	I	I	1 1	l	1 1				I	I	I	I	I	I	1 1	I	I	I	I	Q	I	I		I	I	I	I	I	I	I		I	I	I	I	I	0.24
Total counts	95	46	(49	60	57	40	48	8 8	07	Ω.	1 1	, 6	<u>- 99</u>	96	80	24	- 29	64	18	40	16	с Ч	36 23	100	50	77	83	02 1	22 7	77	35	31	17	30	15	21	74	8 8	31	65	22	75	47	40	2068
Number of genera	5	с	Ċ	2	2	2	2	ო	N 0	η I	۵	1 1	, c	14	7	t of	> 4	. v	ю	2	2	N 7		- ო	ი ი	7	7	4	9	N C	2 1	1 0	2	ო	4	~	2	ო	~ ~	1 1	4	ო	ო	e	2	12
Number of species	10	7		4	4	9	ო	ц С	ς, Γ	ი ;	10		ب	ິພ	σ	> ⊲	r 00	~ ~	9	с	4	~ ~	- c	И 4	. 4	5	9	4	~ 3	9+1 1	n 0	ი დ	ъ Ъ	4	ო	2	2	4	ωu	იი	0	9	9	7	9	36+1 var.

Furthermore, the results obtained in Table (2) detected also that, the highest contaminated samples were those of linseed (TC=100 colonies/g), anise (TC=95 colonies/g), moghat colonies/g), chamomile (TC=83 (TC=81 santonica (TC=80 colonies/g), colonies/g), majoram (TC=77colonies/g), thyme(TC=75 colonies/g), sage (TC=71 colonies/g) and mustard (TC=70 colonies/g). In this respect, [30] reported that anise was highly contaminated with fungi. [36] demonstrated that samples of linseed were highly contaminated with fungi having a total of 10 fungal genera represented by 18 species including Aspergillus, Penicillium, Alternaria, Curvularia, Fusarium, Tricoderma and Mucor. Also, our results were in agreement with those previously reported by [37-39]. The least contaminated substrates were coriander and guava leaves (TC= 13 and 5 colonies/g respectively); this was in accordance with results reported by [4,40,41]. In contrast, samples of cinnamon, clove and sumac showed no fungal contamination indicating their antifungal properties. The current observations were supported by [34,40,42,43].

Of all genera detected throughout this study (Table 3), Aspergillus was the most frequent and prevalent genus encountering 91.7% of all medicinal plant samples examined vielding 64.3% of the total count of fungi as indicated by [38,43-46] and many others. Sixteen species of Aspergillus namely: A. avenaceus, A. clavatoflavus, A.flavus, A. flavus var columnaris, A. fumigatus, A. glaucaus, A. nidulans, A. niger, A. ochraecous, A. ornatus, A. oryzae, A. parasiticus, A. sulphureus, A. tamari, A. terreus and A. versicolor were identified. Aspergillus niger, Aspergillus flavus var columnaris and Aspergillus flavus were the most frequently encountered and widely distributed species detected in almost all samples comprising 75%, 41.7% and 33.3% of their frequency of occurrence yielding 23.1%, 9.1% and 7.1% of the total count of fungi respectively. In this respect, [33,47] stated that the most prevalent fungi isolated from some medicinal plants samples were A. flavus, A. niger and A. parasiticus. Also, our results are in well aggrement with [34,46,48]. All of the other species were isolated in low or rare frequency of occurrence except Aspergillus ochraecous and A. ornatus which were detected in moderate frequency of occurrence.

As illustrated in Table (3), *Penicillium* was the second frequent genus comprising 68.8% of all medicinal plant samples analyzed constituting

20.5% of its density of occurrence. It was represented by five species namely: Penicillium chrysogenum, P. citrinum, P. purpurogenum, P. raistrickii and P. waksmanii of which P. chrysogenum was the most common species recorded encountering 56.3% amongst all samples and 15.9% of the total count of fungi of all samples followed by P. citrinum representing 12.5% of its frequency of occurrence and 3.1% of the total count of fungi respectively. All of the other species were detected in rare frequency of occurrence. In this respect, [36] examined fungal contamination of 50 samples of linseeds on Czapek Dox agar medium at 28°C and found that Penicillium citrinum was the second abundant species comprising 24% of all samples analyzed. [44] recorded that Penicillium was isolated in high frequency of occurrence from 50 samples of different kinds of spices accounting 80% of the samples and was represented by 5 species of which *P.chrysogenum* and *P.* corylophilum were the most prevalent. Almost similar species were previously recovered from different types of medicinal plants but with different densities and frequencies [4,34,47,49].

On the other hand, *Rhizopus* was ranked third after *Aspergillus* and *Peniciliium* and recorded in moderate frequency of occurrence comprising 35.4% of all samples studied and 4.4% of the total count of fungi. Two species namely: *Rhizopus nigricans* and *Rhizopus stolonifer* were identified of which *R. stolonifer* was the most frequent comprising 29.2% of all samples analyzed. Similar observations were reported by [4,40,50-52].

The genus Alternaria was detected in low frequency of occurrence representing 18.8% of all samples and 3.5% of the total count of fungi. It was represented by 2 species of which Alternaria alternate was the most frequent recorded in 16.7% of all samples studied as indicated by [49] who stated that A. alternata ranked third and was represented in 40% of the samples constituting 2.8% of the total fungi isolated. Furthermore, Scopulariopsis and Fusarium were recorded in 8.3% of all samples Scopulariopsis was represented by two species while Fusarium was represented by three species and all of their species were detected in rare frequency of occurrence. These results came in agreement with [33]. The remaining genera were represented by one species only and isolated from one or two substrates with rare frequency of occurrence as shown in Table (3).

3.2 Aflatoxins Production by Fungal Strains in the Culture Media

It is clear from Table (4) that 67 isolates (44.4%) out of 151 isolates of *A. flavus* group isolated from various samples were found to be toxigenic and their potentiality to produce aflatoxins was in the range of 0.1 to 818.2 ng/ml of culture filtrate.

In this respect, [31] found that 21 isolates out of 50 of *A. flavus* isolated from medicinal plant samples were toxigenic and the amount of aflatoxin B₁ they produced ranged from 0.09 to 0.65 μ g/ml of culture filtrate. Also, [53] revealed that about 50% of the *A. flavus* isolates were found to produce aflatoxin-B₁ in the range of (0.02 to 2.66 μ g/ml of culture filtrate).

Table 3. Total counts, % frequency of occurrence, number of cases of isolation and occurrence remarks of fungal genera and species

Fungal genera and species	Total count	% frequency of occurrence	NCI and OR
Acremoniella spp	10	2.1	1R
Alternaria	73	18.8	9L
A. alternata	63	16.7	8L
A. cineraria	10	2.1	1R
Aspergillus	1327	91.7	44H
A. avenaceus	7	2.1	1R
A. clavato-flavus	1	2.1	1R
A. flavus	124	33.3	16M
A. flavus var columnaris	209	41.7	20M
A. fumigatus	46	16.7	8L
A. glaucaus	5	2.1	1R
A. nidulans	5	2.1	1R
A. niger	477	75	36H
A. ochraecous	122	27.1	13M
A. ornatus	113	25	12M
A. oryzae	24	12.5	6L
A. parasiticus	26	10.4	5R
A. sulphureus	5	2.1	1R
A. tamarii	26	10.4	5R
A. terreus	58	16.7	8L
A. versicolor	79	22.9	11L
Botryotrichum piluliferum	16	4.2	2R
Fusarium	33	8.3	4R
F. moniliforme	15	4.2	2R
F. oxysporum	3	2.1	1R
F. solani	15	2.1	1R
Myrothecium spp	5	2.1	1R
Penicillium	424	68.8	33H
P. chrysogenum	328	56.3	27H
P. citrinum	64	12.5	6L
P. purpurogenum	22	8.3	4R
P. raistrickii	5	2.1	1R
P. waksmanii	5	2.1	1R
Rhizopus	90	35.4	17M
R. nigricans	18	6.25	3R
R. stolonifer	72	29.2	14M
	44	8.3	4R
Scopulariopsis S. brevicaulis	33	6.25	3R
	33 11	2.1	3R 1R
S. brumptii Torula graminia	5	2.1	1R 1R
Torula graminis Triabadarma bar - ianum			
Trichoderma harzianum	13	6.25	3R
Ulocladium alternaria	20	6.25	3R
Sterile mycelium	5	2.1	1R

NCI - Number of cases of isolation

OR - Occurrence remarks: H = High occurrence; more than 24 cases; M = Moderate occurrence; between 12-24 cases; L = Low occurrence; between 6-11 cases; R = Rare occurrence; less than 6 cases

Medicinal plants	Fungal isolates	Isolate No.		Aflat	toxins concent	rations (ng/ml)	
			B1	B2	G1	G2	Total
Ammi	Aspergillus flavus var columnaris	1	54.6	18	-	-	72.6
	A. flavus var columnaris	2	-	-	-	-	-
Anise	A. flavus var columnaris	3	-	-	-	-	-
	A. flavus var columnaris	4	1.8	-	7.3	-	9.1
	A. flavus var columnaris	5	-	-	4.9	-	4.9
	A. flavus var columnaris	6	-	-	3.5	-	3.5
	A. flavus var columnaris	7	1.7	-	6.2	-	7.9
	A. flavus var columnaris	8	-	-	-	-	-
	A. flavus var columnaris	9	-	-	-	-	-
	A. flavus var columnaris	10	-	-	-	-	-
	A. flavus var columnaris	11	-	-	15.3	-	15.3
	A. flavus var columnaris	12	-	-	-	-	-
	A. flavus var columnaris	13	-	-	-	-	-
	A. flavus var columnaris	14	-	-	-	-	-
	A. flavus var columnaris	15	-	-	-	-	-
	A. flavus var columnaris	16	-	-	-	-	-
	A. flavus var columnaris	17	-	-	10	1.8	11.8
	A. flavus var columnaris	18	-	-	-	-	-
	A. flavus var columnaris	19	-	-	-	-	-
Black pepper	A. flavus	20	768.3	-	22.6	-	790.9
	A. flavus	21	-	-	-	-	-
	A. flavus	22	133	-	18.2	-	151.2
	A. flavus	23	-	-	-	-	-
Cacao	A. flavus var columnaris	24	82.5	-	7.5	-	90
	A. flavus var columnaris	25	19.5	-	-	6.4	25.9
	A. flavus var columnaris	26	-	-	-	-	-
Cardamom	A. flavus	27	40.2	30.8	-	-	71
	A. flavus	28	18.3	1.1	15.9	14.1	49.4
	A. flavus	29	-	-	2.45	-	2.45
	A. flavus	30	-	-	-	-	-
	A. flavus	31	-	-	-	-	-
	A. flavus	32	-	-	-	-	-

Table 4. Aflatoxins production (ng/ml) on Yeast extract-sucrose broth medium by some fungal isolates at 28±2°C

Medicinal plants	Fungal isolates	Isolate No.		Aflat	oxins concent	rations (ng/ml)	1
-	-		B1	B2	G1	G2	Total
Carob	A. flavus var columnaris	33	-	2.3	-	15.8	8.1
	A. flavus var columnaris	34	-	-	-	-	-
Castor beans	A. flavus var columnaris	35	20.1	4.2	1.5	8.1	33.9
	A. flavus var columnaris	36	-	-	-	-	-
	A. flavus var columnaris	37	23.2	2	2.8	10.3	38.3
Coriander	A. parasiticus	38	-	59.2	29.8	11.5	100.5
Cress seeds	A. flavus var columnaris	39	-	-	-	-	-
Cumin	A. flavus	40	-	-	-	-	-
	A. flavus	41	-	-	-	-	-
Fennel	A. flavus var columnaris	42	3.5	-	-	-	3.5
	A. flavus var columnaris	43	-	-	18.8	-	18.8
	A. flavus var columnaris	44	-	-	10.8	-	10.8
Fenugreek	A. flavus var columnaris	45	35	-	-	11	46
	A. flavus	46	28.2	-	-	0.1	28.3
	A. flavus var columnaris	47	-	-	-	-	-
Ginger	A. flavus var columnaris	48	195.5	-	-	-	195.5
	A. parasiticus	49	100.2	7.6	-	-	107.8
	A. flavus var columnaris	50	-	-	-	-	-
	A. flavus var columnaris	51	-	-	-	-	-
	A. flavus var columnaris	52	-	-	-	-	-
	A. flavus var columnaris	53	-	-	-	-	-
	A. flavus var columnaris	54	-	-	-	-	-
	A. flavus var columnaris	55	17.5	2.8	12.5	7	39.8
	A. flavus var columnaris	56	22	0.3	18	4.5	44.8
	A. flavus var columnaris	57	-	-	-	-	-
	A. flavus var columnaris	58	-	-	-	-	-

Migahed et al.; ARRB, 14(6): 1-20, 2017; Article no.ARRB.34797

Migahed et al.; ARRB, 14(6): 1-20, 2017; Article no.ARRB.34797

Medicinal plants	Fungal isolates	Isolate No.		Afla	toxins concent	rations (ng/ml)	
-	-		B1	B2	G1	G2	Total
Ginger	A. flavus var columnaris	59	-	-	-	-	-
	A. flavus var columnaris	60	-	-	-	-	-
	A. flavus var columnaris	61	-	-	-	-	-
	A. flavus var columnaris	62	-	-	-	0.1	0.1
	A. flavus var columnaris	63	-	-	-	-	-
	A. flavus var columnaris	64	10	-	24	-	34
	A. flavus var columnaris	65	-	-	-	-	-
	A. flavus var columnaris	66	-	-	-	-	-
	A. flavus var columnaris	67	-	-	-	-	-
	A. parasiticus	68	58	2.2	-	-	60.2
	A. flavus var columnaris	69	-	-	-	-	-
	A. flavus var columnaris	70	-	-	-	-	-
	A. flavus var columnaris	71	-	-	-	-	-
	A. flavus var columnaris	72	-	-	-	-	-
	A. flavus var columnaris	73	-	-	-	-	-
	A. flavus var columnaris	74	-	-	-	-	-
	A. flavus var columnaris	75	-	-	-	-	-
	A. flavus var columnaris	76	34	-	18.3	0.1	52.4
	A. flavus var columnaris	77	-	-	-	-	-
	A. flavus var columnaris	78	-	-	-	-	-
Karkade	A. flavus	79	-	-	-	-	-
Linseeds	A. flavus	80	48.3	5.8	9.5	35	98.6
	A. flavus var columnaris	81	-	-	-	-	-
	A. flavus	82	30.8	4.4	10.1	23.1	68.4
Liquorice	A. flavus	83	0.23	-	-	-	0.23
	A. flavus	84	-	-	-	-	-
Majoram	A. flavus var columnaris	85	-	-	-	0.75	0.75
	A. flavus var columnaris	86	-	-	-	-	-
	A. flavus var columnaris	87	-	-	-	-	-
	A. flavus var columnaris	88	-	-	4.45	-	4.45

Migahed et al · ARRB	14(6) 1-20	2017; Article no.ARRB.34797	

Medicinal plants	Fungal isolates	Isolate No.	Aflatoxins concentrations (ng/ml)				
•	-		B1	B2	G1	G2	Total
Moghat	A. flavus	89	118.8	2.5	7.8	-	129.1
	A. flavus	90	59.8	10	1.9	-	71.7
	A. flavus	91	-	-	-	-	-
	A. flavus	92	-	-	-	-	-
	A. flavus var columnaris	93	-	-	-	-	-
	A. flavus var columnaris	94	-	-	-	-	-
	A. flavus var columnaris	95	-	-	-	-	-
	A. flavus var columnaris	96	-	-	-	-	-
	A. flavus var columnaris	97	-	-	-	-	-
	A. flavus var columnaris	98	-	-	-	-	-
Mustard	A. flavus var columnaris	99	30	0.1	12	12.4	54.5
	A. parasiticus	100	22.1	2.2	10.5	15.8	50.6
	A. flavus var columnaris	101	-	-	-	-	-
	A. flavus var columnaris	102	-	-	-	-	-
Nigella	A. flavus var columnaris	103	1.7	-	4.5	-	6.2
-	A. flavus var columnaris	104	2.5	-	-	0.9	3.4
	A. flavus var columnaris	105	0.9	-	5.2	-	6.1
	A. flavus	106	1.8	-	6.6	-	8.4
	A. flavus var columnaris	107	-	-	0.23	-	0.23
	A. flavus var columnaris	108	-	-	-	-	-
	A. flavus	109	-	-	-	-	-
	A. flavus var columnaris	110	-	-	-	-	-
Nutmeg	A. parasiticus	111	624.95	-	91.2	29.7	745.9
-	A. parasiticus	112	27.8	-	36.2	13.9	77.9
	A. parasiticus	113	311.7	-	300.1	36.6	648.4
Parsley	A. flavus var columnaris	114	-	19.95	185.4	116.3	321.7
-	A. flavus var columnaris	115	58.5	9.8	177.5	86.7	332.5
	A. flavus var columnaris	116	227.2	7.5	59.8	_	294.5

Migahed et al.; ARRB, 14(6): 1-20, 2017; Article no.ARRB.34797

Parsley	A. flavus var columnaris	117	36.7	-	14.4	-	51.1
Radish	A. flavus var columnaris	118	-	-	-	-	-
	A. flavus	119	-	-	-	-	-
	A. flavus var columnaris	120	-	-	103.4	57.7	161.1
	A. flavus	121	51.7	13.99			140.8
Rocket	A. flavus var columnaris	122	187.5	381.8	-		610.3
	A. flavus	123	-	-		-	
Rosemary	A. flavus var columnaris	124	7.9	-	55	_	13.4
liteooniary	A. flavus var columnaris	125	-	-	-	_	-
Rosemary Sage Santonica	A. flavus var columnaris	126	8.9	-	-	-	8.9
	A. flavus var columnaris	127	-	-	-	_	-
Rocket Rosemary Rage Rantonica	A. flavus	128	-	-	5.54	-	5.54
J.	A. flavus	129	-	-		-	-
Santonica	A. flavus var columnaris	130	1	-	9.8	-	10.8
	A. flavus var columnaris	131	12.1	-	-	5.7	17.8
	A. flavus var columnaris	132	-	-	-		-
	A. flavus	133	10.5	-	1.2	-	11.7
	A. flavus	134	-	-	-	-	-
Senna	A. flavus var columnaris	135	796.1	0.19	16.3	5.6	818.19
	A. flavus var columnaris	136	268.2	2.2	70.1	7.6	348.1
Sage	A. flavus	137	-	-	-	-	-
	A. flavus	138	-	-	-	-	-
	A. flavus	139	-	-	-	-	-
	A. flavus var columnaris	140	-	-	145.5	52.5	198
	A. flavus	141	-	-	-	-	-
	A. flavus var columnaris	142	-	-	-	-	-
	A. flavus	143	22.5	2.5	6.8	-	31.8
	A. flavus var columnaris	144	-	-	-	-	-
	A. flavus var columnaris	145	-	-	-	-	-
	A. flavus	146	-	-	-	-	-
	A. flavus	147	45.3	-	34	-	79.3
	A. flavus var columnaris	148	-	-	-	-	-
	A. flavus var columnaris	149	-	-	-	-	-
Thyme	A. flavus	150	-	-	-	-	-
Turmeric	A. parasiticus	151	-	-	1	-	1

Medicinal plants	Aflatoxins concentrations (ng/g)						
-	B1	B2	G1	G2	Total		
Ammi	-	-	724.6	-	724.6		
Anise	1.98	-	157.5	-	159.48		
Black pepper	75	-	31.5	16	122.5		
Cacao	-	-	-	-	-		
Cardamom	-	-	-	-	-		
Carob	-	-	-	-	-		
Castor beans	15.5	-	13.8	-	29.3		
Coriander	-	-	-	-	-		
Cress seeds	-	-	-	-	-		
Cumin	-	-	-	-	-		
Fennel	-	-	-	-	-		
Fenugreek	-	-	2	-	2		
Ginger	26.9	-	-	-	26.9		
Karkade	-	-	-	-	-		
Linseeds	25.5	-	13.3	-	38.8		
Liquorice	57	-	1.5	-	58.5		
Majoram	3.25	-	_	-	3.25		
Moghat	_	-	4	-	4		
Mustard	18.2	-	10.5	7.6	36.3		
Nigella	56.8	1.25	4.4	0.25	62.7		
Nutmeg	-	_	-	-	-		
Parsley	27.4	2.5	8.1	-	38		
Radish		-	-	-	-		
Rocket	19.9	-	5.5	-	25.4		
Rosemary	3.1	-	12.9	-	16		
Sage	-	-	6.25	-	6.25		
Santonica	1.4	-	0.1	-	1.5		
Senna	-	30.5	-	-	30.5		
Thyme	16.8	-	41.2	-	57.9		
Turmeric	-	-	-	-	-		

 Table 5. Aflatoxins occurrence in some medicinal plants

The results obtained in Table (4) showed that, thirteen isolates from different types of substrates have the ability to produce four types of afltoxins (B₁, B₂, G₁, G₂); these were: A. flavus var columnaris (No. 35, 37, 55, 56, 99, 115, 135 & 136), A. flavus (No. 28, 80, 82 & 121) and A. parasiticus (No.100). Eleven isolates produced 3 types of aflatoxins, of which A. flavus var columnaris (No. 76) and A. parasiticus (No. 111, 112 & 113) produced B1,G1 & G2, A. flavus var columnaris (No. 116) and A. flavus (No. 89, 90 & 143) produced B1, B2 & G1 while A. parasiticus (No. 38) and A. flavus var columnaris (No.114) produced B2, G1& G2 and A. flavus var columnaris (No. 122) produced B1, B2 & G2. The remaining isolates produced one or two types of aflatoxins. In this respect, [45] found that 42.9% A. flavus isolates were found to be aflatoxigenic strains and indicated that 27.6% of isolates have the ability to produce aflatoxin B_1 or aflatoxins B_1 and B₂; 45.5% Aspergillus parasiticus have the ability to produce aflatoxins B_1 , B_2 , G_1 and G_2 from herbal drugs.

As illustrated in Table (4), the most active aflatoxins produceing isolates were *A. flavus var*

columnaris (No. 135) isolated from senna, which produced 796.1, 0.19, 16.3 & 5.6 ng/ml from aflatoxins B1, B2, G1 &G2 respectively, A. flavus (No. 20) isolated from black pepper, which produced 768.3 & 22.6 ng/ml from aflatoxins B1& G1 respectively, A. parasiticus (No. 111) isolated from nutmeg which produced 624.95, 91.2 & 29.7 ng/ml from aflatoxins B₁, G₁ & G₂ respectively, A. parasiticus (No. 113) isolated from nutmeg which produced 311.7, 300.1 & 36.6 ng/ml from aflatoxins B₁, G₁ & G₂ respectively and A. flavus var columnaris (No. 122) isolated from rocket which produced 187.5, 381.8 & 41 ng/ml from aflatoxins B₁, B₂ & G₂ respectively. On the other hand, the least active aflatoxins producers were A. flavus var columnaris (No. 62) isolated from ginger which produced 0.1ng/ml from aflatoxin G₂, A. flavus var columnaris (No. 107) isolated from nigella produced aflatoxin G₁ & A. flavus (No. 83) isolated from liquorice produced aflatoxin B₁ with concentration of 0.23 ng/ml for each and A. flavus var columnaris (No. 85) isolated from majoram which produced 0.75 ng/ml from aflatoxin G₂. [54] reported that all Aspergillus flavus from cardamom and black pepper produced aflatoxin B₁ in amounts ranging from 65 to 3000 ng/ml. [34] isolated twenty *Aspergillus flavus* strains from ginger, black pepper, and cinnamon and were screened for aflatoxins production. Nine isolates (45%) were found to produce aflatoxin B₁, at a level ranging between 50 μ g/l⁻¹ and 90 μ g/l⁻¹. Almost similar observations were reported by [33,46,55].

3.3 Occurrence of Aflatoxins in Medicinal Plant Samples

The results in Table (5) revealed that of 30 medicinal plant samples screened, 19 samples (63.3%) were found contaminated with aflatoxins in the range of 1.5 to 724.6 ng/g. Nigella was the only substrate which contained the four types of aflatoxins (B₁, B₂, G₁ & G₂) while parsley, black pepper and mustard contained 3 types of aflatoxins which were (B₁, G₁ & G₂) for black pepper and mustard and (B₁, G₁ & B₂) for parsley. The remaining substrates contained one or two types of aflatoxins.

As shown in Table (5), the highest levels of aflatoxins contamination were recorded in ammi (724.6 ng/g), anise (159.5 ng/g) and black pepper (122.5 ng/g) while the lowest levels were detected in majoram (3.25 ng/g), fenugreek (2 ng/g) and santonica (1.5 ng/g). These results were in agreement with those reported by [56] revealed that aflatoxin B1 was found in 41 out of 93 spice samples with levels ranging from 4.9-8.4 µg/kg in anise samples and 24.6-30 µg/kg in case of black pepper samples. Also, [46] found that the highest aflatoxins contents were detected in red chili, coriander and black pepper with concentrations of 219.6, 179.5 and 185 ng/g respectively. Similar results were obtained by [55,57-60].

The presence of aflatoxins in medicinal plants has numerous public health effects because these toxins causes liver cancer in certain animals and also humans can suffer acute liver damage from ingestion of high amount of aflatoxins Jeswal P, Kumar D [46]. Therefore, it is necessary to further investigate the presence of aflatoxins in these commodities. Plant materials, designed for medical uses, should be carefully stored and evaluated for aflatoxins presence before use inorder to ensure they are safe for consumers. Moreover, good agricultural practices should be performed to reduce the presence of moulds on the medicinal plants and thus decrease the possibility of aflatoxins production.

4. CONCLUSION

The use of medicinal plants as the first choice in self-treatment of minor conditions continues to expand rapidly across the world. This makes the safety of these plants an importanat public health issue. This study has shown that medicinal plants are prone to contamination by moulds including toxigenic Aspergillus and although aflatoxins levels may be low, the risk of aflatoxicosis resulting from the continuous ingestion of these foods may be high. The presence of Aspergillus and hence aflatoxins contamination in the samples may be due to poor storage, transport and handling conditions in the local market. The findings from this study also repeat the need for constant quality assessment of medicinal plants in the market in order to ensure that medicinal plant materials and products are suitable for human consumption. Medicinal plants sold in markets should be placed in clean, sterile baskets or suitable hygienic packs. The moisture content of the plant materials should always be maintained at minimal levels to lower the rate of fungal propagation. Moreover, studies on human exposure and risk assessment of aflatoxins in medicinal plants are needed to be carried out for protecting consumers from adverse effects associated with aflatoxins contaminated medicinal plants.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

- Tassaneeyakul W, Razzazi-Fazeli E, Porasuphatana S, Bohm J. Contamination of aflatoxins in herbal medicinal products in Thailand. Mycopathologia. 2004;158:239-244.
- García-Cela E, Ramos A, Sanchis V, Marin S. Emerging risk management metrics in food safety: Fso, PO. How do they apply to the mycotoxin hazard? Food Control 2012;25:797-808.
- Liu S, Qiu F, Kong W, Wei J, Xiao X, Yang M: Development and validation of an accurate and rapid LC-ESI-MS/MS method for the simultaneous quantification of aflatoxin b 1, b 2, g 1 and g 2 in lotus seeds. Food Control. 2013;29:156-161.
- 4. Hashem M, Alamri S: Contamination of common spices in Saudi Arabia markets

with potential mycotoxin-producing fungi. Saudi Journal of Biological Sciences. 2010;17:167-175.

- 5. Jalili M, Jinap S: Natural occurrence of aflatoxins and ochratoxin a in commercial dried chili. Food Control. 2012;24:160-164.
- De Curtis F, De Felice D, Ianiri G, De Cicco V, Castoria R: Environmental factors affect the activity of biocontrol agents against ochratoxigenic Aspergillus carbonarius on wine grape. International Journal of Food Microbiology. 2012; 159:17-24.
- Rai V, Mehrotra S: Toxic contaminants in herbal drugs. Environ News Arch 2005;11:1-3.
- Trucksess M, Scott P: Mycotoxins in botanicals and dried fruits: A review. Food Additives and Contaminants. 2008;25:181-192.
- Iqbal SZ, Bhatti IA, Asi MR, Bhatti HN, Sheikh MA: Aflatoxin contamination in chilies from Punjab Pakistan with reference to climate change. Int J Agric Biol. 2011;13:261-265.
- Zain ME: Impact of mycotoxins on humans and animals. Journal of Saudi Chemical Society. 2011;15:129-144.
- 11. Sharma M, Márquez C: Determination of aflatoxins in domestic pet foods (dog and cat) using immunoaffinity column and HPLC. Animal Feed Science and Technology. 2001;93:109-114.
- 12. Qureshi H, Ali SS, Iqbal M, Siddiqui AA, Khan NA, Hamid SS. Aflatoxins and hepatitis b, c viral associated hepatocarcinogenesis. Journal of Cell Science & Therapy. 2014;5:1.
- Varga J, Frisvad JC, Samson R: Two new aflatoxin producing species, and an overview of Aspergillus section flavus. Studies in Mycology. 2011;69:57-80.
- 14. Pitt JI, Hocking AD: Fungi and food spoilage. Springer, New York, NY. 2009;19-52.
- González H, Resnik S, Boca R, Marasas W: Mycoflora of Argentinian corn harvested in the main production area in 1990. Mycopathologia. 1995;130:29-36.
- 16. Raper KB, Thom C: A manual of the *penicillia*: New York. Hafner Publishing Company. 1968:876.
- 17. Rifai MA: A revision of the genus *trichoderma*. Mycol Pap. 1969;116:1-56.

- Ellis M. Dematiaceous hyphomycetes. Commonwealth Mycological Institute, Kew, Surrey, England. 1971;608. ISBN: 85198-027-9
- 19. Ellis M: More dematiaceous hyphomycetes cab international Mycological Institute. Kew, UK; 1976.
- 20. Raper K, Fennell D: The genus *Aspergillus* re krieger publishing company. Huntington, New York; 1977.
- 21. Pitt JI: The genus *Penicillium* and its teleomorphic states eupenicillium and talaromyces, London: Academic Press Inc. 1979;634.
- 22. Carmichael J, Kendrick W, Connors I, Sigler L: Genera of hyphomycetes. (The university of Alberta press: Edmonton, Canada); 1980.
- Domsch K, Gams W, Anderson T. Compendium of soil fungi. Academic Press New York, USA; 1980.
- Nelson PE, Toussoun TA, Marasas W: Fusarium species: An illustrated manual for identification. The Pennsylvania State University Press. 1983;193.
- 25. Moubasher A. Soil fungi in Qatar and other Arab countries. The Centre for Scientific and Applied Research, University of Qatar; 1993.
- Kumar A, Shukla R, Singh P, Dubey NK. Chemical composition, antifungal and antiaflatoxigenic activities of Ocimum sanctum I. Essential oil and its safety assessment as plant based antimicrobial. Food and Chemical Toxicology 2010;48: 539-543.
- AOAC. Association of official analytical chemists. Official method 970.45. Aflatoxins in peanuts and peanut products BF method Official methods of analysis 17th ed AOCS AOAC Method. 2000;49:11.
- Calvo AM, Bok J, Brooks W, Keller NP. Vea is required for toxin and sclerotial production in *Aspergillus parasiticus*. Applied and Environmental Microbiology. 2004;70:4733-4739.
- AOAC: Association of official analytical chemists. Official methods of analysis. 16thed, revised, AOAC, Washington, DC. 1995;319.
- Moharram A, Abdel-Mallek A, Abdel-Hafez A: Mycoflora of anise and fennel seeds in Egypt. Journal of Basic Microbiology. 1989;29:427-435.
- 31. Roy A, Chourasia H. Aflatoxin problems in some medicinal plants under storage.

International Journal of Crude Drug Research. 1989;27:156-160.

- Bokhari F. Aflatoxins production by Aspergillus flavus, isolated from different foodstuffs commonly used in Jeddah region, Saudi Arabia. Pakistan Journal of Biological Sciences. 2002;5:69-74.
- Aziz NH, Youssef YA, El-Fouly MZ, Moussa LA. Contamination of some common medicinal plant samples and spices by fungi and their mycotoxins. Botanical Bulletin of Academia Sinica. 1998;39
- Elshafie AE, Al-Rashdi TA, Al-Bahry SN, Bakheit CS: Fungi and aflatoxins associated with spices in the sultanate of Oman. Mycopathologia. 2002;155:155-160.
- Domsch KH, Gams W, Anderson TH. Compendium of soil fungi. Academic Press (London) Ltd. 1980;1.
- Sahay S, Prasad T, Sinha K: Postharvest incidence of aflatoxins in linum usitatissimum seeds. Journal of the Science of Food and Agriculture 1990;53: 169-174.
- Garrido D, Jodral M, Pozo R: Mold flora and aflatoxin-producing strains of Aspergillus flavus in spices and herbs. Journal of Food Protection (USA). 1992;55: 451-452.
- Abou-Arab A, Kawther MS, El Tantawy M, Badeaa RI, Khayria N. Quantity estimation of some contaminants in commonly used medicinal plants in the Egyptian market. Food Chemistry. 1999;67:357-363.
- Martins ML, Martins HM, Bernardo F. Aflatoxins in spices marketed in Portugal. Food Additives & Contaminants 2001;18: 315-319.
- Mandeel QA. Fungal contamination of some imported spices. Mycopathologia. 2005;159:291-298.
- 41. Abou-Donia M. Microbiological quality and aflatoxinogenesis of Egyptian spices and medicinal plants. Global Vet. 2008;2:175-181.
- 42. Toma FM, Abdullah N: Isolation and identification of fungi from spices and medicinal plants. Research Journal of Environmental and Earth Sciences. 2013;5:131-138.
- 43. Azzoune N, Mokrane S, Riba A, Bouras N, Verheecke C, Sabaou N, Mathieu F. Contamination of common spices by aflatoxigenic fungi and aflatoxin b1 in

Algeria. Quality Assurance and Safety of Crops & Foods. 2016;8:137-144.

- 44. Bokhari FM. Spices mycobiota and mycotoxins available in Saudi Arabia and their abilities to inhibit growth of some toxigenic fungi. Mycobiology. 2007;35:47-53.
- Bugno A, Almodovar AAB, Pereira TC, Pinto TdJA, Sabino M: Occurrence of toxigenic fungi in herbal drugs. Brazilian Journal of Microbiology. 2006;37:47-51.
- Jeswal P, Kumar D. Mycobiota and natural incidence of aflatoxins, ochratoxin a, and citrinin in Indian spices confirmed by LC-MS/MS. International Journal of Microbiology. 2015;2015.
- 47. Ahmad B, Ashiq S, Hussain A, Bashir S, Hussain M: Evaluation of mycotoxins, mycobiota, and toxigenic fungi in selected medicinal plants of Khyber pakhtunkhwa, Pakistan. Fungal Biology. 2014;118:776-784.
- 48. Hedawoo G, Chakranarayan RG: Isolation of fungal species from the seeds of some Indian spices. Biosci Biotech, Res Comm. 2011;4:208-210.
- EI-Kady I, EI-Maraghy SM, Eman Mostafa M. Contribution of the mesophilic fungi of different spices in Egypt. Mycopathologia. 1992;120:93-101.
- Aziz NH, Youssef YA. Occurrence of aflatoxins and aflatoxin-producing moulds in fresh and processed meat in Egypt. Food Additives & Contaminants. 1991;8:321-331.
- 51. Pereira C, Silva J, Batista L. Isolation and identification of toxigenic and non-toxigenic fungi in samples of medicinal plants from the market. Revista Brasileira de Plantas Medicinais. 2015;17:262-266.
- Rawat A, Mahajan S, Gupta A, Agnihotri RK, Wahi N, Sharma R. Detection of toxigenic fungi and mycotoxins in some stored medicinal plant samples. International Journal of Applied Sciences and Biotechnology. 2014;2:211-216.
- Roy A, Kumari V. Aflatoxin and citrinin in seeds of some medicinal plants under storage. International Journal of Pharmacognosy. 1991;29:62-65.
- 54. Banerjee A, Mathews RP, Prakash H, Shetty HS. Mycobiota and toxigenic *Aspergillus flavus* associated with developing cardamom and pepper. Mycological Research. 1993;97:1403-1406.

- 55. El Mahgubi A, Puel O, Bailly S, Tadrist S, Querin A, Ouadia A, Oswald I, Bailly J. Distribution and toxigenicity of Aspergillus section flavus in spices marketed in morocco. Food Control. 2013;32:143-148.
- 56. Tosun H, Arslan R. Determination of aflatoxin b1 levels in organic spices and herbs. The Scientific World Journal. 2013;2013.
- 57. Hussain A, Sohail M: Aflatoxin contamination of spices sold in different markets of peshawar. Journal of the Chemical Society of Pakistan. 2012;34.
- 58. Ezekiel C, Fapohunda S, Olorunfemi M, Oyebanji A, Obi I. Mycobiota and aflatoxin

b1 contamination of piper guineense (ashanti pepper), p. Nigrum I. (black pepper) and *Monodora myristica* (calabash nutmeg) from Lagos, Nigeria. International Food Research Journal. 2013;20.

- 59. Mwangi W, Nguta C, Muriuki B. Aflatoxin contamination in selected spice preparations in the nyahururu retail market, Kenya. Journal of Scientific & Industrial Research. 2014;3:917-923.
- 60. Jalili M. Natural occurrence of aflatoxins contamination in commercial spices in Iran. Iranian Journal of Health, Safety and Environment. 2016;3:513-517.

© 2017 Migahed et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history: The peer review history for this paper can be accessed here: http://sciencedomain.org/review-history/20199