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Abstract 

 
The invention of several significant non-Shannon entropy inequalities, the optimal Gaussing theorems, the 

relationship between the discrete memoryless source pair and the probability mass function, and these topics 

are all covered in the current communication.  It may directly or indirectly prove to be significant for the 

literature of information theory. 

 
 

Keywords: Optimal guessing function; shannon entropy; predictability; source pair; random variable; 

inequality. 
 

1 Introduction 
 

Think about the challenge of predicting the value that a discrete random variable, 𝑋, assumed in one trial of a 

random experiment by asking questions of the pattern “Did 𝑋 take on its 𝑖𝑡ℎ possible value?” until the response 

is "yes" In the context of sequential decoding [1] and source-channel coding [2,3,4], as well as in security 
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applications [5,6,7,4], the guessing problem has been studied. In the final subsection, we give a summary of 

earlier work. In 2023, Verma [8,9,10,11] presented the properties of his own generated entropy. Although we do 

not go into greater detail here, it is also possible to define guessing in the presence of distortion or source 

uncertainty [2,4,12].   
 

This issue can occur, for example, when a cryptanalyst must test each potential secret key one at a time after 

cryptanalyzing the possibilities. Let 𝐺 represent the total number of guesses made when using the guessing 

method that minimizes 𝐸(𝐺), which is obviously to guess the potential values of 𝑋  in decreasing order of 

likelihood. We can assume that these are the first, second,  third, etc., conceivable values of 𝑋 without losing the 

crucial generality, in which case the probability distribution for 𝑋, say 𝑃 = 𝑝1, 𝑝2, … satisfies 𝑝1 ≥ 𝑝2 ≥ ⋯ and 

we will refer to such a 𝑃 as a monotone distribution. With this approach, 𝐸(𝐺) = ∑ 𝑖𝑝𝑖 , where the summation is 

on 𝑖  from 1 to infinity in this sum and all subsequent sums.    
 

1.1 Definitions and notation  
 

In this part, we present a few definitions. A method of producing successive questions of the aforementioned 

kind until a YES response is given is a guessing approach for identifying 𝑋. A function 𝐺: 𝑋 → {1, 2, … }where 

𝐺(𝑘) equals the time index of the query can be used to express any such method informally. Is 𝑋 = 𝑘?. 
 

Keep in mind that legitimate guessing methods' related functions 𝐺 cannot be completely random. Since only 

one element can be probed at once, it is obvious that 𝐺 must be invertible on its range of {1, 2, … }. Additionally, 

since we presume that the responses to the questions “ Is 𝑋 equal to 𝑘?” are noiseless, it is sufficient to take into 

account guessing tactics that ask the aforementioned query precisely once for each value of 𝑘 ≥ 1. Formally, 

this is equivalent to the mapping 𝐺 being one-to-one and onto. Any function that meets these two requirements 

is referred to as a guessing function. A legitimate guessing strategy [13,14] is defined by every guessing 

function and vice versa.  
 

The guesser is interested in reducing the number of questions needed to identify 𝑋, assuming that she is aware 

of the probability distribution 𝑃 (otherwise, see [12]). There are various approaches to formalize this objective, 

such as minimizing a positive moment  
 

E(Gρ) (most commonly, ρ = 1 is of relevance), where  
 

E(Gρ) = ∑ P(x)G(x)ρ = ∑ kρ
k≥1 P(G−1(k))x∈X . 

 

The Renyi entropy of order α of X is a generalization of the Shannon entropy [15] defined by 
 

Hα(X) =
log(∑ P(X)α

X∈y )

1−α
    ∀ α ∈ [0, 1)⋃(1, ∞) 

 

and obeys lim
𝛼→1

𝐻𝛼(𝑋) = 𝐻(𝑋)  as well as being strictly decreasing in 𝛼  unless the 𝑌 ∈ 𝑦  is uniform on its 

support. Sometimes, related random variable 𝑌 ∈ 𝑦  with some joint distribution 𝑃(𝑋, 𝑌)  is available to the 

guesser, who then proceeds to guess the possible value of 𝑋 as above. In this case,  
 

E[G(X|Y)] = ∑ P(Y)E[G(X|Y = y)]Y∈y . 
 

With 𝑋 taking values in a finite set 𝐽 of size 𝑀 and 𝑌 taking values in a countable set 𝐾, let (𝑋, 𝑌) be a pair of 

random variables. If 𝐺: 𝐽 → (1, 2, … , 𝑀) is one-to-one, we can refer to a function  𝐺(𝑋) of the random variable 

𝑋 as a guessing function for 𝑋. If, for any fixed number 𝑌 = 𝑦, a function 𝐺(𝑋|𝑌) is a guessing function for 𝑋, 

then we refer to that function as a guessing function for 𝑋 given 𝑌. When the value of 𝑌 is known, 𝐺(𝑋|𝑌) will 

be interpreted as the number of guesses necessary to determine 𝑋 . The moments of 𝐺(𝑋)  and 𝐺(𝑋|𝑌)  are 

inequalities according to the following [16]. 
 

2 Our Claims    
 

Claim 2.1 For any OGF (optimal guessing function) 𝐺𝑃 (
𝑋

𝑌
)  and 𝜏 ≥ 0 . Show that the inequality 

1

2
(𝜏 +

1) ln [𝐺 (
𝑥

𝑦
) 𝐺𝑃 (

𝑋

𝑌
)

𝜏

]
2

≤ 2(𝜏 + 1)ln ∑ 𝑃(𝑦)𝑦∈𝑌 + 2ln ∑ 𝑃 (
𝑥

𝑦
)𝑥∈𝑋 + 2𝐾 , where, 𝐾  is defined by  

𝜏 ln ∑ 𝑃(𝑎 𝑦⁄ )𝑎∈𝑋 .  



 
 

 

 
Verma; Asian J. Prob. Stat., vol. 24, no. 4, pp. 17-22, 2023; Article no.AJPAS.106183 

 

 

 
19 

 

Proof: Since the inequality for OGF 𝐺𝑃 (
𝑋

𝑌
), we have    

 

𝐺𝑃 (
𝑋

𝑌
) ≤ ∑ [

𝑃(𝑎 𝑦⁄ )

𝑃(𝑥 𝑦⁄ )
]

1

𝜏+1
𝑎∈𝑋                

 

For the completion of the proof, since 

 

ln 𝐸 [𝐺𝑃 (
𝑋

𝑌
)

𝜏

] ≤ ln [∑ 𝑃(𝑦)𝑦∈𝑌 ∑ 𝑃 (
𝑥

𝑦
) 𝐺𝑃 (

𝑋

𝑌
)

𝜏

𝑥∈𝑋 ]        

 

𝑖. 𝑒.              ln 𝐸2 [𝐺𝑃 (
𝑋

𝑌
)

𝜏

] ≤ ln [∑ 𝑃(𝑦)2
𝑦∈𝑌 ∑ 𝑃 (

𝑥

𝑦
)

2

𝐺𝑃 (
𝑋

𝑌
)

2𝜏

𝑥∈𝑋 ]       

 

Now, from above discussed equations, we achieve the following result 

 

ln 𝐸2 [𝐺𝑃 (
𝑋

𝑌
)

𝜏

] ≤ ln ∑ 𝑃(𝑦)2
𝑦∈𝑌 + ln ∑ 𝑃 (

𝑥

𝑦
)

2

𝑥∈𝑋 + ln ∑ [
𝑃(𝑎 𝑦⁄ )

𝑃(𝑥 𝑦⁄ )
]

2𝜏

𝜏+1
𝑎∈𝑋   

 

≤ ln ∑ 𝑃(𝑦)2
𝑦∈𝑌 + ln ∑ 𝑃 (

𝑥

𝑦
)

2

𝜏+1
𝑥∈𝑋 + ln ∑ 𝑃(𝑎 𝑦⁄ )

2𝜏

𝜏+1𝑎∈𝑋    

 

≤ 2ln ∑ 𝑃(𝑦)𝑦∈𝑌 +
2

𝜏+1
ln ∑ 𝑃 (

𝑥

𝑦
)𝑥∈𝑋 +

2𝜏

𝜏+1
ln ∑ 𝑃(𝑎 𝑦⁄ )𝑎∈𝑋    

 

1

2
(𝜏 + 1) ln [𝐺 (

𝑥

𝑦
) 𝐺𝑃 (

𝑋

𝑌
)

𝜏

]
2

≤ 2(𝜏 + 1)ln ∑ 𝑃(𝑦)𝑦∈𝑌 + 2ln ∑ 𝑃 (
𝑥

𝑦
)𝑥∈𝑋 + 2𝜏 ln ∑ 𝑃(𝑎 𝑦⁄ )𝑎∈𝑋   

 

𝑖. 𝑒.  
1

2
(𝜏 + 1) ln [𝐺 (

𝑥

𝑦
) 𝐺𝑃 (

𝑋

𝑌
)

𝜏

]
2

≤ 2(𝜏 + 1)ln ∑ 𝑃(𝑦)𝑦∈𝑌 + 2ln ∑ 𝑃 (
𝑥

𝑦
)𝑥∈𝑋 + 2𝐾        

 

Hence, the inequality.                                                                                

 

Claim 2.2 For any OGF (optimal guessing function) 𝐺𝑃 (
𝑋

𝑌
)  and 𝜏 ≥ 0 . Show that the inequality  

ln 𝐸 [𝐺𝑃 (
𝑋

𝑌
)

–𝜖

] ≤ ln ∑ 𝑃(𝑦)𝑦∈𝑌 +
1

–𝜖+1
ln ∑ 𝑃 (

𝑥

𝑦
)𝑥∈𝑋 − 𝑅𝜖(𝑃), where 𝛽 =

1

21−𝛼−1
.  

 

Proof: Since for any OGF 𝐺𝑃 (
𝑋

𝑌
), we have 

𝐺𝑃 (
𝑋

𝑌
) ≤ ∑ [

𝑃(𝑎 𝑦⁄ )

𝑃(𝑥 𝑦⁄ )
]

1

𝜏+1
𝑎∈𝑋                 

 

We achieve the result as follows 

 

ln 𝐸 [𝐺𝑃 (
𝑋

𝑌
)

𝜏

] = ln [∑ 𝑃(𝑦)𝑦∈𝑌 ∑ 𝑃 (
𝑥

𝑦
) 𝐺𝑃 (

𝑋

𝑌
)

𝜏

𝑥∈𝑋 ]          

 

Now, from the above discussed equations, we achieve the following result 

 

 ln 𝐸 [𝐺𝑃 (
𝑋

𝑌
)

𝜏

] ≤ ln [∑ 𝑃(𝑦)𝑦∈𝑌 ∑ 𝑃 (
𝑥

𝑦
) [∑ [

𝑃(𝑎 𝑦⁄ )

𝑃(𝑥 𝑦⁄ )
]

1

𝜏+1
𝑎∈𝑋 ]

𝜏

𝑥∈𝑋 ] 

≤ ln ∑ 𝑃(𝑦)𝑦∈𝑌 + ln ∑ 𝑃 (
𝑥

𝑦
)

1

𝜏+1
𝑥∈𝑋 + ln [∑ [

𝑃(𝑎 𝑦⁄ )

𝑃(𝑥 𝑦⁄ )
]

1

𝜏+1
𝑎∈𝑋 ]

𝜏

  

 

≤ ln ∑ 𝑃(𝑦)𝑦∈𝑌 +
1

𝜏+1
ln ∑ 𝑃 (

𝑥

𝑦
)𝑥∈𝑋 +

1

𝜏+1
ln ∑ 𝑃 (

𝑎

𝑦
)

𝜏

𝑥∈𝑋   
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≤ ln ∑ 𝑃(𝑦)𝑦∈𝑌 +
1

𝜏+1
ln ∑ 𝑃 (

𝑥

𝑦
)𝑥∈𝑋 +

1

𝜏+1
ln ∑ 𝑃 (

𝑎

𝑦
)

𝜏

𝑥∈𝑋   

 

On replacing 𝜏 by – 𝜖, we have  

 

≤ ln ∑ 𝑃(𝑦)𝑦∈𝑌 +
1

–𝜖+1
ln ∑ 𝑃 (

𝑥

𝑦
)𝑥∈𝑋 +

1

–𝜖+1
ln ∑ 𝑃 (

𝑎

𝑦
)

–𝜖

𝑥∈𝑋   

 

𝑖. 𝑒.                    ln 𝐸 [𝐺𝑃 (
𝑋

𝑌
)

–𝜖

] ≤ ln ∑ 𝑃(𝑦)𝑦∈𝑌 +
1

–𝜖+1
ln ∑ 𝑃 (

𝑥

𝑦
)𝑥∈𝑋 − 𝑅𝜖(𝑃) 

 

Hence, the inequality.  

 

Claim 2.3 Let 𝜏 > 0. Consider a source pair (𝑋, 𝑌) with PMF 𝑃. If 𝜈 =
1

1+𝜏
. then 

𝐻𝛼(𝑃)

(1+ln 𝑋)𝜏 is less than or equal to     

 

 
1

21−𝜈−1
∑ ∑ [𝑃(𝑥, 𝑦) (∑ 𝑃(𝑎, 𝑦)

1

1+𝜏𝑎∈𝑋 )
𝜏

− ∑ (𝑃(𝑥, 𝑦)
1

1+𝜏)
𝜏

𝑥∈𝑋 ]𝑦∈𝑌𝑥∈𝑋 [∑ (𝑃(𝑥, 𝑦)
1

1+𝜏)
𝜏

𝑥∈𝑋 ]
−1

  

 

 and in particular, 𝜈 =
1

2
 then, 

𝐻𝛼(𝑃)

(1+ln 𝑋)𝜏 is less than or equal to     

 

 
1

√2−1
. ∑ ∑ [𝑃(𝑥, 𝑦) (∑ 𝑃(𝑎, 𝑦)

1

1+𝜏𝑎∈𝑋 )
𝜏

− ∑ (𝑃(𝑥, 𝑦)
1

1+𝜏)
𝜏

𝑥∈𝑋 ]𝑦∈𝑌𝑥∈𝑋 [∑ (𝑃(𝑥, 𝑦)
1

1+𝜏)
𝜏

𝑥∈𝑋 ]
−1

. 

 

Proof: The inequality for OGF is 

 

  
𝐻𝜈(𝑃)

𝜆
+ 1 ≥ 𝐸(𝐺𝑃(𝑋, 𝑌)𝜏) 

 

and  𝐻𝜈(𝑃) ≥
𝐻𝜈(𝑃)

(1+ln 𝑋)𝜏    

 

So,    
𝐻𝜈(𝑃)

(1+ln 𝑋)𝜌 = 𝜆[𝐸(𝐺𝑃(𝑋, 𝑌)𝜏) − 1]  

 

 = 𝜆[∑ ∑ 𝑝(𝑥, 𝑦)𝐺𝑃(𝑥, 𝑦)𝜏 − 1𝑥∈𝑋𝑦∈𝑌 ] 

 

For 𝜏 > 0 and each 𝑦 ∈ 𝑌 

 

∑ (
𝑃(𝑎,𝑦)

𝑃(𝑥,𝑦)
)

1

1+𝜏
≥𝑎∈𝑋 𝐺𝑃(𝑥, 𝑦)  

 

Now,  𝜆[∑ ∑ 𝑃(𝑥, 𝑦)𝐺𝑃(𝑥, 𝑦)𝜏 − 1𝑥∈𝑋𝑦∈𝑌 ]  

 

≤ 𝜆 [∑ ∑ 𝑃(𝑥, 𝑦) (∑ (
𝑃(𝑎,𝑦)

𝑃(𝑥,𝑦)
)

1

1+𝜏
𝑎∈𝑋 )

𝜏

− 1𝑥∈𝑋𝑦∈𝑌 ]  

 

≤ 𝜆 [∑ ∑
𝑃(𝑥,𝑦)(∑ 𝑃(𝑎,𝑦)

1
1+𝜏𝑎∈𝑋 )

𝜏

−∑ (𝑃(𝑥,𝑦)
1

1+𝜏)

𝜏

𝑥∈𝑋

∑ (𝑃(𝑥,𝑦)
1

1+𝜏)

𝜏

𝑥∈𝑋

𝑥∈𝑋𝑦∈𝑌 ]  

 

≤ 𝜆 ∑ ∑ [𝑃(𝑥, 𝑦) (∑ 𝑃(𝑎, 𝑦)
1

1+𝜏𝑎∈𝑋 )
𝜏

− ∑ (𝑃(𝑥, 𝑦)
1

1+𝜏)
𝜏

𝑥∈𝑋 ]𝑦∈𝑌𝑥∈𝑋 [∑ (𝑃(𝑥, 𝑦)
1

1+𝜏)
𝜏

𝑥∈𝑋 ]
−1

    

 

Setting, 𝜆 =
1

21−𝜈−1
. Hence, 

𝐻𝜈(𝑃)

(1+ln 𝑋)𝜏 is less than or equal to       



 
 

 

 
Verma; Asian J. Prob. Stat., vol. 24, no. 4, pp. 17-22, 2023; Article no.AJPAS.106183 

 

 

 
21 

 

 
1

21−𝜈−1
∑ ∑ [𝑃(𝑥, 𝑦) (∑ 𝑃(𝑎, 𝑦)

1

1+𝜏𝑎∈𝑋 )
𝜏

− ∑ (𝑃(𝑥, 𝑦)
1

1+𝜏)
𝜏

𝑥∈𝑋 ]𝑦∈𝑌𝑥∈𝑋 [∑ (𝑃(𝑥, 𝑦)
1

1+𝜏)
𝜏

𝑥∈𝑋 ]
−1

   

 

 and in particular, 𝜈 =
1

2
 then, 

𝐻
1
2(𝑃)

(1+ln 𝑋)𝜏 ≤     

 

 
1

√2−1
. ∑ ∑ [𝑃(𝑥, 𝑦) (∑ 𝑃(𝑎, 𝑦)

1

1+𝜏𝑎∈𝑋 )
𝜏

− ∑ (𝑃(𝑥, 𝑦)
1

1+𝜏)
𝜏

𝑥∈𝑋 ]𝑦∈𝑌𝑥∈𝑋 [∑ (𝑃(𝑥, 𝑦)
1

1+𝜏)
𝜏

𝑥∈𝑋 ]
−1

. 

 

Hence, the required inequality. 

 

3 Conclusion 
 

We developed an entirely novel and explicit accurate characterisation of the expected number of guesses for a 

single attacker in the unrestricted attacker case in terms of Renyi entropy.  Another new result obtained in the 

paper is Claim 2.3, an interesting derivation of the union bound which is widely used in information theory, in 

terms of the expected number of guesses in a conditional guessing scheme which takes the output of a 

communication channel as its input. 
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