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Abstract: This study is about an improved high-quality light-emitting diode (LED) converter for a T8
LED tube. The converter is separated into the AC driving circuit and DC driving circuit. Also, the
LED tube was applied with an output ripple eliminator for the optical performance. The AC driving
circuit and DC driving circuit are assembled at the end of the LED tube in a G13 base and a G13 base
dummy, respectively, and the output ripple eliminator is located on an LED PCB. The proposed LED
converter is founded on a SSBB (single-stage buck-boost) converter topology and was designed for
10 W operation for a 600 mm T8 LED tube. The light waveform of the LED tube was measured by a
photosensor. The waveform had almost no ripple and was the same as a straight line. The average
calculated percent flicker of the proposed LED converter was an average of 1.9% at 100 and 240 VAC,
50 and 60 Hz. The proposed converter has lower power efficiency than a conventional converter
by 2.7% at 100–240 VAC, but it still has high power efficiency (>87%). The measurement results
represent that the LED output current regulation is below 0.92% at 100–240 VAC and the converter
obtains the power factor more than 0.84 and the total harmonic distortion is less than 14.3%. All of
the current harmonics reach the IEC 61000-3-2 Class D standards for high-quality LED converters.

Keywords: high circuit efficiency; photosensor; power factor correction; SSBB converter topology; ripple

1. Introduction

LEDs have a lot of characteristics such as high luminous efficacy, energy saving
properties and long lifetimes. These advantages have allowed LED lighting to replace other
types of lighting quickly in the marketplace. Furthermore, as regulations for the use of
traditional lighting such as incandescent lamps and florescent lamps become increasingly
stronger, the market share of LED lighting is expected to increase rapidly [1–3].

An LED lighting product generally consists of various mechanical parts, an LED
module and an LED converter. An LED converter should provide stable and accurate
current to the LED module to achieve good optical performance, since the luminance
variation of LEDs depends on the variation of the current supplied to LEDs. In addition, the
LED converter requires high power efficiency, high power factor (PF), low total harmonic
distortion (THD), low total cost, and low light flicker [4,5].

The light quality of LED lighting is mainly determined by the driving method and
the key components of the LED converter. Due to the low circuit complexity and low
cost, a single-stage power factor correction (PFC) driving method is usually used in many
types of low-power LED lightings, including LED tubes. However, the output current
inevitably has a double line frequency ripple and light flicker is generated by variation
of the luminance. Various studies show that low-frequency light flicker caused by large
output current ripple can adversely affect human health and cause headaches, visual
fatigue and epileptic attacks [6–9].

Figure 1 shows a block diagram of a typical single-stage buck-boost LED converter,
which is composed of many function blocks. An AC voltage with 50/60 Hz is supplied to a
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bridge rectifier through a line filter, and a full-wave rectified sinusoidal voltage is supplied
to the DC link capacitor CLINK. Switching is conducted for power factor correction to
obtain high power factor, and smoothing is performed to reduce the output ripple and
control the output current [5].
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Figure 1. The block diagram of typical single-stage buck-boost light-emitting diode (LED) converter.

The smoothing to remove the ripple is not perfect, so the single-stage PFC driving
method always makes a low-frequency output ripple, and output current varies between a
maximum peak and minimum peak [10]. If the light has cyclic variation in the amplitude,
percent flicker is very useful to represent the level of light flicker, which is defined as [11]:

Percent Flicker (%) =
A− B
A + B

× 100 (1)

where A and B are the maximum and minimum luminance, respectively. The Equation (1)
shows that the low percent flicker represents good performance. Several methods can
be considered to improve the light flicker caused by the double line frequency output
ripple [12–15]. One of the obvious ways is to increase the link capacitor CDC; however,
regulatory requirements for PF and THD performance may not be met. Therefore, this
method is usually suitable for non-regulated low power LED lighting. Another method is to
increase the output capacitance for the smoothing operation. However, a large electrolytic
capacitor is needed to remove the output ripple completely, which increases the system
size and cost. Therefore, this is not suitable for small lighting applications with small circuit
space. Various converter topologies have been proposed to remove current ripple [16–18].
In [16], a flicker-free LED converter composed of PFC flyback converter and a bidirectional
buck/boost converter to reduce the current ripple was proposed to reduce the current ripple.
The output current waveform is almost flat, while high power efficiency is maintained [16,17].

However, due to the high circuit complexity, it cannot be applied to applications such
as T8 LED tubes. A multiplexing ripple cancellation was proposed by adding a ripple
cancellation unit to achieve flicker-free operation in [18]. Although this solution is very
competitive, it is still too large to mount inside a G13 base with a diameter of 28 mm
for low-power LED tubes [19]. In this paper, an LED converter with an output ripple
eliminator is proposed to remove the double line frequency flicker of a T8 LED tube, while
providing high power efficiency, high PF, low THD and precise output current regulation.
Due to the addition of the output ripple eliminator, the power efficiency has been slightly
reduced by an average of 2.7%. Nevertheless, the power efficiency is still more than 87%
and light flicker is almost removed. The proposed LED converter is separated into AC and
DC driving circuit and designed to mount in a G13 base and G13 base dummy. Because of
the size limitations, we propose a practical method for product manufacturing by locating
the output ripple eliminator on the LED module. In Section 2, the theory of the output
ripple eliminator operation is explained. In Section 3, design specifications of the proposed
LED converter are represented in detail. In Section 4, a 10 W prototype is introduced and
experimental results are discussed. Finally, conclusions are given in Section 5.
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2. The Proposed LED Converter for a T8 LED Tube
2.1. Power Stage

Figure 2a shows the overall stages of the proposed LED converter, which consists of a
power stage for constant current control and a ripple remove stage to reduce the output
ripple. The power stage is physically divided into two driving circuit that are electrically
linked though the LED module [5]. Figure 2b shows a simplified circuit diagram of the
proposed LED converter with separated driving circuit for a T8 LED tube.
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DC driving circuit.

The proposed LED converter employs a single-stage buck-boost converter topology
and consists of an AC driving circuit for rectification and a DC driving circuit for constant
current control. The AC driving circuit consists of various filter components (CX, LF) for
high frequency suppression, a full bridge rectifier (BD) and a DC link capacitor (CLINK1).
The DC driving circuit includes another DC link capacitor (CLINK2), a power switch for
energy transfer (S), an inductor (L), a diode (D) and an output capacitor (CO) [5,20]. The full
bridge rectifier generates a positive full wave sinusoidal voltage from the AC line and
supplies it to the DC link capacitor in the AC driving circuit. The inductor is magnetized
and stores rectified input energy from the AC driving circuit when the switch S turns on.

During the turn-off time, the inductor is demagnetized, and stored energy is trans-
ferred to the output capacitor. In the single-stage driving method, the input voltage can be
defined as:

vIN(t) = Vin·sin(2π fLt) (2)
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where Vin is the amplitude of the input voltage and fL is the line frequency of the input
voltage. Since the controller is operated for power factor correction, the input current
waveform follows the input voltage waveform. Therefore, the input current is defined as:

iIN(t) = Iin·sin(2π fLt) (3)

where Iin is the peak value of the input current. From Equations (1) and (2), the instanta-
neous output power can be expressed as [5,21]:

pOUT(t) = ηe f f · pIN(t) = ηe f f · Vin· Iin· sin2(2π fLt) = Po·[1− cos(4π fLt)] (4)

where ηe f f is the expected power efficiency and ηe f f · Vin· Iin/2 is substituted with the
amplitude of the output power Po. When Vo is the output voltage, the instantaneous output
current can be expressed as:

iOUT(t) = Io·[1− cos(4π fLt)] (5)

where Io is the amplitude of the output current. The equation (5) shows that the single-stage
power factor correction driving method always contains double line frequency output
ripple. If the output capacitance does not sufficiently smooth the output ripple, the high
and low amplitude current flowing through the LEDs generates light flicker [5,21–23].

2.2. Ripple Free Stage

Figure 3 shows the output ripple eliminator of the proposed LED converter for alle-
viating light flicker. An output ripple eliminator is a kind of common collector amplifier
using an NPN Darlington configuration, which is one of the basic amplifier topologies, as
a voltage follower. It consists of RE, CE, and a Darlington transistor Q [24,25].
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Since the bias voltage of the base is immediately transferred to the LED anode, the
impedance should be carefully chosen to find the optimized LED operation point in terms
of power losses and light flicker elimination.

Figure 4 shows conceptual waveforms of the proposed output ripple eliminator.
To achieve a high power factor of the proposed LED converter, the output waveform
inevitably contains a large ripple with double line frequency. This double frequency ripple
is passed through the power stage and transferred to the ripple removal stage. Since the
output voltage Vo is constant with output ripple, it can be expressed as:

VO(t) = VO_dc + VO_ac(t) (6)
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where VO_dc and VO_ac(t) are the DC component and AC component with double line
frequency ripple, respectively. Therefore, the base bias voltage of the Darlington pair has
the same frequency ripple in steady state and the instantaneous value of bias voltage can
be expressed as:

VB(t) = VB_dc + VB_ac(t) = (VO_dc −VCB_dc) + [VO_ac(t)−VCB_ac(t)] (7)

where VCB_dc and VCB_ac(t) are the DC component and AC component of the collector-
base forward voltage, respectively. Considering the base-emitter forward voltage in the
Darlington input stage, VLED applied across LEDs can be obtains as:

VLED(t) = (VB_dc −VBE_dc) + [VB_ac(t)−VBE_ac(t)] (8)

where VBE_dc is the DC value, and VBE_ac(t) is the AC value. Using Kirchhoff’s voltage law,
the AC component of bias voltage VB_ac(t) is determined from XE, ZE and VO_ac(t),

VB_ac(t) =
XE
ZE
·VO_ac(t) (9)

where ZE =
√

RE2 + XE2 is the total impedance, and XE = 1/(4π fL·CE) is the impedance
of CE. If the base-emitter forward voltage VBE components are negligible, from Equations
(8) and (9), the LED voltage can be derived as:

VLED(t) = (VO_dc −VCB_dc) +
XE√

RE2 + XE2
·VO_ac(t) (10)

Equation (10) shows that the output ripple eliminator can provide a DC value to the LEDs
by adjusting the AC value to nearly zero, which means light flicker completely disappears
from the LED tube.
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3. Design Parameters

Key parameters and components were selected for the converter. Table 1 shows the
specifications of the proposed LED converter. It operates at 100–240 VAC and is designed
to cover ±10% input variation. The nominal power consumption is 10 W with ±10%
tolerance. The target variation of the output voltage and current are 106 V ± 4% and
87 mA ± 6%, respectively.
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Table 1. Specifications of the proposed LED converter.

10 W LED Converter

Item MIN TYP MAX

Input Voltage (VAC)
100 90 100 -

240 - 240 264

Input Current (mA) 34.1 (@90 VAC) - 122.2 (@264 VAC)

Input Frequency (Hz) 50 - 60

Input Power (W) 9.0 10.0 11.0

Output Voltage (V) 102 106 112

Output Current (mA) 81.8 87.0 92.2

3.1. Determining the Inductance: L

In a discontinuous current mode(DCM) single-stage buck-boost converter, the switch-
ing cycle time (TSW = 1/ fSW) can be expressed as [5]:

TSW = TON_S + TON_D + TIDLE (11)

where TON_S is the switch turn-on time, TON_D is the diode on-time and TIDLE is the time,
in which no current flows in the inductor. Since TIDLE cannot be zero to ensure DCM
operation under all conditions, DS and DD should satisfy DS + DD < 1. Therefore, from
the volt-second balance law, the inequality for DS becomes:

DS <
VO

VIN + VO
(12)

where DS is the duty ratio of the switch turn-on time (= TSW/TON_S) and DD is the
duty ratio of the diode turn-on time (= TSW/TON_D). The input current is induced as
D2

S·Tsw·VIN/2L from the buck-boost relationship, which is substituted into the power
conversion relationship (VO· IO = ηe f f · VIN · IIN) and rearranged for the inductance L:

L <
ηe f f

2 fsw
·VO

IO
·
(

VIN
VIN + VO

)2
(13)

where fSW is the switching frequency. From Equation (13), the minimum inductance can
be determined at VIN_MIN , VO_MAX and fSW_MAX = 70 kHz.

L <
0.9× 112

2× 70 k× 92.2 m
·
(

90
90 + 112

)2
= 1.55 mH (14)

Considering the size of inductor and margin, an inductance of 1.38 mH should be
chosen and manufactured with an EE1616 core.

3.2. Determining the Output Capacitance: CO

A small output ripple requires a large output capacitance; however, the higher output
capacitance, the bigger the capacitor size. Therefore, a proper percent flicker specifica-
tion without an output ripple eliminator should be considered to determine the output
capacitance while considering voltage stress and size. The output capacitance CO has the
following relationship [5,24]:

CO ≈
IC_PP

4π fL·VC_PP
≈ 2·ILED

4π fL·NS·∆VLED_Device
(15)
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where IC_PP is the peak-to-peak current of the output capacitor, which is approximately
twice the average LED current ILED. Here, ∆VLED_Device is the one LED peak-to-peak,
which varies with the LED current and NS is the number of LEDs in series. Referring to
Equation (15), the minimum output capacitance can be estimated with ILED_MAX of 92.2 mA
and fL_MIN of 50 Hz. In addition, to keep the light flicker around 10% without output ripple
eliminator, ∆VLED_Device of 95 mV should be used according to V-I characteristics [26].

CO >
2× 92.2 m

4× 3.14× 50× 35× 95 m
= 88.3 µF (16)

For practical design for a T8 LED tube, CO should be chosen as 160 V/100 µF with
dimensions of 12 × 25 mm2 (D × H).

3.3. Determining the Power Device: S, D

Both the voltage and current stress should be calculated to select an appropriate
device. Since the voltage stress of switch is VIN + VO in a buck-boost converter topology,
the maximum voltage stress is determined at VIN_MAX and VO_MAX . Therefore, the voltage
stress of the switch can be calculated as:

VS_MAX =
√

2·VIN_MAX + VO_MAX =
√

2·264 + 112 = 485 V (17)

From Table 1, when an input voltage of 90 VAC is provided to an 11 W system,
the maximum RMS current stress of the switch when considering the expected power
efficiency is:

IS_RMS_MAX =
PIN_MAX

VIN_MIN ·ηe f f
=

11
90× 0.9

= 136 mA (18)

The voltage stress of the diode is the same as VS_MAX and the maximum average
current of the diode is:

ID_AVG_MAX =
2·IO_MAX

DD
=

2× 92.2 m
0.44

= 419 mA (19)

Therefore, an 800 V/2.5 A MOSFET switch (STP3NK80) and 1000 V/1 A diode (US1M)
were selected to consider the component stress and margin with heat dissipation.

3.4. Determining the Output Ripple Eliminator: RE, CE, Q

The voltage and current relation is almost linear in driving region of LED IV curve [26],
so the dynamic resistance of the LED device can be defined as:

RLED_Device =
VLED_Device
ILED_Device

≈ 3.23 Ω (20)

To achieve a percent flicker under 1%, the current variation ∆ILED_Device of the LED
device should be within 1.4 mA according to the luminance-current characteristics [26].
Consequently, the allowed LED device voltage ∆VLED_Device is 3.23 × 1.4 m = 4.5 mV.
Therefore, when the peak-to-peak output voltage ∆VO_ac(t) is 3.33 V, the bias voltage
VB_ac(t) should be 157.5 mV in a series of 35 LEDs. From Equation (9), XE/ZE is obtained as:

XE√
RE2 + XE2

=
∆VB_ac
∆VO_ac

=
0.158
3.33

= 0.047 (21)

A small capacitor can be used to remove the low frequency ripple, and CE can be
implemented with a 100 V/1 µF chip capacitor. Since the capacitor impedance XE is
1.59 kΩ at 60 Hz, RE should be:

RE =

√(
XE

0.047

)2
− XE2 ≈ 33 kΩ (22)
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The output ripple eliminator greatly reduces the light flicker but at the same time,
additional power loss occurs in Darlington transistor Q. The power loss of Q can be
estimated as (VLED_PP/2 + VBE)·ILED, where the VLED_PP is peak-to-peak voltage across
the LED array and ILED is the average current flowing to the LED array [24,27].

PQ_MAX =

(
35× 95 m

2
+ 1.2

)
× 92.2 m = 264 mW (23)

Considering Equation (23) and heat dissipation, an MJF6388 Darlington transistor is
selected to maintain stable operation.

4. Experimental Results

A 10 W prototype of the LED converter was designed to perform the experiments, as
shown in Figure 5. The input voltage is 100–240 VAC and the line frequency is 50 Hz and
60 Hz. The output current is 87 mA, and output voltage is 106 V with 35 LEDs in series to
satisfy the luminous uniformity. Table 2 shows the specifications of the key components.
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Table 2. Specifications of key components.

AC Driving Circuit

Fuse 250 V, 1 A

Line Filter TOROIDAL, 31 uH, 4 A

X-capacitor 275 VAC, 100 nF

Bridge Diode VRRM = 1000 V, IO = 1 A

Film Capacitor 600 V, 100 nF

PCB CEM-3, 1T, 0.5 oz, Single Layer

DC Driving Circuit

Film Capacitor 630 V, 100 nF

Inductor EE1616, 1.38 mH

Electrolytic Capacitor 400 V, 22 uF, 105 ◦C

FET VDSS = 800 V, ID = 2.5A,
RDS(ON) < 4.5 Ω

Diode VRRM = 1000 V, IO = 1 A

PCB FR-4, 1T, 0.5 oz, Double Layer

Darlington Transistor NPN, VCE 100 V, IC = 10 A

Figure 6 shows the input voltage and current waveform of the proposed LED converter.
The input current waveform follows the input voltage, which means it operates properly
for power factor correction. Since the PFC operation is not affected by the output ripple
eliminator, there is no difference in the power factor between the reference converter and
the proposed converter.
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Figure 7 shows the measured waveform of the output voltage, output current, and
light output at 240 VAC/50 Hz. The light output waveform measured with the photosen-
sor amplifier contains a double line frequency ripple in the reference converter without
an output ripple eliminator. However, with the proposed converter, the light flicker is
completely removed and the result is almost a straight line.
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Figure 7. Waveform of the output voltage (dark yellow), output current (blue) and light output
(green) of the (a) reference converter, (b) proposed converter.

Using Equation (1), the percent flicker can be calculated in each input condition.
Table 3 shows the calculated percent flicker of the reference and the proposed converter
which are 13.5% and 1.9%, respectively. When using the output ripple eliminator, the light
flicker almost disappeared, and the percent flicker of the proposed converter with the
output ripple eliminator was improved by 11.6% on average.
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Table 3. Comparison of percent flicker.

Input
Reference Proposed

Light Output (mV) Percent
Flicker

(%)

Light Output (mV) Percent
Flicker

(%)VAC Hz MAX AVG MIN MAX AVG MIN

100
50 450 393 336 14.5 401 393 385 2.0

60 443 394 345 12.5 402 395 388 1.8

240
50 451 394 337 14.5 401 393 385 2.0

60 443 394 345 12.4 400 393 386 1.8

Figure 8 shows power efficiency and efficiency difference according to the input
voltage measured at 50 Hz. There is no big variation according to the line frequency.
The power efficiency of the proposed converter is 2.6–2.9% lower than that of the reference,
which means the output ripple eliminator consumes less than 2.6–2.9% of power. Although
the total power increases 2.7% on average, the power efficiency is still more than 87% in
100–240 VAC, and the light flicker can be completely removed.
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Figure 8. Power efficiency and efficiency difference according to the input voltage.

Figure 9 shows the measured output current of the reference and proposed LED con-
verters, which was measured using an LED module with 35 LEDs in series. The measured
data of the proposed LED converter is almost the same as that of reference, which shows
that the output current regulation is hardly affected by the output ripple eliminator. The av-
erage output current and its standard deviation were 87.1 mA and 0.19 mA for the proposed
LED converter at 60 Hz, respectively. The positive and negative maximum deviations from
the average output current were measured as +0.3 mA (0.34%) and −0.2 mA (0.23%) at
60 Hz. The variation of the output current is less than 1%, which is great performance,
since the power consumption tolerance of the LED tube is usually ±10%.
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Figure 9. Output current according to the input voltage.

Figure 10 shows the measured power factor in 100–240 VAC at 60 Hz. There is no
large difference between the reference and proposed LED converters, which means the
variation of the power factor is not affected by the output ripple eliminator. Due to the
influence of the input current harmonics, it slightly decreases as the input voltage increases.
Nevertheless, the power factor is still higher than 0.84 under all input voltages.
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Figure 10. PF at 60 Hz.

Figure 11 shows the THD of the proposed LED converter at 50 Hz and 60 Hz, which
is less than 14.3% under all input voltages. The values of THD at 100 VAC are 8.52% and
8.36% at 50 Hz and 60 Hz, respectively. At 240 VAC, the values are 11.44% at 50 Hz and
14.26% at 60 Hz, respectively. The measured results are slightly high at 60 Hz, but they are
very suitable for a high-quality LED tube.
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Figure 11. Total harmonic distortion (THD) according to the input voltage.

Figure 12 shows the measured results of the harmonic current at 100 VAC at 50 Hz
and 60 Hz. The maximum permissible harmonic current from the IEC 61000-3-2 Class D
standard for less than 25 W of lighting is presented with a gray bar [28,29]. The harmonic
current is markedly lower than the IEC standards.
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Figure 12. Harmonic current at 100 VAC 50/60 Hz.

5. Conclusions

In this study, an AC/DC LED converter has been proposed to remove the flicker of a
T8 LED tube. The proposed LED converter uses an output ripple eliminator and a SSBB
converter topology for the input voltage 100–240 VAC. A 10 W prototype was designed
to verify the high performance. The calculated percent was 1.9% at all input conditions.
The power efficiency is lower than that of a conventional converter by 2.7% at 100–240 VAC,
but it is still high (>87% and even 89% at 220 VAC). The experimental results represented
the LED output current regulation as less than 0.92% at 100–240 VAC and the LED converter
has a high power factor (>0.84) and low total harmonic distortion (<14.3%). Moreover,
the harmonic current of the LED converter reaches the IEC 61000-3-2 Class D standard at
100 VAC and 240 VAC input voltages for high-quality LED converters.
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