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Abstract 
In this paper, the influence of physical parameters on the width of saturated 
control frequency band and the influence of time delay parameters on the 
stability of saturated control system are studied. The analytical solution of the 
motion equation of the system when the main resonance and the 1:2 internal 
resonance occur simultaneously is obtained by multiple scale method, expe-
rimentally measured natural frequencies of nonlinear beams. The effects of 
excitation amplitude, delay feedback coefficients and nonlinear coefficients 
on saturation control are investigated. The results of the study show that the 
bandwidth of the saturation control can be increased by increasing the value 
of the external excitation, the nonlinear coefficients enhance the nonlinear 
phenomena of the system. 
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1. Introduction 

In recent years, the theory and technique of vibration suppression have been 
studied extensively. In order to suppress the vibration of the main system, vari-
ous controllers have been developed. The saturation phenomenon means that 
when the system is stimulated by the main resonance type, the amplitude of the 
main system response increases with the increase of the amplitude of the exter-
nal excitation. When the amplitude of the external excitation exceeds a certain 
critical value, the amplitude of the main system response reaches saturation and 

How to cite this paper: Li, Q.Q., Zhao, Y.Y., 
Zhou, J.C. and Wang, W.K. (2023) Effects of 
Physical Parameters and Time-Delay Coeffi-
cients on the Amplitude and Frequency 
Bandwidth of Saturation Controller for a 
Beam Vibration. Open Journal of Applied 
Sciences, 13, 2186-2197. 
https://doi.org/10.4236/ojapps.2023.1311170 
 
Received: October 7, 2023 
Accepted: November 26, 2023 
Published: November 29, 2023 
 
Copyright © 2023 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/ojapps
https://doi.org/10.4236/ojapps.2023.1311170
https://www.scirp.org/
https://doi.org/10.4236/ojapps.2023.1311170
http://creativecommons.org/licenses/by/4.0/


Q. Q. Li et al. 
 

 

DOI: 10.4236/ojapps.2023.1311170 2187 Open Journal of Applied Sciences 
 

no longer increases, then the energy is transferred to the secondary system when 
the amplitude of the external excitation continues to increase. Saturation phe-
nomenon was first discovered by Nayfeh et al. [1] when analyzing the coupling 
motion of pitch and roll of ships. Haddow et al. [2] proved the saturation phe-
nomenon through experiments and proposed that the saturation phenomenon 
could be used to make shock absorbers. Golnaraghi [3] was the first to introduce 
internal resonance in nonlinear control to control the transient free-response 
vibration of a beam. Oueini et al. [4] studied a nonlinear controller based on sa-
turation phenomenon as a vibration absorber for the linear model of a cantilever 
beam. Oueini and Golnaragi [5] proposed the use of a linear second-order ana-
log electronic circuit controller coupled to a vibrational structure by a quadratic 
nonlinear term. Khajepour and Golnaraghi [6] then implemented the technique 
on a PZT mount-driven cantilever beam. Macarri [7] studied the vibration of the 
main resonance of a cantilever beam controlled by time-delay state feedback. Pai 
et al. [8] gave the analytical, numerical and experimental results of nonlinear sa-
turation control and linear position feedback algorithms, introduced the advan-
tages of hybrid, proportional linear and saturated nonlinear controllers, and 
then coupled the two algorithms and applied them to experimental tests. Xu et 
al. [9] discussed delayed saturation controller used to suppress the vibration of 
stainless steel beams, and studied the first-mode vibration of stainless-steel 
beam. Zhao and Xu [10] studied the suppression effect of delayed feedback on 
vertical displacement vibration in two-degree-of-freedom nonlinear dynamical 
systems. Zhao and Xu [11] studied delayed feedback control and saturation con-
trol to eliminate the vibration of the dynamic system. 

For active control systems, the delay in control processing is caused by trans-
mission delay, measurement of system state, online calculation, data filtering 
and processing, and the delay caused by the execution of control force. When 
the control system is applied to a mechanical or structural system, the time delay 
phenomenon is particularly common, which can limit the performance of the 
feedback controller. In many systems, the inevitable time delay in the controller 
will complicate the system behavior and may lead to instability of the dynamic 
system. Therefore, it is very important to consider the influence of time delay on 
the system vibration reduction characteristics in nonlinear saturation control 
vibration reduction systems. This paper mainly studies the influence of physical 
parameters and time delay parameters on the amplitude and frequency band 
width of nonlinear beam vibration saturation controller. The structure of this ar-
ticle is as follows. Firstly, the motion equation of the beam is given, and the per-
turbation analysis and stability analysis of the equilibrium solution are given re-
spectively in Section 2. In Section 3, the natural frequency of the cantilever beam 
is measured, and in Section 4, the influence of physical parameters and delayed 
feedback control on the saturation control is studied. In nonlinear saturated 
control systems, when numerical simulation is carried out, it is found that the 
nonlinear system is more sensitive to the initial value, and a little change in the 
initial value leads to system instability, and the study of the time-delay coeffi-
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cients and the physical parameters of the damping system of the bandwidth is 
particularly important, and at the same time, it also provides a theoretical basis 
for engineers and technicians to the real-time operation of the control system. 

2. Equations of Motion with the Saturation Control 

Warminski et al. [12] studied the application of saturation control in flexible 
geometric nonlinear beam-like structures with macro-fiber composite (MFC) 
actuators. Based on this model, the dynamic system model in this paper is 
coupled with two velocity delay feedback control variables, and the correspond-
ing system differential equation is shown in the equation. 
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where u, 1ω  and v, 2ω  are the displacements and the natural frequencies of 
the cantilever beam and controller respectively. 1ζ  and 2ζ  are the damping 
coefficients of the cantilever beam and controller respectively. β  and δ  are 
the system nonlinear coefficients respectively, while γ  and α  denote the qu-
adratic nonlinear feedback gain coefficients respectively. f and Ω are the external 
excitation amplitude and frequency respectively. ( )41g u t τ−  and ( )52g v t τ−  
are the velocity feedback signals of the cantilever beam and the saturation control-
ler respectively, 1g  and 2g  are the feedback gain coefficients of the cantilever 
beam and the controller, 4τ  and 5τ  are the feedback time delays. ( )3

2v tγ τ−  is 
feedback signal of the controller. 

2.1. Mathematical Analysis 

In order to analyze the nonlinear saturated system described above, introducing a 
formal small-scale parameter ε  ( 0 1ε< < ) to find the solution of steady states of 
Equation (1). It can be set that: 1 1ζ εζ= , 2 2ζ εζ= , 1 1g gε= , 2 2g gε= ,  

1β ε β−= , 1δ ε δ−= , 2f fε= . The method of multiple scales is employed to 
seek second order approximate solutions of (1), Then set the displacements of 
the cantilever beam and the controller u and v and the time-delay value 

1
vτ , 

2
uτ , 

3
vτ , 

4
uτ , 

5
vτ  are solved as follows: 
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where 0T t=  is the fast-varying time scale, 1T tε=  is the slow-varying time 
scale, and ( )0,1,2,n

nT t nε= =   is the newly introduced independent variable. 
In the following, the system is analyzed in the presence of a 1:1 primary re-

sonance and a 1:2 internal resonance, whose coefficients are required to be equal 
to zero, and convert small-divisors into secular terms by introducing the detun-
ing parameters sσ  and cσ  according to:  

1 sω εσΩ = + , 2 12 cω ω εσ= +                   (9) 

we can obtain the solvability conditions: 
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Introducing polar notation ( ) ( )1 1
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2

i TA a T θ=  and ( ) ( )2 1
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i TA a T θ=  into  

Equation (10) and Equation (11), then separating the real and imaginary parts 
leads to the following equation: 
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where 11 1sTφ σ θ−= , 12 2 12 cTφ θ θ σ= − − . 

2.2. Equilibrium Solutions 

Assuming that the amplitudes of both the cantilever beam and the controller 
are positive, there exist two equilibrium solutions: a single-modal solution and a 
coupled-modal solution, and the two modal solutions are as follows: 
where 2 0a = , obtain single-mode solution: 

( )

( )

2

2
1 1 1 1 4 1

1

2
1 1 1 4 1

1

2

22

1

3 1 1 cos
8 4 2

1 sin
2 2

sa a g

fa g

β δω τ ω
ω

ω τ
ω

ζ ω

σ
 
  
 

  + =

 
+ + − 







+     

            (16) 

where 2 0a ≠ , obtain coupled-mode solution: 
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To get the steady-state solutions of Equations (12)-(15) and to determine the 
stability of the equilibrium solutions, the Cartesian coordinates is introduced: 
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where ( )1 1 1cosp a φ= , ( )1 1 1sinq a φ= , 1 2
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3. Natural Frequency of a Cantilever Beam 

The cantilever beam selected for the experiment is a carbon fiber beam, for 
which modal experiments are conducted to measure the natural frequency and 
vibration mode of the cantilever beam by force measurement method.  

Figure 1 shows the whole experimental device is fixed on the table of the opt-
ical platform, and one end of the horizontal cantilever beam is fixed on a column 
clamp, which is clamped with screws, and two acceleration sensors are con-
nected to the beam, and the sensors are general-piezoelectric sensors. The device 
includes a force hammer, a vibration control system, acceleration sensors, a sig-
nal acquisition and analyzer, and a PC. 

The general flow of this experiment is as follows: establish a cantilever beam 
model in the modal module, stimulate the cantilever beam with a force hammer, 
collect the response signals from the acceleration sensor and the force hammer. 
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Figure 1. Experimental photos. 
 

Figure 2 shows the mode diagram in the analysis module of the pc side, the 
first-order modal frequency of the cantilever beam is 16.44 Hz, which is then 
substituted into the subsequent calculations. 

4. Effect of Parameters on Saturation Control Amplitude and  
Frequency Bandwidth 

In order to solve for the effective saturation control damping bandwidth, and in 
order to further analyze the effect of the parameters on reducing the amplitude 
and bandwidth of the main system, it is discussed in the following two cases. 

Case 1: 0cσ = , 1 16.44ω =  Hz, 2 1 2 8.22ω ω= =  Hz. 
Case 2: 0sσ = , 1 16.44ω =  Hz, 2 1 2 8.22ω ω= =  Hz. 
The equilibrium solutions can be solved by setting 1 1 2 2 0p q p q′ ′ ′ ′= = = = , the 

amplitude equations of the cantilever beam and the controller can be written as: 

( )2 2 1,2i i ia p q i= + =                       (22) 

4.1. External Excitation f Effects on Saturation Control 

The effect of external excitation on saturation control is discussed below in two 
cases, from Figure 3 and Figure 4, it can be seen that three force sizes are cho-
sen as 0.03f = , 0.06f = , 0.09f =  and other parameters are shown in Ta-
ble 1. 

Figure 3 and Figure 4 show that with the increase of the external excitation 
value, the interval of saturation control continuously increases, and the response 
amplitude of the controller increases, in which the solid line and the hollow cir-
cle represent the stable solution and the unstable solution respectively.  

Figure 4 shows that as the case 2 of the graph with internal tuning parameters 
changes, the amplitude of the beam does not become a straight line in the range 
outside the saturation control interval, and the greater the external excitation is, 
the larger the amplitude of the beam is. The greater the amplitude of the master 
system and controller within the saturated control interval. 

4.2. Effects of the Nonlinear Coefficient β 

From Figure 5 and Figure 6, it can be seen that the coefficients of the cubic non-
linear coefficients are respectively 4β = , 8β = , 12β =  and 16β = , other 
parameters are listed in Table 1. 
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Figure 2. First order mode of vibration of the beam. 
 

 
(a) 

 
(b) 

Figure 3. Amplitude-frequency response curves of Case 1: (a) beam; (b) controller. 
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(a) 

 
(b) 

Figure 4. Amplitude-frequency response curves of Case 2: (a) beam; (b) controller. 
 

 
(a) 

 
(b) 

Figure 5. Amplitude-frequency response curves of Case 1: (a) beam; (b) controller. 
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(a) 

 
(b) 

Figure 6. Amplitude-frequency response curves of Case 2: (a) beam; (b) controller. 
 
Table 1. Physical parameters. 

Physical parameters α  β  γ  

numerical value 0.8 12.21 0.01 

Physical parameters δ  1ζ  2ζ  

numerical value 1 0.01 0.0001 

Physical parameters 1ω  2ω  f  

numerical value 16.44 8.22 0.03 

Physical parameters 1g  2g  1τ  

numerical value 0 0 0 

Physical parameters 2τ  3τ   

numerical value 0 0  

 
Figure 5 shows that as the value of the third nonlinearity coefficient increases, 

the saturation control interval decreases and the nonlinearity of the beam in-
creases. The controller is stable only at positive outer tuning parameters, and has 
a semi-arch shape with a semi-stable region in the saturation control interval. 
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Figure 6 shows that when the internal tuning parameter is varied for Case 2, 
the main system amplitude is constant outside the saturation control interval 
and is a horizontal straight line that decreases with increasing values of the third 
nonlinear coefficient. 

4.3. Feedback Coefficient g1 Effect on Saturation Control 

From Figure 7 and Figure 8 it can be seen that the selection feedback coeffi-
cients are respectively 1 0.18g = − , 1 0.8g = − , 1 0.02g =  and 1 0.12g = , other 
parameters are listed in Table 1. 

Figure 7 shows that as the feedback gain coefficient decreases, the saturation 
control interval is increasing, the amplitude of the main system in the saturation 
control interval is increasing, and the amplitude of the controller is decreasing. 
The variation curve of the main system amplitude in the saturation control in-
terval is axisymmetric about the outer tuning parameter and is the curve. 

Figure 8 shows that unchanged amplitude of the main system outside the sa-
turated control interval. The larger the feedback gain coefficient, the smaller the 
saturation control interval and the smaller the amplitude within the saturation 
control interval, also within the saturation control interval with respect to the 
internal tuning parameter 0cσ =  axis symmetry. 
 

 
(a) 

 
(b) 

Figure 7. Amplitude-frequency response curves of Case 1: (a) beam; (b) controller. 
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(a) 

 
(b) 

Figure 8. Amplitude-frequency response curves of Case 2: (a) beam; (b) controller. 

5. Conclusions 

In this paper, the effects of physical and control parameters on saturation con-
trol are investigated. The approximate solution of the vibrating system when the 
main resonance and the 1:2 internal resonance occur simultaneously is obtained 
by using the multiscale method. Through the above analysis, the following main 
conclusions are drawn. 

The bandwidth of the saturation control can be increased by increasing the 
value of the external excitation, the nonlinearity of the beam is enhanced by in-
creasing the cubic nonlinearity factor β . As the feedback gain coefficient 1g  
decreases, the saturation control interval increases. Case 1 and Case 2 are the 
amplitude-frequency response curves of two different frequency bases; when 
Case 1, the variation curve of the main system amplitude in the saturation con-
trol interval is not exactly in the form of an even function, i.e., it is not exactly 
axisymmetric with respect to the outer tuning parameter 0sσ = ; whereas, 
when Case 4, the variation curve of the main system amplitude in the saturation 
control interval is exactly axisymmetric with respect to the inner tuning para-
meter 0cσ = , and the amplitude of the main system outside the saturation 
control interval is unchanged. 
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