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Abstract

The paper aims at solving two systems of nonlinear partial differential equations , namely the Fisher-Murray
and the Fitz Hugh-Nagumo which are two different mathematical models often used to study ecological and
biological phenomena. These systems of equations are solved using the numerical Method of Lines (MOL)
and the computed solution are compared with the ones obtained from SBA method(combination of Adomian
method, Picard and successive approximation) by means of Matlab routines. The results showed the accuracy
and the effeciency of two methods.
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1 Introduction

System of nonlinear equations arise in many fields of applied mathematics and engineering. The Fitz Hugh-
Nagumo and Fisher-Murray systems are two examples of nonlinear systems of equations. The Fisher-Murray
system models the propagation of biological limits, the diffusion of a population in an environment. This is
derived from a diffusion reaction equation whereas Fitz Hugh-Nagumo model describes neuronal oscillations
and excitability. The motivation behind the determination of solution to these systems will lead us to an
understanding of the patterns of propagation, developpement and behaviour of population in the case of Fisher-
Murray system, as well as for the mode of operation of neuronal oscillations for the Fitz Hugh-Nagumo model.
These two models help researchers to predict, understand and control a wide range of natural and biological
phenomena. The methods to find their solutions are of fondamental importance. As analytical solution are rarely
available, the research of efficient numerical methods are essential. Consider the following system of nonlinear
partial differential equations ([1]; [2]; [3]) of type{

ut = k1uxx +R (u, ux, v, vx) , (x, t) ∈ Ω× [0, T ]
vt = k2vxx +Q (u, ux, v, vx) , (x, t) ∈ Ω× [0, T ]

(1.1)

where u = u(x, t) and v = v(x, t) are dependant variable of independant spatial variable x ∈ Ω = [0.L] and
temporal t ∈ [0, T ] , R and Q are the reaction nonlinear functions of u,ux,v,vx. The contants coefficients k1 > 0

and k2 > 0 are the thermal diffusibility of the media. For brievity ut =
∂u

∂t
and uxx =

∂2u

∂x2
. The system of

equations (1.1) wil be solved on the spatial interval [0, L] subject to boundary conditions for u{
u(0, t) = a(t)
ux (L, t) = b(t)

(1.2)

and for v

{
v(0, t) = α(t)
vx (L, t) = β(t), t ∈ [0, T ]

(1.3)

and the initial conditions {
u(x, 0) = s(x)
v (x, 0) = r(x), x ∈ [0, L]

(1.4)

The boundary condiions (1.2) and (1.3) give the values of the two solution and their flux at the two ends of
space domain as function of t. The equations in (1.4) specify the initial conditions.

We aim at solving numerically this problem, using the Method of Lines(MOL) ([4], [5], [6]; [7], [8]) and compared
with SBA method. To solve the nonlinear systems of partial differential equation, we want to transform them
into an ordinary differential equation . To achieve this, we need to eliminate the space variable by discretization
and retain the time variable, thus creating an ordinary differential equation. The Somé Blaise Abbo(SBA)
method ([9], [10], [11], [12]) is an efficient algorithm used by researchers to solve partial differential equations and
ordinary differential equations. This method meets the challenges of Adomian polynomial calculations. The
basic idea is to see the consistency between the analytical Somé Blaise Abbo method and the numerical lines
method, and to analyse which of the two methods provides a less costly solution.

The paper is organized as follows. In section 2 we describe the Method Of Lines. In section 3, we apply these
methods for solving two numerical example: the system of non linear equations of FitzHugh-Nagumo and the
system of nonlinear equations of Fisher-Murray.
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2 Method

We have the choice to discretize both in space and time to obtain a set of nonlinear algebraic equations(AEs) or
to discretize only the space derivative and obtaining a set of non linear differential algebraic equations(DAEs).
The last approach is retained in this work.The method of lines(MOL) ([13], [14], [15], [16], [9]) is a general
way to convert a partial differential equation(PDE) [17]; [18] in the form of system of ordinary differential
equations(ODE) see [19], [14] [20].[21] The derivatives with respect to the space variables in PDE are discretized
to obtain a system of ODEs in time variable ([3]). A suitable ODE solver ([22] [20]) is used for the solution of
ODE system. This method is give a very accurate numerical solution for linear and non linear PDE. We define
a uniform mesh 0 = x0 < x1 < ... < xN = L with

xi = (i− 1)h, i = 1, 2, ..., N, h =
L

N − 1
(2.1)

to approximate (1.1) along x = xi with{
ut (xi, t) = k1uxx (xi, t) +R (u (xi, t) , ux (xi, t) , v (xi, t) , vx (xi, t)) ,
vt (xi, t) = k2vxx (xi, t) +Q (u (xi, t) , ux (xi, t) , v (xi, t) , vx (xi, t)) , i = 1, 2, ..., N − 1

(2.2)

Let ui (t) = u (xi, t) and vi (t) = v (xi, t) . The equation (1.1) can be dsicretized on the uniform mesh (2.1), using
the finite difference method [23] [14] [24]− [27] with the central difference approximation to obtain

dui

dt
(t) = k1

ui+1 (t)− 2ui(t) + ui−1

h2
+Ri , i = 1, 2, ..., N − 1

dvi
dt

(t) = k2
vi+1 (t)− 2vi(t) + vi−1 (t)

h2
+Qi , i = 1, 2, ..., N − 1

(2.3)

where
Ri = R (ui , δpi, vi, δqi) , Qi = Q (ui , δpi, vi, δqi) (2.4)

and

δpi =
ui+1 − ui−1

2h
, δqi =

vi+1 − vi−1

2h
(2.5)

The boundary conditions (1.2) can be discretized to give{
u0(t) = a(t)
uN+1 = uN−1 + 2hb(t)

(2.6)

and for v {
v0(t) = α(t)
vN+1 = vN−1 + 2hβ(t)

(2.7)

For initial condition,the discretization of (1.4) give{
ui (0) = si , 1 ≤ i ≤ N
vi (0) = ri, 1 ≤ i ≤ N

(2.8)

By introducing (2.6) and (2.7) in (2.3) by taking i = 1 and i = N , we get
du1

dt
(t) =

k1
h2

(u2 (t)− 2ui(t) + a(t)) +R1

dv1
dt

(t) =
k2
h2

(v2 (t)− 2v1(t) + α (t)) +Q1

(2.9)

and 
duN

dt
(t) =

k1
h2

(2uN (t) + 2uN−1(t) + 2hb(t)) +RN

dvN
dt

(t) =
k2
h2

(2vN (t) + 2vN−1(t) + 2hβ (t)) +QN

(2.10)
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The equation 
dui

dt
(t) = k1

ui+1 (t)− 2ui(t) + ui−1

h2
+Ri , i = 2, ..., N − 1

dvi
dt

(t) = k2
vi+1 (t)− 2vi(t) + vi−1 (t)

h2
+Qi , i = 2, ..., N − 1

(2.11)

can be added to others in (2.9) and (2.10) .

2.1 Vectoriel and matricial form

We let
w = [u1(t), u2 (t) , ..., uN−1 (t) , uN (t) , v1 (t) , .v2 (t) ..., vN (t)]T (2.12)

F (w ) =



k1
h2

(u2 (t)− 2ui(t) + a(t)) +R1

...

k1
ui+1 (t)− 2ui(t) + ui−1

h2
+Ri

...
k1
h2

(2uN (t) + 2uN−1(t) + 2hb(t)) +RN

k2
h2

(v2 (t)− 2v1(t) + α (t)) +Q1

...

k2
vi+1 (t)− 2vi(t) + vi−1 (t)

h2
+Qi

...
k2
h2

(2vN (t) + 2vN−1(t) + 2hβ (t)) +QN



(2.13)

where 2 ≤ i ≤ N − 1. Using (2.8) as initial condition, and noting by

g = [r1(t), r2 (t) , ..., rN−1 (t) , rN (t) , s1 (t) , .s2 (t) .., sN (t)] T (2.14)

the assciate vectoriel form we then obtain

w (0) = g, (2.15)

The equations (2.9)− (2.11) and (2.15) give the following autonomous system of ordinary differential equation.{
dw

dt
(t) = F (w (t)) , t > 0

w (0) = g
(2.16)

The MOL approximation replaces a PDE system in (1.1) with an initial-value ODE system in (2.16).This ODE
system is integrated using a standard routine. In this way, the solution take avantage of the progress in ODE
numerical integrators available in Matlab like RK4 or ode15s, ode 23tb, ... for stiff system of ODE.

3 Numerical Experiments

In this section, we solve some examples to show the efficiency of the method of lines and compare the resulting
numerical solution with the one obtained by the SBA method.

Example 3.1. The first example consider the FITZ Hugh-Nagumo sytem of equations (1.1)− (1.2)

{
ut = ζuxx + 2u+ v,
vt = ζvxx + uv + v2
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where L = π, T = 10, k1 = k2 = ζ, R (u, v) = 2u+ v, Q (u, v) = uv + v2 with initial conditions{
u (x, 0) = θ1 cosx+ θ2 sinx
v (x, 0) = − (θ1 cosx+ θ2 sinx)

and boundary conditions {
u (0, t) = |θ1| exp(|1− ζ| t)
v (0, t) = − |θ1| exp(|1− ζ| t)

and {
u (π, t) = − |θ1| exp(|1− ζ| t)
v (π, t) = |θ1| exp(|1− ζ| t)

{
u (π, t) = − |θ1| exp(|1− ζ| t)
v (π, t) = |θ1| exp(|1− ζ| t)

The parameters θ1 = .05; θ2 = 1.5; ζ = 0.5 are considered for the demonstration The solutions give by the
application of SBA method ([9], [10], [11], [12]) give
u (x, t) = |θ1 cosx+ θ2 sinx| exp(|1− ζ| t) and v (x, t) = − |θ1 cosx+ θ2 sinx| exp(|1− ζ| t) wich can be used for
the comparison of our method.

Fig. 1. MOL Solution for u and v at a fixed time

Fig. 2. MOL Solution for u
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Fig. 3. MOL Solution for v

Fig. 4. SBA Solution for u

Fig. 5. SBA Solution for v
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Example 3.2. The second example consider the sytem of equations (1.1)− (1.2) de type Fisher-Murray

{
ut = uxx + [u.ux]x + u2 − v2,
vt = vxx − v2x + u2

With L = π, T = 10, k1 = k2 = 1, R (u, ux,v, vx) = [u.ux]x + u2 − v2, Q (u, ux, v, vx) = −v2x + u2 with initial
conditions {

u (x, 0) = sinx
v (x, 0) = cosx

and boundary conditions {
u (0, t) = 0
v (0, t) = exp(−t)

∂u

∂x
(π, t) = − exp(−t)

∂v

∂x
(π, t) = 0

The semi-analytical solution computed using SBA method is given by u (x, t) = sinx exp(−t), v (x, t) =
cosx exp(−t) to be compared with MOL numerical method. The different numerical analysis for MOL method

has been undertaken by dividing the spatial domain Ω = [0, π], using N=101 with h =
π

N − 1
and replacing

derivatives using the finite difference method for order two. For resulting ODE, we ressort to ODE solver ode15s
wich is convenient for stiff problem in the interval [0, .1]. The comparison was made by confronting the graph
provide by MOL and SBA methods.

Fig. 6. MOL Solution for u and v at a fixed time

Fig. 7. MOL Solution for u

26



Himeda et al.; J. Adv. Math. Com. Sci., vol. 38, no. 12, pp. 20-29, 2023; Article no.JAMCS.110122

Fig. 8. MOL Solution for v

Fig. 9. SBA Solution for u

Fig. 10. SBA Solution for v

The comparison is made using the graphs from the method of lines and those from the Somé Blaise Abbo
method, in fact the graphs represent the semi-analytical solutions and the numerical solutions.
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4 Conclusion

This paper investigated MOL method for solving the one-dimensional systems of nonlinear partial differential
equations and compared the resulting solution of another semi-analytical SBA method. The method of MOL
proceeds in two separate steps. Firstly, spatial derivatives are replaced with finite difference, using finite
difference method, finite element method, finite volume method, spectral method and the resulting systems
of ordinary differential equations is integraded over time. The availability of high-quality numerical algorithm
for solution of stiff system of odes facillited the computation of the desired results. For our paper we have chosen
the finite difference method for discretization in space because of the simplicity to implement in Matlab code
and the non-complexity of domain. The use of other spatial discretization methods is not ruled out for future
work.
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