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ABSTRACT

This research paper explores various properties of Sobolev spaces on compact manifolds, focusing on
embedding theorems, compactness, and inequalities. We establish the compact embedding of Sobolev spaces
into continuous and Lebesgue spaces, as well as the continuity and compactness of embeddings between
different Sobolev spaces. We also derive inequalities involving the Laplacian and gradients of functions,
providing insights into their behavior on manifolds. These results contribute to our understanding of the interplay
between function smoothness, continuity, and distribution on compact manifolds.
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1 INTRODUCTION

This research paper focuses on the study of Sobolev
spaces on compact manifolds, exploring their properties
and relationships with other function spaces. The
paper establishes the compact embedding of Sobolev
spaces into continuous and Lebesgue spaces on
compact manifolds, highlighting the connection between
function smoothness and continuity. It also investigates
the compactness of embeddings between different
Sobolev spaces, providing conditions under which
these embeddings are compact. The paper derives
inequalities involving the Laplacian and gradients of
functions, offering insights into the distribution and
behavior of functions on compact manifolds. Overall,
the research paper contributes to our understanding
of Sobolev spaces and their implications for function
behavior on compact manifolds, with applications in
various mathematical and scientific fields. More
literature can be obtained from [1, 2, 3, 4, 5]

2 PRELIMINARIES

Before delving into the specific details of our research,
we introduce the necessary concepts and notation
which are obtained from [6, 7, 8, 9, 10, 11, 12, 13]

Definition 2.1. Sobolev Spaces: Sobolev spaces are
a class of function spaces that provide a framework
for studying the regularity of functions with weak
derivatives. They are defined on domains in Euclidean
spaces and extend naturally to functions defined
on manifolds. The Sobolev norm measures the
smoothness of functions and their derivatives, making it
a crucial tool for analyzing functions’ behavior on curved
surfaces.

Definition 2.2. Compact Manifolds: A compact
manifold is a topological space that locally resembles
Euclidean spaces but may have a non-trivial global
structure. Compactness ensures that the manifold is
bounded and finite, creating a conducive environment
for studying function spaces and their properties. The
dimension of the manifold, denoted as ”n,” characterizes
its geometric complexity.

Definition 2.3. Embedding Theorems: Embedding
theorems establish relationships between different
function spaces, indicating how functions in one space

can be continuously or compactly embedded into
another space. These theorems provide insights into
the interplay between different function spaces and their
intrinsic properties, shedding light on the regularity and
behavior of functions.

Definition 2.4. Poincaré Inequality: The Poincaré
inequality relates the Sobolev norm of a function
to its average value and gradient. It provides a
quantitative measure of how much a function deviates
from its average on a compact manifold. The
inequality’s application allows for the characterization of
functions’ distribution and regularity, contributing to our
understanding of their behavior.

3 METHODOLOGY

The methodology employed in this research paper
encompasses a combination of mathematical
techniques, including mathematical and functional
analysis, as well as concepts from differential geometry.
The compact embedding theorems are established
by considering sequences of functions within Sobolev
spaces and utilizing tools such as the Arzelá –Ascoli
theorem and the Rellich-Kondrachov Compactness
Theorem to ensure convergence in the target space.
Inequalities involving Laplacians and gradients are
derived through manipulation of established inequalities
like the Poincaré inequality and the divergence theorem.
The proofs for the reflexivity of Sobolev spaces and
the trace theorems involve concepts from functional
analysis and topological vector spaces, while continuity
and compactness of embeddings are demonstrated
through composition of embeddings and analysis of
prerequisites for continuity and compactness. Overall,
the methodology requires a deep understanding of
mathematical analysis, functional analysis, differential
geometry, and topology to establish the desired results.

4 RESULTS

The results presented in this study enhance
our comprehension of Sobolev spaces and their
characteristics when applied to compact manifolds.
We start by demonstrating the compact inclusion
of Sobolev spaces within the domain of continuous
functions on a compact manifold, emphasizing the
intricate relationship between various function spaces.
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Theorem 4.1. Let M be a compact manifold and p > n,
where n is the dimension ofM . Then the Sobolev space
W k,p(M) is compactly embedded in the C0(M) space.

Proof. Let {fn} be a sequence in W k,p(M) converging
to f in the W k,p(M) norm. By the Sobolev norm
definition,

‖fn − fm‖C0(M) ≤ ‖fn − fm‖k,p.

Since M is compact, {fn} is both uniformly bounded
and equicontinuous. This means that there exists a
constant C such that ‖fn‖C0(M) ≤ C for all n, and that
for any ε > 0, there exists a δ > 0 such that

|fn(x)− fm(x)| < ε

for all x ∈M and all n,m ≥ N , where N is a sufficiently
large integer. The Arzelá –Ascoli theorem states that
a sequence of equicontinuous and uniformly bounded
functions on a compact space has a convergent
subsequence. Therefore, there exists a subsequence
{fnk} of {fn} that converges uniformly to a function
g. As {fnk} converges to f in the W k,p(M) norm, we
conclude that g = f . Thus, the entire sequence {fn}
converges to f in the sup-norm topology, establishing
the compact embedding.

Furthermore, we can expand upon the idea of
embedding by illustrating the continuous embedding of
Sobolev spaces into Lebesgue spaces. This allows us
to uncover the intricate relationship between Sobolev
and Lebesgue norms, shedding light on the connection
between these two important mathematical constructs.

Theorem 4.2. Let M be a compact manifold. If
k > m + n

p
, then the Sobolev space W k,p(M) is

continuously embedded in the Lebesgue space Lp(M),
with ‖f‖Lp(M) ≤ C‖f‖k,p for any f in W k,p(M).

Proof. Let f ∈W k,p(M). By the Poincaré inequality,

‖f −
∫
M

fdµ‖Lp(M) ≤ C‖∇f‖Lp(M).

Since k > m + n
p

, ∇f ∈ Wm,p(M). By the
Rellich-Kondrachov compactness theorem, W k,p(M) is
compactly embedded in Wm,p(M). Therefore, there
exists a sequence {∇fn} ⊂ Wm,p(M) that converges
to ∇f in the Wm,p(M) norm. This implies that
‖∇fn‖Lp(M) → ‖∇f‖Lp(M) as n → ∞. Combining
these results, we have

‖f −
∫
M

fdµ‖Lp(M) ≤ C‖∇fn‖Lp(M) → C‖∇f‖Lp(M),

which confirms the desired embedding.

Additionally, we emphasize the importance of the
compactness of the embedding between Sobolev
spaces on a compact manifold. We highlight the specific
conditions that need to be satisfied in order for this
embedding to occur.

Theorem 4.3. On a compact manifold M , the
embedding from W k,p(M) into Wm,p(M) is compact if
k > m and p > n.

Proof. Let {fn} be a bounded sequence in W k,p(M).
By the Banach-Alaoglu theorem, a weakly convergent
subsequence {fnk} can be extracted. Let g denote
the weak limit of {fnk} in W k,p(M). Given
the boundedness of {fnk} in W k,p(M), g is also
bounded within W k,p(M). Applying the weak lower
semicontinuity of the Sobolev norm, we find ‖g‖k,p ≤
lim inf ‖fnk‖k,p, implying that the entire sequence
{fn} possesses a weakly convergent subsequence in
W k,p(M), thus confirming compactness.

The Poincaré inequality provides valuable insights into
the behavior of functions on a manifold. It places a
bound on the difference between a function and its
average, based on the gradient of the function in the
Lp norm. This inequality helps us understand how
functions behave and change on the manifold.

Theorem 4.4. For a compact manifold M , there exists
a constant C such that for any f in W 1,p(M), where
p > 1, we have ‖f −

∫
M
fdµ‖Lp(M) ≤ C‖∇f‖Lp(M),

where ∇f represents the gradient of f and µ is the
volume measure on M .

Proof. Take f as a function in W 1,p(M). Using the
mean value theorem, for any x, y in M , a curve
γ from x to y exists such that |f(x) − f(y)| ≤
‖∇f‖Lp(γ)dist(x, y)

1
p . Integrating both sides over M

and utilizing the triangle inequality, we obtain ‖f −∫
M
fdµ‖Lp(M) ≤ ‖∇f‖Lp(M)diam(M)

1
p . Since M is

compact, the diameter is finite, thus proving the desired
inequality.

. This lemma demonstrates the reflexive property
of Sobolev spaces within certain ranges of p, enhancing
our comprehension of the underlying structure of these
function spaces.

Lemma 4.1. The Sobolev space W k,p(M) is reflexive
for 1 < p <∞.
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Proof. The reflexivity of W k,p(M) follows from the
Banach-Alaoglu theorem, as the unit ball in the
dual space W−k,q(M) is weak-∗ compact. This
compactness ensures that any bounded sequence in
W k,p(M) contains a weakly convergent subsequence.
Thus, W k,p(M) is reflexive for 1 < p <∞.

We derive an inequality that relates the Laplacian of a
function to its Sobolev norm on a compact Riemannian
manifold. This enhances our comprehension of how
functions behave under specific geometric conditions.

Lemma 4.2. LetM be a compact Riemannian manifold.
Then, there exists a constant C such that for any f ∈
W 1,p(M), where p > 1, we have |f −

∫
M
fdµ|Lp(M) ≤

C|∆f |Lp(M), where ∆f represents the Laplacian of f .

Proof. By utilizing the divergence theorem, the
Laplacian of a function f ∈ W 1,p(M) can be related
to its gradient and normal derivative on the boundary
of M . This allows us to establish an inequality similar
to the one in Theorem 4, with the Laplacian replacing
the gradient. The compactness of M ensures that the
Laplacian is bounded, leading to the desired result.

We show the establishment of the continuity of an
embedding between Sobolev and continuous function
spaces under specific conditions, providing insights
into the interplay between function smoothness and
continuity.

Proposition 4.1. The embedding W k,p(M) ↪→ C0(M)
is continuous if k > m and p ≥ 1.

Proof. By the Sobolev embedding theorem, we know
that W k,p(M) ↪→ Wm,p(M). Since Wm,p(M) ↪→
C0(M) due to Proposition 1, the composition of
embeddings implies the continuity of W k,p(M) ↪→
C0(M).

The following proposition establishes the compact
embedding of Sobolev spaces into continuous
function spaces on compact manifolds with boundary,
highlighting the continuity and smoothness of functions
across boundaries.

Proposition 4.2. Given a compact manifold M with
boundary, the Sobolev space W k,p(M) is compactly
embedded in C0(M).

Proof. Similar to the proof of Theorem 1, consider
a sequence fn in W k,p(M) converging to f in the
W k,p(M) norm. The Arzelá–Ascoli theorem can be

applied to establish the existence of a subsequence
fnk converging uniformly on both the interior and the
boundary of M . This uniform convergence, along with
the convergence in the W k,p(M) norm, ensures the
compact embedding of W k,p(M) in C0(M).

Next we establish the compactness property of Sobolev
space embeddings on compact manifolds, providing
a deeper understanding of the behavior of functions
across different Sobolev spaces.

Theorem 4.5. On a compact manifold M , the
embedding from W k,p(M) into Wm,q(M) is compact if
k > m and p ≥ q.

Proof. Let fn be a bounded sequence in W k,p(M). By
the Rellich-Kondrachov Compactness Theorem, there
exists a subsequence fnk that converges strongly in
Wm,q(M). Applying the Sobolev embedding theorem,
we deduce that Wm,q(M) ↪→ C0(M) if m > n

(
1− 1

q

)
.

Since k > m and p ≥ q, the composition of
embeddings confirms the compactness of W k,p(M) in
Wm,q(M).

Finally, we establish an inequality between Sobolev and
Lebesgue norms for functions on compact manifolds
with boundary, offering insights into the distribution of
functions and their gradients.

Theorem 4.6. For a compact manifold M with
boundary, there exists a constant C such that for any f
inW 1,p(M), where p > 1, we have |f−

∫
M
fdµ|Lp(M) ≤

C|f |W1,p(M).

Proof. By employing the Poincaré inequality and a
suitable version of the trace theorem for functions
in W 1,p(M), we can establish that the difference
between a function and its average is bounded by its
Sobolev norm. This implies |f −

∫
M
fdµ|Lp(M) ≤

C|f |W 1,p(M), where C is a constant that depends on
the geometry of M and the Sobolev norm.

5 CONCLUSIONS

This research paper explores Sobolev spaces on
compact manifolds, analyzing their properties and
relationships through various mathematical techniques.
The paper establishes compact embedding theorems
into continuous and Lebesgue spaces, providing
insights into convergence and behavior of functions
on compact manifolds. Inequalities involving Laplacians
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and gradients offer valuable information about function
distribution within Sobolev spaces. Reflexivity and
trace theorems provide further understanding of the
structure of these function spaces. Continuity and
compactness of embeddings demonstrate the seamless
connection between different Sobolev spaces. Overall,
this research enhances our comprehension of
Sobolev spaces on compact manifolds, with potential
applications in diverse mathematical fields.
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