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Abstract: Elliptic curve cryptography has gained attention due to its strong resilience against current
cryptanalysis methods. Inspired by the increasing demand for reliable and secure cryptographic
methods, our research investigates the relationship between complex mathematical structures and
image encryption. A substitution box (S-box) is the single non-linear component of several well-
known security systems. Mordell elliptic curves are used because of their special characteristics and
the immense computational capacity of Galois fields. These S-boxes are dynamic, which adds a layer
of complexity that raises the encryption process’s security considerably. We suggest an effective
technique for creating S-boxes based on a class of elliptic curves over GF(2n), n ≥ 8. We demonstrate
our approach’s robustness against a range of cryptographic threats through thorough examination,
highlighting its practical applicability. The assessment of resistance of the newly generated S-box
to common attack methods including linear, differential, and algebraic attacks involves a thorough
analysis. This analysis is conducted by quantifying various metrics such as non-linearity, linear
approximation, strict avalanche, bit independence, and differential approximation to gauge the
S-box’s robustness against these attacks. A recommended method for image encryption involves the
use of built-in S-boxes to quickly perform pixel replacement and shuffling. To evaluate the efficiency
of the proposed strategy, we employed various tests. The research holds relevance as it can provide
alternative guidelines for image encryption, which could have wider consequences for the area of
cryptography as a whole. We believe that our findings will contribute to the development of secure
communication and data protection, as digital security is becoming increasingly important.

Keywords: S-box; AES; Galois field; ECC; Mordell elliptic curves; image encryption; entropy
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1. Introduction

Most individuals frequently want to keep their personal information confidential.
There have been several occasions throughout history where it was necessary to keep
important information hidden from intruders. In particular, it was still crucial to prevent
enemies from intercepting communications between generals or rulers and their troops.
In the past, simple strategies were used to obfuscate data. On the other hand, the world
became more interconnected as society advanced. Due to the rising demand for electronic
services, this resulted in an increasing reliance on electronic systems. It is a generally
acknowledged activity to exchange private information online. As a result, the need
for advanced techniques of data security has become more and more imperative every
day. The basic goal of cryptography is the creation of techniques that guarantee safe
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communication over the networks. The word “cryptography” is derived from two Greek
words: “Kryptos” which refers to something concealed or unrevealed and “graphein”
which describes the process of learning or writing. The primary goal of cryptography is
often regarded as safeguarding information security. The subjects of computer science,
mathematics, communication science, physics, and electrical engineering play a significant
role in the development of modern cryptography. Cryptography is useful in many real-
world situations like protecting chip-based payment cards, allowing digital currencies,
securing computer passwords, and simplifying electronic commerce. An S-box is the
nonlinear component of cryptosystems employing block ciphers. These cryptosystems use
two kinds of S-boxes, static and dynamic. Static S-boxes are fixed tables with substitution
values that do not change during the encryption procedure. Even though they are easy to
create and efficient, their fixed nature leaves them open to some kinds of assaults, such
as differential cryptanalysis or algebraic attacks. Conversely, dynamic S-boxes provide
unpredictability to the substitution procedure. They use functions or algorithms that,
depending on certain variables or parameters, dynamically produce the substitution values.
By increasing the complexity of the encryption scheme and making it harder for attackers
to identify patterns in the substitution process, its security is strengthened.

Strong cryptosystems are also developed using elliptic curves. The most often used
strategies for enhancing information security are those based on elliptic curves. We will
specifically focus on elliptic curve cryptography (ECC) and the many approaches proposed
by many experts in this field. The elliptic curve was initially used as a public key cryptosys-
tem in 1985 by Miller [1]. Additionally, it was shown that the ECC cryptosystem is twenty
percent more effective than the Diffie–Hellman algorithm. Koblatiz et al. in [2] presented
the concept of a discrete logarithmic issue which is applied to construct a highly secure,
quick, and effective security system. An effective method to multiply the elliptic curve
points and their resources is provided in [3] and compared with binary and non-adjacent
(NAF) forms. It has been found that ECC, which uses a shorter key length than RSA, is
more secure overall. In [4], an elliptic curve is used over a prime field to generate elliptic
curve points, and then, each point’s x and y coordinates are added. The modulo function is
then used to construct various numbers of 4× 4 S-boxes. In [5], a procedure for creating
prime field dependent 8× 8 (8 input bits, 8 output bits) S-boxes is described. In this work,
the modulo operation is used after the x-coordinate of an elliptic curve to produce the vari-
ous numbers of 8× 8 S-boxes dependent on the prime field. The authors in [6] presented
novel approaches for creating S-boxes utilizing the total order on an elliptic curve (EC)
over a prime field. A search method is used to efficiently construct an EC in place of the
more traditional group rule, which is computationally expensive. The x-coordinates of the
points of the order elliptic curve (OEC) are used in the construction method for the S-boxes.
These methods can be used to create various numbers of 8× 8 S-boxes. Although they
are independent of the underlying elliptic curve and may or may not generate an S-box
for any input value, their result is still unpredictable. A 4× 4 S-box was developed in [7]
by using elliptic curves over GF(24). Shah et al. in [8] used the Mordell elliptic curves
over finite fields with elements 256, 512, 2048. The authors designed three S-boxes with one
S-box of nonlinearity 112 and with a very low score of strict avalanche criteria (SAC). The
authors concluded that we can obtain good S-boxes over GF(2n), n ≥ 9. In this, study, we
used the same idea and will show that over GF(28), there are extremely good S-boxes as
compared to S-boxes produced in [8] in terms of scores of strict avalanche criteria (SAC),
bit independence criteria (BIC), linear approximation probability (LAP), and differential
approximation probability (DAP) [9–44].

The confidentiality, integrity, and validity of digital images depend on image en-
cryption techniques, which also secure transmission, solve privacy issues, adhere to legal
requirements, stop illegal changes, and safeguard intellectual property rights. Feng et al.
in [45] developed a new fractional-order 3D Lorenz chaotic system and a 2D sinusoidally
constrained polynomial hyper-chaotic map (2D-SCPM). The multi-image encryption tech-
nique outperforms several contemporary image encryption algorithms by utilizing multi-
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channel fusion, chaotic random substitution, dynamic diffusion, and quick scrambling. The
authors in [46] used an image encryption method that employs two keys. The first key is
generated by a 2D Logistic Sine map and a Linear Congruential Generator, while the second
key is generated from the Tent map, the Bernoulli, and the KAA map. The study in [47]
presents a Feistel cipher structure-based simplified picture encryption algorithm (SIEA)
for picture security in cloud storage that makes use of the key generation and permutation
approaches. For digital image encryption, the study [48] suggests ARHM (AES and Rossler
Hyperchaotic Modeling) that combines AES with phantom transformation and the Rossler
hyperchaotic system. This model conducts simulations and analyses including key space,
key sensitivity, histogram, pixel correlation, entropy, and resistance to differential attacks.
It makes use of chaotic system randomness and AES encryption speed. Ali et al. proposed
an image encryption algorithm based on S-boxes using the direct product of cyclic groups
and Galois fields [49]. The authors in [50] used Mobius transformation on a Galois field to
generate robust S-boxes and presented a scheme that can protect medical images in a better
way. The use of quantum theory in image encryption has been on the rise lately. The Quan-
tum Chaotic Map and DNA Coding-based Image Encryption Algorithm (QCMDC-IEA)
is susceptible to assaults on its DNA domain encryption and has intrinsic security weak-
nesses such as the presence of an equivalent key resulting from independent chaos-based
sequences. A suggested technique of attack takes advantage of these flaws to achieve low
complexity and full decipherment. The authors presented recommendations for security
enhancements in similar cryptosystems to address the discovered weaknesses [51]. An
image encryption algorithm utilizing Quantum Logistic and Lorenz Chaotic Map with
DNA Coding, claims enhanced security, but a proposed chosen-plaintext attack exposes
vulnerabilities in its permutation and diffusion key. Suggestions for improvement are
offered to bolster the algorithm’s security and practicality in cryptographic design [52].

It is evident from the literature that there is a dire need to design robust S-boxes using
algebraic structures to enhance the security of cryptosystems. The elliptic curves and Galois
fields are used separately in the literature for designing image encryption schemes and
S-boxes. The elliptic curves provide greater security due to the short key length, and its
usage along with the Galois field can improve the strength of cryptosystems. The following
are the motivations for the proposed work:

• The elliptic curves provide great resistance against linear and differential cryptanalysis
due to their nonlinear nature.

• Compact S-box designs can be achieved by representing elliptic curves with smaller
key sizes than conventional mathematical structures. In terms of efficiency, this can be
helpful, particularly in settings with few resources.

• Hardware and software may both effectively implement elliptic curve operations.
For real-world applications, such as embedded systems or gadgets with constrained
processing power, this efficiency is essential.

• A further degree of protection is provided by the mathematical hardness of elliptic
curve problems like the elliptic curve discrete logarithm problem. The cryptographic
strength of elliptic curve-based designs is predicated on the difficulty of solving these
complex mathematical problems.

• Due to the strong properties of elliptic curves and a highly nonlinear permutation of
the Galois field, the proposed strategy for S-boxes and encryption has a greater ability
to resist cryptanalysis.

The contributions of the proposed scheme are as follows.

• The generated S-boxes have nonlinearity greater than 105 with four optimal boxes of
nonlinearity 112.

• As the degree of irreducible polynomials increases, the number of irreducible polyno-
mials increases quickly, and we can produce millions of S-boxes with the proposed
work in a short time.

• The entropy of the proposed cipher image is close to 8, confirming the efficacy of the
effectiveness of the method.
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The rest of the article is divided into five Sections. Section 2 deals with preliminaries.
The proposed algorithm is described in Section 3. Analysis of S-boxes has been made in
Section 4. We employed the proposed S-boxes in image encryption in Section 5. Section 6
concludes the study.

2. Preliminaries

In this section, we will present some basic definitions related to the Galois field and
elliptic curves.

2.1. Irreducible Polynomial

If (F,+, .) is a field, then a polynomial f (x) ∈ F[x] is called irreducible in F[x] when-
ever f (x) = q(x)r(x) for q(x), r(x) ∈ F[x], then either q(x) or r(x) is a constant polynomial.

2.2. Maximal Ideal

Let M be an ideal of R and M 6= R, then M is called maximal if no proper ideal of R
contains M.

2.3. Galois Field

For a prime number p and for an irreducible polynomial f (x) of degree m in Zp[x], the

quotient ring
Zp[x]

< f (x) >
= {∑m−1

k=0 aktk|ak ∈ Zp ∀ 0 ≤ k ≤ m− 1} is a finite field of order

pm called Galois field and denoted by GF(pm), where t is a particular root of f (x).

2.4. Elliptic Curve

Consider the field F with |F| = pk for some prime p and natural number n, then the
elliptic curve over F is defined as

E(F) = {(x, y) ∈ F× F |(y2 = x3 + ax + b)(mod pk); a, b ∈ F} ∪ {O}, with 4a3 + 27b2 6≡ 0 (mod pk),

where the point O is called the infinite point. This form is known as the Weierstrass form of
an elliptic curve.

If char F 6= 2 and d ∈ F− {0, 1}, then x2 + y2 = 1 + dx2y2 is known as Edward’s
elliptic curve.

If A, B ∈ F and B(A2 − 4) 6= 0, then the curve By2 = x3 + Ax2 + x is known as the
Montgomery form of an elliptic curve.

2.5. Mordell Elliptic Curve

The elliptic curve with a = 0 is called a Mordell elliptic curve. If pk ≡ 2 (mod 3), then
there is randomness and distinctness in y-coordinates of points satisfying the elliptic curve.

3. Proposed Algorithm for the Construction of S-boxes

We used the x and y coordinates of points (x, y) satisfying a Mordell elliptic curve that
is interpreted over GF(2n) employing different irreducible polynomials of degree n.

3.1. S-Boxes Using Mordell Elliptic Curve over GF(2n), n = 8, 10, 12

An elliptic curve of the form y2 = x3 + b, b 6= 0 is called a Mordell elliptic curve.
The number of points satisfying the curve other than infinity is exactly pn, so we can use
them to construct S-boxes. As there is no repetition in x-coordinates of point (x, y) ∈
GF(2n)× GF(2n), by defining a bijective map, we can obtain an S-box. We call an S-box-
m the S-box generated by using an irreducible polynomial with decimal value m. The
algorithm is described as follows.

(1) Choose any irreducible polynomial of degree 8, 10, 12 over the binary field.
(2) Choose the Mordell elliptic curve y2 = x3 + b, 0 6= b ∈ GF(2n).
(3) Choose x-coordinates of points (x, y) satisfying the Mordell curve.
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(4) Apply the multiplicative inverse of each non-zero element corresponding to a given
irreducible polynomial.

(5) For GF(2n), n = 10, 12, apply modulo 256 and choose the 1st 256 unique values.
(6) Reshape into 16× 16 matrix.

All 10 S-boxes are presented in Tables 1–10. The table of comparison shows that
S-boxes produced using these polynomials are better than the S-boxes designed in [8] in
terms of scores of SAC, BIC SAC, LAP, and DAP.

Table 1. S-box-283.

0 116 58 44 29 237 22 121 131 222 251 12 11 122 177 91
1 180 110 69 254 92 94 183 126 106 124 224 40 7 13 35

141 170 90 146 55 5 175 151 127 50 46 31 47 174 214 56
246 75 241 108 103 202 211 133 128 109 195 239 163 99 235 52
203 153 85 243 45 76 73 16 150 216 143 17 218 197 198 104
82 43 77 57 49 36 166 181 115 138 184 117 212 219 14 70
123 96 168 102 245 135 54 186 190 132 101 120 228 226 207 3
209 95 201 66 105 191 67 60 86 114 72 113 15 234 173 140
232 88 193 242 167 24 244 182 155 42 38 165 169 148 8 221
79 63 10 53 100 62 71 112 158 20 200 142 39 139 78 156
41 253 152 32 171 34 145 208 149 159 18 118 83 196 215 125
192 204 21 111 19 240 223 6 217 136 74 61 4 213 227 160
176 255 48 119 84 81 51 161 247 249 206 189 27 157 93 205
225 64 68 187 37 236 147 250 2 220 231 188 252 248 80 26
229 238 162 89 233 97 33 129 185 137 210 134 172 144 30 65
199 178 194 25 9 23 59 130 164 154 98 87 230 107 179 28

Table 2. S-box-299.

0 116 171 43 192 25 128 213 96 170 153 167 64 188 255 238
1 39 145 184 244 87 57 242 56 33 30 53 245 175 37 168

149 215 134 40 221 14 92 165 122 210 190 159 137 146 121 113
230 248 232 29 68 104 150 6 236 183 23 108 181 182 246 212
223 100 254 166 67 201 20 70 251 231 7 136 46 243 199 65
187 89 225 177 220 11 88 253 9 2 114 195 60 112 74 193
115 191 124 77 116 24 155 45 34 99 52 211 75 249 3 227
164 163 17 63 252 81 26 203 233 93 176 147 228 18 148 120
250 86 50 129 127 101 83 247 180 31 241 49 10 204 148 19
133 80 28 97 143 21 15 226 194 160 239 42 84 107 35 214
200 103 185 140 229 59 205 130 110 27 144 222 44 79 135 8
85 154 48 90 198 141 217 237 94 102 32 5 119 156 235 132
172 41 202 197 62 98 179 38 58 219 12 208 216 69 234 71
206 51 118 47 54 151 158 16 91 78 207 174 106 66 123 117
82 161 196 76 157 139 138 142 126 109 189 162 13 186 240 36
105 152 61 55 218 111 95 72 73 178 209 22 173 4 169 224

Table 3. S-box-505.

0 227 141 246 186 82 123 248 93 255 41 25 193 77 124 153
1 148 46 133 175 213 90 211 237 102 165 20 192 244 235 135

252 28 74 88 23 80 190 31 171 214 150 109 45 249 149 78
168 38 188 219 201 212 26 223 217 230 54 172 101 113 16 228
126 177 14 205 37 6 44 139 247 17 40 204 95 83 243 209
207 24 68 181 15 73 195 250 49 226 161 53 71 81 79 76
84 200 19 163 94 159 145 184 152 162 106 61 13 146 147 48
72 66 29 151 197 143 254 233 241 55 220 110 43 231 215 132
63 21 164 9 7 50 154 203 238 134 3 118 22 170 185 112
56 176 160 62 85 218 11 156 59 240 253 232 67 131 119 210
155 99 12 239 34 97 166 91 116 104 216 64 157 89 125 117
105 191 199 137 189 122 221 96 47 10 130 174 120 51 225 138
42 18 100 111 245 236 173 224 32 121 179 35 180 167 92 2
198 39 194 182 208 128 178 234 158 202 108 75 52 107 129 169
36 222 33 57 242 70 183 4 87 142 187 98 127 30 136 103
69 114 140 8 229 196 60 206 233 86 65 27 5 115 58 144
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Table 4. S-box-313.

0 143 219 146 241 153 73 255 228 85 208 158 184 160 227 119
1 162 19 107 118 34 171 190 61 246 54 100 93 55 94 64

156 218 81 91 149 138 169 57 59 48 17 187 201 235 95 52
232 33 152 137 124 206 230 198 13 106 142 253 197 202 224 30
78 22 109 242 180 247 177 6 214 125 69 68 200 213 128 110
88 151 205 31 164 144 159 175 43 66 181 165 195 212 60 173
116 20 140 161 76 222 216 65 62 23 103 25 115 132 99 145
174 150 8 209 127 14 166 240 155 21 217 28 56 42 168 84
39 29 11 199 170 5 121 238 90 35 231 192 196 102 3 189
141 182 45 114 96 79 239 238 51 80 98 92 194 167 157 237
44 221 215 12 250 136 147 104 82 63 72 252 211 18 203 74
40 123 133 130 46 50 49 220 82 135 97 178 234 32 210 47
58 183 10 229 70 185 204 27 38 2 111 236 108 122 188 186
131 24 41 129 76 193 36 67 9 233 245 248 37 26 249 179
87 243 75 134 126 225 244 148 163 176 7 113 83 86 120 191
223 53 251 154 4 226 172 77 16 101 117 254 139 15 105 112

Table 5. S-box-529.

126 170 84 93 21 125 187 246 134 205 148 51 227 208 218 185
47 210 39 20 234 197 157 95 252 158 11 203 98 32 115 37
58 103 90 86 28 94 27 44 165 217 77 167 76 102 36 189
0 207 195 141 160 179 194 49 202 110 80 200 222 213 29 19

81 199 113 232 132 38 240 2 74 151 9 149 53 123 52 223
253 55 43 153 237 70 254 99 245 114 69 54 196 154 143 116
46 104 112 128 78 224 140 173 137 41 122 129 190 162 88 60
71 87 5 225 42 83 244 144 233 239 120 65 229 169 6 72
209 214 146 101 7 155 216 238 100 174 181 61 164 212 4 92
67 220 97 79 236 82 221 241 235 127 176 150 152 182 18 171
59 145 230 14 249 24 142 228 250 63 105 117 31 193 172 89
188 243 180 109 13 133 159 124 161 25 204 68 12 147 85 96
186 3 168 34 206 183 219 107 40 139 35 8 231 163 198 30
201 33 56 91 119 108 177 255 17 22 248 184 135 15 192 175
226 23 131 211 121 73 111 26 57 1 251 45 136 247 191 10
106 166 118 138 178 75 215 16 50 242 156 130 66 62 64 48

Table 6. S-box-787.

199 149 74 169 137 82 29 152 20 132 130 205 16 18 209 14
176 196 15 43 91 253 214 165 60 200 102 23 171 131 151 250
46 219 123 188 85 236 12 154 246 138 220 44 11 39 239 104
0 231 241 38 142 215 47 177 167 26 179 180 71 90 136 57

191 124 226 126 65 115 254 184 141 222 193 206 235 19 42 233
119 150 129 147 31 52 182 160 8 114 213 156 120 158 53 243

7 245 216 208 50 61 159 207 75 24 225 204 202 56 83 81
127 2 105 99 107 72 210 240 9 170 98 144 36 232 201 221
155 101 28 247 63 5 103 10 146 238 96 25 203 32 173 4
181 67 224 164 197 1 153 112 183 77 139 185 248 13 33 118
108 35 198 3 88 122 212 249 86 234 187 22 76 95 121 134
51 97 37 178 70 162 166 230 228 34 113 186 218 69 195 106
116 94 172 27 251 157 41 66 211 223 255 163 6 190 135 229
79 58 128 59 244 168 161 140 92 84 227 62 109 48 80 30
125 55 73 133 217 54 100 145 21 64 89 40 237 252 87 148
78 242 110 117 189 93 49 143 68 194 175 17 174 111 192 45

Table 7. S-box-1315.

0 47 6 203 58 2 79 32 45 174 113 236 115 237 111 83
1 93 179 112 238 180 8 29 204 44 230 66 241 209 169 186

145 89 63 166 16 119 73 247 172 187 182 206 20 253 21 151
30 201 87 55 35 123 67 14 95 51 105 31 183 250 92 242
217 211 189 54 161 244 25 118 127 122 181 234 249 76 106 210
10 61 70 114 171 84 108 156 190 101 215 140 7 136 243 128
143 3 117 192 138 56 34 193 9 107 15 135 202 157 219 245
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Table 7. Cont.

214 99 64 224 252 33 100 53 124 154 75 74 22 78 167 126
125 43 248 177 17 168 80 68 218 103 23 11 102 130 52 85
178 207 69 50 90 27 220 197 232 240 41 163 62 48 212 109
133 195 144 251 88 194 120 226 152 159 188 49 155 38 196 139
37 110 59 131 221 185 36 97 229 225 153 24 46 223 147 28
86 228 160 184 200 233 173 165 129 222 146 116 13 60 57 175
134 227 4 72 18 96 199 254 81 176 71 162 149 26 77 150
235 98 205 121 12 164 158 40 104 191 5 39 148 94 65 137
231 213 246 142 208 239 132 141 42 82 216 170 91 19 255 198

Table 8. S-box-1789.

0 174 7 200 185 119 106 56 16 123 13 248 157 142 181 171
1 165 172 15 178 152 226 173 4 132 44 55 175 81 189 65

126 240 100 111 182 2 224 235 208 155 113 99 244 228 28 229
84 76 120 251 188 12 159 74 207 219 225 186 245 78 109 103
191 115 18 168 68 252 20 34 210 146 49 195 51 190 30 82
204 158 166 196 137 144 150 217 220 197 83 206 98 80 88 101
42 127 205 62 234 37 61 91 69 243 10 70 238 38 17 35
218 66 71 213 211 179 117 60 45 96 255 86 8 167 5 147
161 52 193 27 162 54 125 94 97 3 138 64 43 92 183 222
29 214 79 122 24 75 247 36 129 77 85 156 130 216 41 233
230 227 25 39 221 6 110 58 141 163 139 40 232 19 199 241
254 11 249 250 93 121 116 21 134 26 203 145 153 246 14 73
149 136 32 33 143 187 148 23 215 53 46 31 176 124 104 231
59 170 154 180 89 201 135 102 194 63 118 47 105 67 212 90
237 9 108 253 184 50 128 209 72 140 192 160 223 22 198 202
239 87 107 112 114 131 57 169 236 151 133 95 164 48 177 242

Table 9. S-box-3441.

149 197 136 96 221 215 123 6 30 144 158 41 2 173 139 32
102 168 153 192 195 69 244 66 92 45 62 224 234 61 225 246
187 27 86 112 227 176 154 200 138 210 209 199 80 126 152 184

0 38 140 169 67 109 125 205 56 29 59 145 193 211 170 203
46 147 37 8 55 76 103 242 130 240 232 53 7 186 71 17
243 88 156 190 117 208 74 70 159 11 124 150 100 22 3 78
39 58 91 110 161 72 229 36 180 105 34 118 194 19 155 33
134 28 23 183 13 218 241 15 116 196 175 207 188 77 137 148
182 254 171 247 115 12 89 83 111 129 44 68 177 49 230 60
217 189 35 172 179 213 132 42 220 47 113 223 107 245 127 253
228 181 21 248 135 87 97 157 235 90 40 255 212 128 25 108
216 219 16 95 63 141 165 85 20 122 131 251 178 185 4 26
252 52 249 5 121 238 10 104 174 9 43 201 133 160 81 120
237 191 214 93 146 50 163 94 106 143 51 79 239 151 75 54
167 202 84 73 114 233 14 18 142 162 119 24 206 1 57 65
98 31 250 231 222 236 198 204 99 82 166 101 164 48 226 64

Table 10. S-box-7105.

0 188 251 4 58 82 164 231 117 104 76 237 41 128 78 203
1 12 6 137 191 110 48 88 129 225 163 19 31 245 73 91

224 214 126 178 34 42 89 161 255 193 32 172 238 186 147 62
64 90 235 55 21 194 201 11 121 175 95 229 92 119 60 199
240 143 192 254 211 205 57 29 116 35 252 140 25 93 239 226
127 81 45 152 96 135 66 24 18 70 124 79 198 249 227 241
160 14 134 69 246 74 166 158 77 37 33 132 253 159 23 3
118 105 167 141 123 54 180 145 236 234 113 173 242 87 151 244
120 40 72 133 195 52 179 115 59 27 83 53 181 155 208 144
109 107 217 102 184 22 183 106 146 233 185 43 153 38 5 85
223 61 7 207 51 138 17 170 65 47 247 228 68 49 71 112
28 100 220 111 216 149 215 9 243 139 202 200 8 46 171 98
80 75 84 250 36 2 15 248 136 165 162 212 86 13 20 196
122 10 154 157 67 190 125 168 209 197 103 177 206 94 156 114
187 204 148 176 230 63 218 108 219 30 26 182 189 44 210 232
213 222 169 131 99 130 174 221 50 150 39 142 16 101 97 56
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3.2. S-Boxes Using Mordell Elliptic Curves over GF(2n), n = 9, 11

Since 512, 2048 ≡ 2 (mod 3), the curve y2 = x3 + b, 0 6= b ∈ GF(2n), n = 9, 11 over
GF(2n), n = 9, 11 has exactly pn points in such a way that there is no repetition in x and
y-coordinates with random values in y-coordinates. The proposed algorithm for the S-box
is described as follows.

(1) Choose any irreducible polynomial of degree 9, 11 over the binary field.
(2) Choose the Mordell elliptic curve y2 = x3 + b, 0 6= b ∈ GF(2n), n = 9, 11.
(3) Choose y-coordinates of points (x, y) satisfying the Mordell curve.
(4) Apply modulo 256 on y-coordinates to obtain answers in 0–255.
(5) Select the 1st 256 unique values.
(6) Reshape into a 16× 16 matrix.

4. Security Analysis of S-Boxes

This segment discusses the outcomes of security evaluations conducted on the pro-
posed S-boxes to evaluate their resistance to cryptographic attacks. The S-box was evaluated
through five different tests including Nonlinearity, Strict Avalanche Criteria (SAC), Bit
Independence Criteria (BIC), Probability of Linear Approximation (LAP), and Probability
of Differential Approximation (DAP). The results were compared to some popular S-boxes
in Table 11.

Table 11. Algebraic analysis of proposed and some well-known S-boxes.

S-Boxes Nonlinearity SAC BIC-NL BIC-SAC LAP DAP

S-box-283 112 0.5032 112 0.5059 0.0625 0.0156
S-box-299 112 0.4998 112 0.5046 0.0625 0.0156
S-box-313 112 0.5032 112 0.5015 0.0625 0.0156
S-box-505 112 0.5022 112 0.5020 0.0625 0.0156
S-box-529 106 0.5020 102.5714 0.5056 0.1094 0.0391
S-box-787 106.25 0.5027 103.5 0.5036 0.0859 0.0391
S-box-1315 106 0.5039 105 0.5025 0.0859 0.0391
S-box-1789 105.75 0.5024 103.3571 0.5022 0.1016 0.0469
S-box-3441 105.75 0.4995 103.0714 0.5018 0.0859 0.0391
S-box-7105 105.25 0.5066 104.2143 0.4994 0.1016 0.0469
S-box over
GF(28) [8] 112 0.4871 112 - 0.0625 0.0156

S-box over
GF(29) [8] 106.25 0.4992 103.8 - 0.1328 0.0391

[49] 112 0.5034 112 0.5066 0.0625 0.0156
[50] 112 0.4988 112 0.5008 0.0625 0.0156
[53] 105.5 0.507 106 0.462 0.140 0.0242
[9] 106.75 0.5032 103.6429 0.5074 0.1484 0.0469
[54] 106 0.5051 98 - 0.148 0.039

Skipjack 105.75 0.503 104.14 0.499 0.109 0.0468
Residue
prime 99.5 0.515 101.71 0.502 0.132 0.281

[16] 104.87 0.493 99 0.504 0.105 0.0390
[55] 96 0.4900 92 0.5100 0.23 0.050

4.1. Nonlinearity (NL)

The nonlinearity of a boolean function g is one of the most desirable characteristics of

a strong S-box. It is defined as Ng = 2n−1 − max|W(v)|
2

, where W(v) represents the Walsh
spectrum of the polarity truth table of the boolean function g, and n is the number of input
bits. The nonlinearity of a boolean function measures its difference from a set of all affine
functions of n variables. We can calculate the Walsh spectrum in the following way; Walsh
spectrum = Hadamard matrix of order n× n [polarity truth table of f ].

4.2. Strict Avalanche Criteria (SAC)

To assess the cryptographic potency of substitution boxes (S-boxes) used in symmetric
key algorithms, one property is known as strict avalanche criteria (SAC). A minor change
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in the input causes substantial changes in the output when using SAC, which quantifies
how much changing a single bit of an S-box’s input impacts the output bits. The output bits
of the S-box should change with a probability of 0.5 for each output bit when any one of its
input bits is reversed. If all potential input bit changes are averaged, the amount of 0s and
1s in the output bits should be equal. By doing this, it is made sure that no particular output
value is preferred by the S-box. Ideally, if k input bits are modified, at least (k/2) output
bits should also change. This characteristic makes sure that a minor change in the input
spreads and results in a significant change in the result. A boolean function f satisfies the
SAC if for every vector a of hamming weight 1 , the function f (x)⊕ f (x⊕ a) is balanced.

4.3. Bit Independence Criteria (BIC)

Let fa and fb be two-bit outputs of an S-box; if fa ⊕ fb(a 6= b, 1 ≤ a, b ≤ n) is
highly nonlinear and satisfies the strict avalanche criteria, then S-box satisfies BIC. The bit
independence criteria assesses the correlation between the input bits and the output bits of
an S-box. An S-box should exhibit a high degree of bit independence, which means that the
output bits should have as little correlation as possible with the input bits.

4.4. Linear Approximation Probability (LAP)

The probability of linear approximation for an S-box is the likelihood that its inputs
will approach its outputs linearly given a certain number of input–output pairs. A weaker
S-box would have a higher linear approximation probability because it would be more
susceptible to linear attacks. On the other side, a smaller linear approximation probability
indicates a stronger S-box. Due to this, the S-box exhibits greater resilience against linear
attacks. The following formula can be used to calculate the linear approximation probability

LPS = max
α,β 6=0

∣∣∣∣∣ |{u ∈ GF(2m) | α.S(u) = β.S(v)}| − 2m−1

2m

∣∣∣∣∣
considering u, v to be the input and output masks, respectively.

4.5. Differential Approximation Probability (DP)

The differential approximation probability for an S-box quantifies the probability that
a particular input difference will result in a particular output difference, taking into account
a specified number of rounds. It quantifies the probability of a particular differential char-
acteristic occurring within the S-box. To calculate the differential approximation probability,
one typically performs an exhaustive search over all possible input and output differences
for a given number of rounds, counting the occurrences of each difference and calculating
the probability as the ratio of the occurrences of the desired difference to the total number
of input/output pairs tested. The lower the differential approximation probability, the
more resistant the S-box is against differential cryptanalysis. A lower probability indicates
that the S-box does not exhibit any strong differentials, making it more difficult for an
attacker to exploit differential characteristics and break the cipher.

DP(∆u, ∆v) =
|{u ∈ GF(2m) | S(u)⊕ S(u⊕ ∆u) = ∆v}|

2m ,

where ∆u is the input, and ∆v is the output differential.

4.6. Discussion

• Large nonlinearity is required for the S-box to fend off linear attacks. Table 11 shows
that there are four S-boxes with optimal nonlinearity, while the remaining also have
considerable scores.

• The strict avalanche criterion is deemed to be met rather effectively by the SAC score
that is close to the optimal value of 0.50. Table 11 shows that, in comparison to most
recently created S-boxes with the avalanche effect, our best SAC score of 0.4998 is
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quite near to the ideal value. As a result, the suggested S-box successfully satisfies the
strict avalanche criteria.

• Under the bits independence requirement, the pair-wise disjoint boolean functions
have demonstrated strong performance for both SAC and nonlinearity scores. Each of
our proposed S-boxes has a sound score of nonlinearity and SAC.

• A lower DU score is indicative of a secure S-box. Among all generated S-boxes, none
of the S-boxes has a score of DU greater than 10.

• The resistance of the S-box against linear cryptanalysis is likewise correlated with the
likelihood of linear approximation. It is claimed that an S-box with a lower LAP score
is more resistant to linear cryptanalysis. The LP values of our S-boxes are lower than
many of the proposed S-boxes as shown in Table 11.

5. Image Encryption

In this section, we will examine an innovative approach for protecting digital images
that makes use of a specially designed S-box. Our analysis included several distinct tests
designed to assess the durability and effectiveness of our picture encryption approach
while also testing its resistance to prospective attacks. After a thorough evaluation and
analysis of our process, we compared the outcomes to those attained using well-known
encryption methods. The results of our study showed that the suggested method for
encrypting digital images performed the best overall. All the codings were completed in
MATLAB R2023a using the CBC mode of AES with a random key of 256 bits. Figure 1a–k
represents the plain and cipher image of a baboon, while Table 12 is the comparison of
image encryption schemes.

Figure 1. Plain image and cipher images using proposed S-boxes.

Table 12. Results of majority logic criteria and differential analysis of image encryption scheme.

S-Boxes Entropy Correlation Contrast Energy Homogeneity NPCR UACI

S-box-283 7.9995 −0.0049 10.5706 0.0156 0.3882 99.61 33.52
S-box-299 7.9994 −0.0042 10.5556 0.0156 0.3884 99.59 33.48
S-box-505 7.9995 −0.0079 10.6160 0.0156 0.3882 99.61 33.43
S-box-313 7.9994 −0.0039 10.5683 0.0156 0.3885 99.62 33.53
S-box-529 7.9994 −0.0028 10.5213 0.0156 0.3917 99.64 33.39
S-box-787 7.9994 −0.0078 10.6421 0.0156 0.3885 99.62 33.62
S-box-1315 7.9993 −0.0061 10.5935 0.0156 0.3876 99.58 33.48
S-box-1789 7.9994 −0.0096 10.6143 0.0156 0.3881 99.63 33.46
S-box-3441 7.9994 −0.0001 10.5683 0.0156 0.3890 99.58 33.54
S-box-7105 7.9994 −0.0045 10.5679 0.0156 0.3888 99.61 33.49

[8] 7.9479 0.0036 9.9955 0.0158 0.3948 99.42 33.21
[49] 7.9994 −0.0079 10.6137 0.0156 0.3879 99.59 33.35
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5.1. Entropy

Entropy is a metric that quantifies the degree of unpredictability or disorganization
in the pixel values of an image. By utilizing Shannon’s entropy formula, which factors in
the probability distribution of diverse pixel values present in the image, one can determine
the entropy of an image. If all 256-pixel values within an 8-bit grayscale image occur with
equal probability, then the image’s entropy value reaches its maximum possible value of
8. Scrambled illustrations with an entropy value that is near 8 have pixel values that are
spread out as uniformly as possible. Therefore, it becomes difficult to predict the original
image from the scrambled image.

H = −∑
y
(p(y) log2(p(y)))

where p(y) represents the probability of a pixel.
A strong image encryption scheme must have an entropy score close to 8.

5.2. Correlation

One method for evaluating the similarity between a filter and the corresponding pixels
in an image is called correlation, which involves convolving the filter over the image using
a mathematical operation. A way to assess the robustness of the confidentiality protocol
is to examine the correlation between the original image and the scrambled image. A
desirable property of an image encryption system is that the correlation statistic value
amidst the original and scrambled images should be as close to 0 as possible. In practical
image encryption scenarios, a correlation coefficient value approaching zero is considered
ideal. A correlation coefficient value below 0.1 is generally considered a strong indicator of
a high-quality encryption scheme. However, if the correlation coefficient value exceeds 0.1,
it implies the existence of a weak encryption scheme with a risk of unveiling the original
image from the scrambled image.

r = ∑((ai − µa) · (bi − µb))√
∑(ai − µa)2 ·

√
∑(bi − µb)2

where µa and µb represent the means of their respective variables.

5.3. Contrast

The difference in brightness or intensity between various areas of an encrypted image
is referred to as contrast in a cipher image. It specifies how distinct the dark and bright
parts appear in the cipher image. Contrast is important for picture encryption because it
influences the visual appeal and readability of the encrypted image. A stronger contrast
indicates that there is a notable difference in brightness or intensity between various areas
of the encrypted image. A high-contrast cipher image offers several advantages in an
encryption scheme:

(1) Enhanced Security: Higher contrast can make it more challenging for attackers to
analyze or extract meaningful information from the cipher image. Well-defined edges
and distinct intensity variations can make it harder to detect patterns or identify
specific features within the image.

(2) Robustness Against Attacks: A cipher image with higher contrast can exhibit greater
resilience against common attacks, such as statistical analysis, pixel correlation, or
known-plaintext attacks. The increased variability in intensity levels can make it more
difficult to exploit statistical regularities and effectively break the encryption.

(3) Improved Visual Quality: Although the primary goal of image encryption is security,
maintaining a visually appealing and interpretable cipher image is also desirable.
Higher contrast often leads to a more visually striking encrypted image, which may
enhance the user experience and the overall acceptance of the encryption scheme.
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Contrast = ∑
u

∑
v
(u− v)2 p(u, v)

where p(u, v) is the likelihood that two neighboring pixels in the image will have the same
gray level, and u, v are those intensities.

5.4. Homogeneity

The degree of uniformity or unpredictability of the cipher image created during the
encryption process is referred to as homogeneity. In a homogeneous cipher image, each
pixel value would be distinct from its surrounding pixels and the initial image’s general
structure, exhibiting a high degree of randomness. On a scale from 0 to 1, the measure of
homogeneity ranges from high heterogeneity or variety to high homogeneity or uniformity.

Homogeneity =
1

1 + ∑M
u=1 ∑M

v=1
(u−v)2

M2

,

where M is the number of gray levels in the image, and (u, v) represents the position of a
pixel in the GLCM.

5.5. Energy

Energy quantifies the overall contrast or level of activity in an image, and it is com-
puted by summing the squared elements in the Gray-Level Co-occurrence Matrix (GLCM).
A higher energy value indicates that the image contains more texture and contrast, while a
lower energy value signifies a more homogeneous or uniform appearance.

Energy =
N

∑
m=1

N

∑
n=1

GLCM(m, n)2.

5.6. Number of Pixel Change Rate (NPCR)

The percentage of pixels between two dissimilar images is measured using this metric.
NPCR examines the impact of a single-pixel alteration on the entire image encrypted using
the suggested approach. It counts how many pixels in an encrypted image change every
time a pixel in the original image changes. Consider two encrypted images C1 and C2 with
dimensions M and N, corresponding to two plain images that have a one-pixel change. We
can measure NPCR as

NPCR =
∑i,j D(i, j)

M× N
,

where D(i, j) =

{
0, if C1(i, j) = C2(i, j)
1, if C1(i, j) 6= C2(i, j)

.

5.7. Unified Average Changing Intensity (UACI)

The average intensity of the variations between the encrypted image and the original
image is measured by the Unified Average Changing Intensity (UACI). We can measure
UACI with the formula

UACI =
1

M× N ∑
i,j

|C1(i, j)− C2(i, j)|
255

,

whereas C1, C2, M, N are defined in NPCR.

5.8. Noise Attack Analysis

Even with noise from salt and pepper, the encryption approach should guarantee that
the image’s actual content is kept private. Significant information about the underlying
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image content should not be revealed by the noise. The encryption plan might be made
to adjust to different noise levels. Because of its versatility, the scheme can withstand
variations in noise levels or types without losing its effectiveness. We used salt and pepper
noise with different intensity levels to check the effectiveness of the proposed image
encryption scheme. We can observe that the PSNR values are still greater than 30 after
adding noise in the image (see Table 13). Figure 2 shows the results of the noise attack with
an intensity of 0.1, 0.3, 0.5, respectively.

Figure 2. Salt and pepper noise attack on baboon with intensity of 0.1, 0.3, 0.5.

Table 13. Noise attack analysis.

Intensity of Salt and Pepper Attack PSNR

0.001 36.29
0.1 33.64
0.3 32.90
0.5 32.05

6. Conclusions and Future Study

Robust cryptographic solutions are extremely important as the digital landscape
continues to change. Our study explores the complex field of image encryption, utilizing
the strong characteristics of elliptic curve cryptography to improve security protocols.
This paper utilizes the intricate configuration of elliptic curves within the binary Galois
field extension GF(2n), n ≥ 8 to establish an effective approach for constructing S-boxes.
There are a lot of existing schemes for designing S-boxes using the prime field, but we
used GF(2n), n ≥ 8. We compared our results with existing schemes on prime fields and
GF(2n), n ≥ 8. We concluded that for n ≥ 9, the produced S-boxes are relatively weak
as compared to the usage of GF(28). Our conclusion contradicts the conclusion of [8] by
producing a large number of S-boxes using GF(28) and GF(29). Our thorough analysis,
which included measures, such as bit independence, strict avalanche, non-linearity, linear
approximation, and differential approximation, highlighted the robustness of our suggested
approach. Furthermore, we have employed S-boxes in the substitution process, yielding
significantly superior results compared to various alternative methods. We demonstrated
the effectiveness and efficiency of our method through extensive testing, providing a viable
substitute for strengthening digital security protocols. Our research has the potential to
advance data security and secure communication paradigms and advance the field of
cryptography as a whole. Going ahead, our study offers insightful advice and suggestions
for creating robust encryption systems, which are essential for protecting sensitive data in
a world getting more digitally connected. In the future, we are interested in using some
more elliptic and hyperelliptic curves over GF(2n), n ≥ 8 to design robust S-boxes.
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