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Abstract: We consider a non-overlapping domain decomposition method for optimal control prob-
lems of the tracking type governed by time-fractional diffusion equations in one space dimension,
where the fractional time derivative is considered in the Caputo sense. We concentrate on a trans-
mission problem defined on two adjacent intervals, where at the interface we introduce an iterative
non-overlapping domain decomposition in the spirit of P.L. Lions for the corresponding first-order
optimality system, such that the optimality system corresponding to the optimal control problem
on the entire domain is iteratively decomposed into two systems on the respective sub-domains;
this approach can be framed as first optimize, then decompose . We show that the iteration involving
the states and adjoint states converges in the appropriate spaces. Moreover, we show that the de-
composed systems on the sub-domain can in turn be interpreted as optimality systems of so-called
virtual control problems on the sub-domains. Using this property, we are able to solve the original
optimal control problem by an iterative solution of optimal control problems on the sub-domains.
This approach can be framed as first decompose, then optimize. We provide a mathematical analysis of
the problems as well as a numerical finite difference discretization using the L1-method with respect
to the Caputo derivative, along with two examples in order to verify the method.

Keywords: time-fractional diffusion equation; Caputo fractional derivative; domain decomposition;
optimal control

1. Introduction

Fractional diffusion equations have been discussed in a many articles in the context of
anomalous diffusion (see, e.g., [1,2]), viscoelastic fluid models for weakly singular kernels
(see, e.g., [3,4]), the flow of nanofluids with nanoparticles in a vertical channel [5], subdiffu-
sion models in spiny neuronal dendrites [6,7], and many other important applications. In
essence, hereditary processes with weakly singular memory are prone to being modelled
in this way. Not surprisingly, there are many results concerning the well-posedness of such
systems (see, e.g., [8,9] and references therein). Clearly, fractional optimal control prob-
lems genuinely arise in applications of time-fractional diffusion equations. Such fractional
optimal control problems on standard domains were initiated by O.P. Agrawal in [10,11],
where he formulated the necessary optimality condition based on the Riemann–Liouville
fractional derivative. Fractional optimal control problems for time-fractional diffusion
equations in the Riemann–Liouville sense were discussed by Mophou et al. in [12,13].
There, the authors considered the well-posedness of the underlying time-fractional diffu-
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sion equaiton and derived the optimality system using the Lagrange method. Space–time
fractional optimal control problems have been discussed in [14], among others.

A more recent development concerns applications on networked systems, where the
domain is a union of simple domains, although one than can potentially have multiple
connections. Such domains can be framed using metric graphs. To date, the literature has
almost exclusively considered locally one-dimensional graphs. Applications relevant for the
material of this article concern the flow of gas in pipe networks (see the website (accessed
on 10 January 2024) https://www.trr154.fau.de/trr-154-en/ (accessed on 10 January 2024)
and the the large number of publications therein) or water networks (see, e.g., [15]). We
refer readers to [16,17] and the works by Mophou et al. [18,19] for more such problems
involving fractional derivatives.

Clearly, the complexity of such graphs demands domain decomposition methods. The
very nature of metric graphs naturally suggests non-overlapping domain decomposition
techniques at the multiple nodes. In the last decades, there has been a significant amount of
research on domain decomposition of optimal control problems for classical (integer-order)
partial differential equations on Euclidean domain. Such decomposition has been discussed
for both the time and spatial domains as well as on the continuous level and for discretized
problems; see the textbooks [20,21] for general descriptions and the website of the domain
decomposition organization http://www.ddm.org/ (accessed on 10 January 2024). Spatial
decompositions of parabolic problems have been discussed in [22–24], while in [25–31] the
authors focused on time-domain decompositions.

However, the number of articles shrinks drastically when it comes to such methods
for the underlying problems on metric graphs; see [32]. Domain decomposition for a
fractional-time parabolic transmission problem based on the overlapping Schwarz method
was considered in [33]. To the best of our knowledge, this article is the first work on
non-overlapping domain decompositions associated with transmission problems for time-
fractional diffusion equations, let alone corresponding optimal control problems for such
systems. The results obtained in the following will be extended to metric graphs in a
forthcoming publication.

To fix the ideas, we focus on two intervals, namely, Ii := (0, ℓi), i = 1, 2, connected at
x = 0 such that they stretch from the common point x = 0 to the ends at x = ℓi, i = 1, 2;
hence, Ω = ∪2

i=1 Ii. By admitting the above reduction and considering x ∈ (0, ℓi) as the
coordinate, we can formulate the following distributed optimal control problem for the
time-fractional diffusion equation. To this end, we introduce the tracking-type cost function

J(y, u) :=
κ

2

2

∑
i=1

∫ T

0

∫ ℓi

0
|yi(x, t)− zd

i (x, t)|2dxdt +
ν

2

2

∑
i=1

∫ T

0

∫ ℓi

0
|ud

i (x, t)|2dxdt. (1)

Then, the fractional optimal control problem (FOCP) is to minimize J(y, u) with respect
to (y, u) while satisfying the following system of equations.

CDα
0,tyi(x, t) =

∂2yi(x, t)
∂x2 + fi(x, t) + ud

i (x, t), (x, t) ∈ (0, ℓi)× (0, T), 0 < α < 1,

yi(x, 0) = y0
i (x), x ∈ (0, ℓi), i = 1, 2,

yi(0, t) = yj(0, t), i ̸= j, i, j = 1, 2, t ∈ (0, T),

∂y1(0, t)
∂x

+
∂y2(0, t)

∂x
= 0,

yi(ℓi, t) = 0, i = 1, 2, t ∈ (0, T).

(2)

In the above problem, CDα
0,t denotes the Caputo fractional derivative of order α,

0 < α < 1 with respect to t, (y0
i )

2
i=1 = y0 ∈ D(−L) (see Section 2 for definitions) is the

initial state, and (ud
i )

2
i=1 = ud ∈ L2((0, T); ∏2

i=1 L2(0, ℓi)) denotes the distributed controls.
The formulation is deliberately written in this way in order to compare it with the problem
formulation on the star graph, as in [17], and more importantly, to prepare for the domain
decomposition procedure. We note that it would in fact be possible to handle different or
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even space-dependent coefficients in this framework as well. Equation (2)2,3 represent the
transmission conditions at the interface.

Remark 1. In order to explain the connection between the transmission problem (2) and problems
on, say, a star graph consisting of k edges Ii := (0, ℓi), i = 1, . . . , k coupled at the point x = 0, we
remark that the transmission conditions (2)2,3 are extended to

yi(0, t) = yj(0, t), i ̸= j, i, j = 1, . . . , k,
k

∑
i=1

∂yi(0, t)
∂x

= 0, t ∈ (0, T).

See, [17]. Alluding to electrical networks, the second condition is often called the Kirchhoff
condition in the context of problems on metric graphs.

The goal of this article is to introduce a non-overlapping domain decomposition
of the optimal control problem (1) in the spirit of [32], which goes back to the ideas of
P.L. Lions [34]. We introduce and analyse two methods, which we will then show to be
equivalent. The first one can be framed as first optimize, then decompose, while the second
can be regarded as first decompose, then optimize. In the first case it is understood that
the optimization problem is replaced by the necessary (and here, in fact, also sufficient)
optimality conditions. These optimality conditions have been derived in [17] (Theorem 4.2)
and are given by

CDα
0,tȳi(x, t)− ∂2 ȳi , (x,t)

∂x2 = fi(x, t) + 1
ν pi(x, t), (x, t) ∈ (0, ℓi)× (0, T),

CDα
t,T pi(x, t)− ∂2 pi(x,t)

∂x2 = −κ(ȳi(x, t)− zd
i (x, t)), (x, t) ∈ (0, ℓi)× (0, T),

ȳi(0, t) = ȳj(0, t), pi(0, t) = pj(0, t), i ̸= j, i, j = 1, 2, t ∈ (0, T),
∂ȳ1(0, t)

∂x
+

∂ȳ2(0, t)
∂x

= 0,
∂p1(0, t)

∂x
+

∂p2(0, t)
∂x

= 0,

ȳi(ℓi, t) = 0, pi(ℓi, t) = 0, t ∈ (0, T),
ȳi(x, 0) = y0

i (x), pi(x, T) = 0, x ∈ (0, ℓi), i = 1, 2,

(3)

where we denote by CDα
t,T the backward (right-sided) Caputo fractional derivative and

postpone the mathematical definitions to the next section. Solving the coupled forward
and backward equation is sometimes called the all-at-once-approach. The non-overlapping
domain decomposition we are going to analyse in this article is described as follows.
Assume at an iteration level n that we are given data λn

ij(t), ρn
ij(t), and yn

i (0, t), pn
i (0, t), t ∈

(0, T). On the interval Ii, we solve the problem

CDα
0,tyi

n+1(x, t)− ∂2

∂x2 yn+1
i (x, t) = fi(x, t) + 1

ν pn+1
i (x, t), (x, t) ∈ (0, ℓi)× (0, T),

CDα
t,T pn+1

i (x, t)− ∂2

∂x2 pn+1
i (x, t)

= −κ(yn+1
i (x, t)− zd

i (x, t)), (x, t) ∈ (0, ℓi)× (0, T),
− ∂

∂x yn+1
i (0, t) + σyn+1

i (0, t)− µpn+1
i (0, t) = λn+1

ij , t ∈ (0, T)

− ∂
∂x pn+1

i (0, t) + σpn+1
i (0, t) + µyn+1

i (0, t) = ρn+1
ij , t ∈ (0, T)

yn+1
i (ℓi, t) = 0, pn+1

i (ℓi, t) = 0, t ∈ (0, T),
yn+1

i (x, 0) = y0
i (x), pn+1

i (x, T) = 0, x ∈ (0, ℓi), i = 1, 2,

(4)

where σ, µ ≥ 0, σ + µ > 0 are process parameters and the index j refers to the mutual other
interval, i.e., i = 1, j = 2 and i = 2, j = 1. The history of the coupling is encoded in λn

ij, ρn
ij

and the corresponding update at each iteration step is according to

λn+1
ij (t) = 2(σyn

j (0, t)− µpn
j (0, t))− λn

ji(t), (5)

ρn+1
ij (t) = 2(σpn

j (0, t) + µyn
j (0, t))− ρn

ji(t), t ∈ (0, T).
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The iteration is initialized by choosing λ0
ij, ρ0

ij and y0
i , p0

i , e.g., as zero. This procedure
aims to decompose the optimality system, and as such can be seen as an example of the first
optimize, then decompose principle. A crucial property of the proposed procedure is that the
system (4) and (5) is in fact equivalent to an iteration of optimal control problems on the
individual edges. In these local optimal control problems, a crucial so-called virtual control
h plays a major role. We formulate this method as follows. Suppose that we are given the
iterates yn

i , pn
i , i = 1, 2, and consequently the updates in (5); then, we are looking for yn+1

i
and the actual control un+1

i as well as the virtual control(s) hij minimizing the augmented
cost function

Ji(yi, ui, hij) :=
κ

2

∫ T

0

∫ ℓi

0
|yi(x, t)− zd

i (x, t)|2dxdt

+
ν

2

∫ T

0

∫ ℓi

0
|ud

i (x, t)|2dxdt +
1

2µ

T∫
0

(
|hij(t)|2 + |µyi(0, t)− ρn+1

ij |2
)

dt.
(6)

Thus, the optimal control problem on the individual edge Ii subject to (yi, ui, hij) is
given by

min Ji(yi, ui, hij) (7)

subject to

CDα
0,tyi(x, t) =

∂2yi(x, t)
∂x2 + fi(x, t) + ud

i (x, t), (x, t) ∈ (0, ℓi)× (0, T), 0 < α < 1

− ∂

∂x
yi(0, t) + σyi(0, t) = λn+1

ij + hij, t ∈ (0, T),

yi(ℓi, t) = 0, t ∈ (0, T),

yi(x, 0) = y0
i (x), x ∈ (0, ℓi).

(8)

The motivation for this approach originates in the idea of using an extra control, the
virtual control, in order to achieve the matching of states in the limit. The sequence of
optimal control problems (7), (8) can be seen as a first decompose, then optimize approach. The
interesting feature of this interpretation is that, after appropriate discretization, standard
software (e.g., CASADI-OPT (accessed on 10 January 2024) https://web.casadi.org/ using
IPOPT https://coin-or.github.io/Ipopt/ or SNOPT https://ccom.ucsd.edu/~optimizers/
solvers/snopt) can be used to obtain the solution. We will demonstrate in the sequelae that
as n → ∞, the iterates (yn

i , un
i ) obtained from the above algorithm converge to the exact

solution (y, u) of the considered optimal control problem (1) and (2). Finally, we provide
some numerical evidence. We note, however, that the emphasis of this article is on the
continuous level, i.e., the partial differential equation (PDE), rather than on the discrete
level. In the language of PDE-constrained optimization, this follows the first optimize, then
discretize approach. For α = 1, the proposed domain decomposition algorithms have been
surveyed in [35].

Remark 2. We remark that the iteration update for λn+1
ij , µn+1

ij can be modified by a convex
combination of the current update (with factor (1 − ϵ)) and the previous one (with factor ϵ).
Moreover, we can use the current update for domain #1 in the update for domain #2. This results in
a Gauß–Seidel-type procedure, while the original method is reminiscent of a Jacob-type iteration.

2. Preliminaries

In order to prepare for the main body of this article, we first recall some basic defini-
tions for fractional derivatives, relevant properties, and space settings. For easier reference,
we refer the reader to [17], even though the notations are classic.

https://web.casadi.org/
https://coin-or.github.io/Ipopt/
https://ccom.ucsd.edu/~optimizers/solvers/snopt
https://ccom.ucsd.edu/~optimizers/solvers/snopt
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Definition 1. For a continuous function f on [a, b], the left and right fractional integrals of order
α > 0 are respectively defined by

D−α
a,t f (t) =

1
Γ(α)

(∫ t

a
(t − s)α−1 f (s)ds

)
, D−α

t,b f (t) =
1

Γ(α)

(∫ b

t
(s − t)α−1 f (s)ds

)
,

where Γ(.) is the Euler gamma function.

Definition 2. For a function f with absolutely continuous derivatives up to order n−1, n − 1 ≤ α < n,
n ∈ N in (a, b), the left and right Riemann–Liouville fractional derivatives of order α > 0 are
respectively defined by

RLDα
a,t f (t) =

1
Γ(n − α)

dn

dtn

(∫ t

a
(t − s)n−α−1 f (s)ds

)
,

RLDα
t,b f (t) =

1
Γ(n − α)

(−1)n dn

dtn

(∫ b

t
(s − t)n−α−1 f (s)ds

)
.

Definition 3. For functions as in Definition 2, the left and right Caputo fractional derivatives of
order α > 0 are respectively defined by

CDα
a,t f (t) = RLDα

a,t

[
f (t)−

n−1

∑
k=0

f (k)(a)
k!

(t − a)k

]
,

CDα
t,b f (t) = RLDα

t,b

[
f (t)−

n−1

∑
k=0

f (k)(a)
k!

(b − t)k

]
.

Remark 3. If f ∈ Cn[a, b], then the left and right Caputo fractional derivatives of order α > 0 are
respectively provided by

CDα
a,t f (t) =

1
Γ(n − α)

(∫ t

a
(t − s)n−α−1 f (n)(s)ds

)
,

CDα
t,b f (t) =

(−1)n

Γ(n − α)

(∫ b

t
(s − t)n−α−1 f (n)(s)ds

)
,

where n is as defined in Definition 2.

Next, we recall the following spaces Ω:

L2(Ω) =
2

∏
i=1

L2(0, ℓi), Hm(Ω) =
2

∏
i=1

Hm(0, ℓi),

V =

{
y ∈

2

∏
i=1

H1(0, ℓi) : yi(ℓi) = 0, yi(0) = yj(0), i ̸= j, i, j = 1, 2.
}

,

which are Hilbert spaces when equipped with the inner products [36]

⟨y, w⟩L2(Ω) :=
2

∑
i=1

∫ ℓi

0
yi(x)wi(x)dx, ⟨y, w⟩Hm(Ω) :=

2

∑
i=1

⟨yi, wi⟩Hm(0,ℓi)

and

⟨y, w⟩V :=
2

∑
i=1

∫ ℓi

0
y′i(x)w′

i(x)dx,

where L2(0, ℓi) and Hm(0, ℓi) are the standard spaces. We introduce the following operator
L on the Hilbert space L2(Ω):
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D(−L) =
{

y ∈ L2(Ω) : yi ∈ H2(0, ℓi),

yi(ℓi) = 0, yi(0) = yj(0), i ̸= j, i, j = 1, 2, and
2

∑
i=1

y′i(0) = 0
}

,

∀y ∈ D(−L) : Ly =

(
∂2yi
∂x2

)2

i=1
.

The following lemma relates to an integration-by-parts formula for the fractional dif-
fusion equation with Caputo derivative, and is by now well known, cf. [17], among others.

Lemma 1. Let 0 < α < 1; then, for any ϕ ∈ C∞((0, T); D(−L)) we have

∫ T

0

∫
Ω

(
CDα

0,ty(x, t)− ∂2y(x, t)
∂x2

)
ϕ(x, t)dxdt

=
∫ T

0

∫
Ω

y(x, t)
(

RLDα
t,Tϕ(x, t)− ∂2ϕ(x, t)

∂x2

)
dxdt

+
2

∑
i=1

(∫ ℓi

0
yi(x, T)D−(1−α)

t,T ϕi(x, T)dx −
∫ ℓi

0
yi(x, 0)D−(1−α)

t,T ϕi(x, 0)dx
)

+
2

∑
i=1

(∫ T

0
yi(ℓi, t)ϕ′

i(ℓi, t)dt −
∫ T

0
yi(0, t)ϕ′

i(0, t)dt +
∫ T

0
y′i(0, t)ϕi(0, t)dt

)
.

Using the relation between the Riemann–Liouville and Caputo derivatives and inte-
gration by parts (Lemma 1), we obtain the following lemma.

Lemma 2. Let 0 < α < 1 and let y satisfy (2); then, for any ϕ ∈ C∞((0, T); D(−L)) such that
ϕi(x, T) = 0, x ∈ (0, ℓi), we have

∫ T

0

∫
Ω

(
CDα

0,ty(x, t)− ∂2y(x, t)
∂x2

)
ϕ(x, t)dxdt

=
∫ T

0

∫
Ω

y(x, t)
(

CDα
t,Tϕ(x, t)− ∂2ϕ(x, t)

∂x2

)
dxdt −

k

∑
i=1

∫ ℓi

0
yi(x, 0)D−(1−α)

t,T ϕi(x, 0)dx.

3. Existence and Uniqueness of Solution to TFDEs

For the well-posedness, we refer to [17] (Section 3) for detailed proofs. Here, we first
consider the following TFDE on Ω:

CDα
0,tyi(x, t) =

∂2yi(x, t)
∂x2 + gi(x, t), x ∈ (0, ℓi), t ∈ (0, T), 0 < α < 1, (9a)

yi(x, 0) = y0
i (x), x ∈ (0, ℓi), i = 1, 2, (9b)

yi(0, t) = yj(0, t), i ̸= j, i, j = 1, 2, t ∈ (0, T), (9c)

∂y1(0, t)
∂x

+
∂y2(0, t)

∂x
= 0, (9d)

yi(ℓi, t) = 0, t ∈ (0, T), (9e)

with y0 ∈ D(−L) and g ∈ L2(Ω × (0, T)).
The existence results for TFDE (9a)–(9e) can be related to the Mittag-Leffler function.

Definition 4. The Mittag-Leffler function is defined as follows:

Eα,β(z) =
∞

∑
j=0

zj

Γ(αj + β)
, z ∈ C
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where α, β > 0 are arbitrary constants.

Remark 4. Let 0 < α < 1, y0 ∈ D(−L) and g ∈ L2(Ω × (0, T)); then, TFDE (9a)–(9e) admits
a unique solution y ∈ L2((0, T); D(−L)) such that CDα

0,ty ∈ L2(Ω × (0, T)). Furthermore, there
exists a constant C1 > 0 such that

∥y∥L2((0,T);∏k
i=1 H2(0,li))

+ ∥CDα
0,ty∥L2(Ω×(0,T)) ≤ C1

(
∥y0∥∏k

i=1 H2(0,ℓi))
+ ∥g∥L2(Ω×(0,T))

)
.

In order to study optimality systems, and in particular the evolution of the adjoint
variable, we need to consider backwards-running fractional parabolic systems. To this end,
we can consider the following TFDE on the two-link system:

CDα
t,Tyi(x, t) = ∂2yi(x,t)

∂x2 + ζi(x, t), x ∈ (0, ℓi), t ∈ (0, T),
yi(x, T) = 0, x ∈ (0, ℓi), i = 1, 2,
yi(0, t) = yj(0, t), i ̸= j, i, j = 1, 2, t ∈ (0, T),
∂y1(0, t)

∂x
+

∂y2(0, t)
∂x

= 0,

yi(ℓi, t) = 0, t ∈ (0, T),

(10)

where 0 < α < 1 and ζ ∈ L2(Ω × (0, T)).
We can convert (10) into a forward-running system by applying a time shift. In view

of Remark 4, we then have the following result.

Proposition 1. Let 0 < α < 1; then, TFDE (10) admits a unique solution y ∈ L2((0, T); D(−L)).
Furthermore, there exists a positive constant C1 such that

∥y∥L2((0,T);∏k
i=1 H2(0,ℓi))

≤ C1∥ζ∥L2(Ω×(0,T)). (11)

4. Existence of Optimal Solution and the Optimality System
In this section, we briefly summarize the results on well-posedness for the optimal

control problem (1). We first recall the cost function

min J(y, u) =
κ

2

2

∑
i=1

∫ T

0

∫ ℓi

0
|yi(x, t)− zd

i (x, t)|2dxdt +
ν

2

2

∑
i=1

∫ T

0

∫ ℓi

0
|ud

i (x, t)|2dxdt,

=
1
2
∥y(x, t)− zd(x, t)∥2

L2(Ω×(0,T)) +
ν

2
∥u(x, t)d∥2

L2(Ω×(0,T)),

(12)

where zd ∈ L2(Ω × (0, T)) and κ, ν > 0. Now, defining u ∈ U := L2(Ω × (0, T)),

Aad :=
{
(y, u) : y uniquely solves (2) with u ∈ U

}
, (13)

the FOCP (1) and (2) can be written as follows:

min
(y,u)∈Aad

J(y, u),

subject to (2).
(14)

A solution to (14) is denoted as the optimal solution (ȳ, ū) and the corresponding
control is denoted as the optimal control. For the existence, we refer to [17].

Theorem 1. Let 0 < α < 1, y0 ∈ D(−L); then, there exists a unique optimal pair (ȳ, ū) ∈ Aad
such that (14) holds.

For the corresponding optimality system of the considered optimal control problem (1)–(2),
we refer to the following theorem [17].
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Theorem 2. Let (ȳ, ū) be an optimal solution for (1) and (2), i.e., (ȳ, ū) satisfies (14); then, there
exists a unique p ∈ L2((0, T); D(−L)) such that (ȳ, ū, p) satisfies the following optimality system:

CDα
0,tȳi(x, t)− ∂2 ȳi(x,t)

∂x2 = fi(x, t) + ūi
d(x, t), (x, t) ∈ (0, ℓi)× (0, T),

ȳi(x, 0) = y0
i (x), x ∈ (0, ℓi), i = 1, 2,

ȳi(0, t) = ȳj(0, t), i ̸= j, i, j = 1, 2, t ∈ (0, T),
∂ȳ1(0, t)

∂x
+

∂ȳ2(0, t)
∂x

= 0,

ȳi(ℓi, t) = 0, t ∈ (0, T),

(15)



CDα
t,T pi(x, t) = ∂2 pi(x,t)

∂x2 − κ(ȳi(x, t)− zd
i (x, t)), (x, t) ∈ (0, ℓi)× (0, T),

pi(x, T) = 0, x ∈ (0, ℓi), i = 1, 2, . . . , k,
pi(0, t) = pj(0, t), i ̸= j, i, j = 1, 2, t ∈ (0, T),
∂p1(0, t)

∂x
+

∂p2(0, t)
∂x

= 0,

pi(ℓi, t) = 0, t ∈ (0, T),

(16)

and

ūi
d(x, t) =

pi(x, t)
ν

, (x, t) ∈ (0, ℓi)× (0, T), i = 1, 2. (17)

Remark 5. We notice that control constraints can be handled in this context with little extra
work. Therefore, if we introduce the set of constraints Ud := {u : ul

i(x, t) ≤ ui(x, t) ≤ ur
i (x, t),

(x, t) ∈ (0, ℓi)× (0, T), i = 1, 2}, where both the functions ul = (ul
i)1≤i≤k and ur = (ur

i )1≤i≤k
belong to L2(Ω × (0, T)), then instead of equality in (17), we obtain the following variational
inequality using standard variational theory:

⟨νūd − p, u − ūd⟩L2(Ω×(0,T)) ≥ 0, ∀u ∈ Ud. (18)

5. Non-Overlapping Domain Decomposition

We now consider the proposed domain decomposition procedure (4), (5). First of all,
we go a step back from (5) and set

λn+1
ij = ∂xyn

j (0, t) + σyn
i (0, t)− µpn

i (0, t), (19)

ρn+1
ij = ∂x pn

j (0, t) + σpn
j (0, t) + µyn

j (0, t), i = 1, 2.

Then, the update (5) easily follows and vice versa. We use (5) in the algorithm, as it
avoids explicit computation of the normal derivatives of yn

i and pn
i . We use (19) to show

consistency with the exact solution y, p of (3). To this end, let us assume convergence. Then,
we may delete the iteration index n in (4), (5). We explicitly write

−∂xy1(0, t) + σy1(0, t)− µp1(0, t) = ∂xy2(0, t) + σy2(0, t)− µp2(0, t),

−∂xy2(0, t) + σy2(0, t)− µp2(0, t) = ∂xy1(0, t) + σy1(0, t)− µp1(0, t), (20)

−∂x p1(0, t) + σp1(0, t) + µy1(0, t) = ∂x p2(0, t) + σp2(0, t) + µy2(0, t),

−∂x p2(0, t) + σp2(0, t) + µy2(0, t) = ∂x p1(0, t) + σp1(0, t) + µy1(0, t).

Adding the first two and second two equations yields a system of two linear equa-
tions in the differences y1(0, t)− y2(0, t) and p1(0, t)− p2(0, t), which has the unique zero
solution iff σ2 + µ2 ̸= 0. When the continuity of traces is established, the Kirchhoff condi-
tion immediately follows.

From the linearity of the system, the errors ỹn
i (x, t) := yn

i (x, t)− yi(x, t) and p̃n
i (x, t) :=

pn
i (x, t)− pi(x, t) satisfy the same system, except with zero initial conditions and with zd

deleted. Thus, we are looking at
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CDα
0,tỹ

n+1
i (x, t)− ∂2

∂x2 ỹn+1
i (x, t) = 1

ν p̃n+1
i (x, t), (x, t) ∈ (0, ℓi)× (0, T),

CDα
t,T p̃n+1

i (x, t)− ∂2

∂x2 p̃n+1
i (x, t) = −κyn+1

i (x, t), (x, t) ∈ (0, ℓi)× (0, T),
− ∂

∂x ỹn+1
i (0, t) + σỹn+1

i (0, t)− µ p̃n+1
i (0, t) = λ̃n+1

ij , t ∈ (0, T)

− ∂
∂x p̃n+1

i (0, t) + σ p̃n+1
i (0, t) + µỹn+1

i (0, t) = ρ̃n+1
ij , t ∈ (0, T)

ỹn+1
i (ℓi, t) = 0, p̃n+1

i (ℓi, t) = 0, t ∈ (0, T),
ỹn+1

i (x, 0) = 0, p̃n+1
i (x, T) = 0, x ∈ (0, ℓi), i = 1, 2.

(21)

We notice that the updates now read

λ̃n+1
ij (t) = 2(σỹn

j (0, t)− µ p̃n
i (0, t))− λ̃n

ji(t), (22)

ρ̃n+1
ij (t) = 2(σ p̃n

j (0, t) + µỹn
i (0, t))− ρ̃n

ji(t). (23)

We are going to show that ỹn
i , p̃n

i tend to zero as n → ∞. In the subsequent analysis,
we omit the tilde for the sake of simplicity. We introduce the space X := (L2((0, T))4 and

Xn = (λn
12, λn

21, ρn
12, ρn

21) ∈ X , ∥Xn∥2
X :=

T∫
0

∑
ij
|λn

ij(t)|2 + |µn
ij(t)|2. (24)

We define the fixed point mapping T : X → X such that

T Xn := (λn+1
12 , λn+1

21 , ρn+1
12 , ρn+1

21 ). (25)

A simple calculation shows that

∥T Xn∥2 = ∥Xn∥2 + 4
T∫

0

2

∑
i=1

{(σyn
i (0, t)− µpn

i (0, t))∂xyn
i (0, t)

+(σpn
i (0, t) + µyn

i (0, t))∂x pn
i (0, t)}dt

=: ∥Xn∥2 −Fn, (26)

where Fn is provided below by (31). In order to show that T is non-expansive, we need to
show that Fn is positive. In fact, we will show more.

Lemma 3. We have the following identities:

T∫
0

∂xyn
i (0, t)yn

i (0, t)dt = −
T∫

0

ℓi∫
0

(
CDα

0,ty
n
i yn

i + (∂xyn
i )

2 − 1
ν

pn
i yn

i

)
dxdt, (27)

T∫
0

∂x pn
i (0, t)pn

i (0, t)dt = −
T∫

0

ℓi∫
0

(
CDα

t,T pn
i pn

i + (∂x pn
i )

2 + κpn
i yn

i

)
dxdt, (28)

T∫
0

∂xyn
i (0, t)pn

i (0, t)dt = −
T∫

0

ℓi∫
0

(
CDα

0,ty
n
i pn

i + ∂xyn
i ∂x pn

i −
1
ν
(pn

i )
2
)

dxdt, (29)

T∫
0

∂x pn
i (0, t)yn

i (0, t)dt = −
T∫

0

ℓi∫
0

(
CDα

t,T pn
i yn

i + ∂x pn
i ∂xyn

i + κ(yn
i )

2
)

dxdt, (30)
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Proof. For the first two identities, we multiply the forward and the adjoint equation
by yi, pi, respectively, and integrate by parts. The second two identities (3) follow from
multiplying the forward and adjoint equation by pi, yi, respectively.

With the identities in Lemma 3 at hand, we are now able to evaluate Fn.

Lemma 4. We have

Fn =4σ

 2

∑
i=1

T∫
0

ℓi∫
0

(CDα
0,ty

n
i yn

i + ∂xy2
i )dxdt +

2

∑
i=1

T∫
0

ℓi∫
0

(CDα
t,T pn

i pn
i + ∂x(pn

i )
2dxdt


+ 4µ

κ
2

∑
i=1

T∫
0

ℓi∫
0

(yn
i )

2dxdt +
1
ν

2

∑
i=1

T∫
0

ℓi∫
0

(pn
i )

2dxdt

− 4σ(
1
ν
− κ)

2

∑
i=1

T∫
0

ℓi∫
0

yn
i pn

i dxdt

(31)

Proof. Indeed, according to Lemma 3, we have

T∫
0

(σyn
i (0, t)− µpn

i (0, t))∂xyn
i (0, t)dt = −σ

T∫
0

ℓi∫
0

(
CDα

0,ty
n
i yn

i + (∂xyn
i )

2 − 1
ν

pn
i yn

i

)
dxdt

+ µ

T∫
0

ℓi∫
0

(
CDα

0,ty
n
i pn

i + ∂xyn
i ∂x pn

i −
1
ν
(pn

i )
2
)

dxdt,

T∫
0

(σpn
i (0, t) + µyn

i (0, t))∂x pn
i (0, t)dt = −σ

T∫
0

ℓi∫
0

(
CDα

t,T pn
i pn

i + (∂x pn
i )

2 + κpn
i yn

i

)
dxdt

− µ

T∫
0

ℓi∫
0

(
CDα

t,T pn
i pn

i + ∂xyn
i ∂x pn

i + κ(yn
i )

2
)

dxdt.

Going back to the definition of F in (26), we arrive at the desired result.

In order to estimate the fractional derivatives in F , we prove the following results.

Lemma 5.

T∫
0

ℓi∫
0

CDα
0,tyiyidxdt ≥ 1

2Γ(1 − α)

T∫
0

1
(T − s)α

ℓi∫
0

y2
i dxdt ≥ 0, (32)

T∫
0

ℓi∫
0

CDα
t,T pi pidxdt ≥ 1

2Γ(1 − α)

T∫
0

1
sα

ℓi∫
0

p2
i dxdt ≥ 0. (33)

Proof. We first note (see [37] Lemma 1) that for any absolutely continuous v we have

v(t)CDα
0,tv(t) ≥

1
2 CDα

0,tv
2(t). (34)

Therefore, in view of (34) and using Fubini’s theorem (two times) and the Leibniz
integral rule, we obtain



Fractal Fract. 2024, 8, 129 11 of 20

T∫
0

ℓi∫
0

CDα
0,tyiyidxdt ≥ 1

2

T∫
0

ℓi∫
0

CDα
0,ty

2
i (x, t)dxdt

=
1

2Γ(1 − α)

T∫
0

ℓi∫
0

[ ∫ t

0
(t − s)−α ∂

∂s
y2

i (x, s)ds
]

dxdt

=
1

2Γ(1 − α)

T∫
0

t∫
0

(t − s)−α

[ ∫ ℓi

0

∂

∂s
y2

i (x, s)dx
]

dsdt

=
1

2Γ(1 − α)

T∫
0

T∫
0

1[0,t](s)(t − s)−α

[
d
ds

∫ ℓi

0
y2

i (x, s)dx
]

dtds

=
1

2Γ(1 − α)

T∫
0

(
d
ds

[ ∫ ℓi

0
y2

i (x, s)dx
] ∫ T

s
(t − s)−αdt

)
ds

=
1

2Γ(1 − α)(1 − α)

T∫
0

(
d
ds

[ ∫ ℓi

0
y2

i (x, s)dx
]
(T − s)1−αds

=
1

2Γ(1 − α)(1 − α)

[( ∫ ℓi

0
y2

i (x, s)dx
)
(T − s)1−α

]s=T

s=0

+
1

2Γ(1 − α)

T∫
0

( ℓi∫
0

y2
i (x, s)dx

)
(T − s)−αds

=
1

2Γ(1 − α)

T∫
0

1
(T − s)α

ℓi∫
0

y2
i (x, s)dxds,

where the last equality in the above expression follows from the integration by parts.
For (33), we can use a similar inequality for the backward operator

v(t)CDα
t,Tv(t) ≥ 1

2 CDα
t,Tv2(t) (35)

and follow the proof as above to obtain the desired inequality.

We are now in position to prove our convergence result.

Theorem 3. Let the optimization penalties κ ≥ 0, µ > 0 and the initial condition y0 ∈ L2(Ω) be
given, and assume that we have initial transmission data λ0

ij, ρ0
ij ∈ L2(0, T), i, j = 1, 2. We consider

the errors ỹi = yn
i − yi and p̃i = pn

i − pi, where yi, pi solve the original optimality system (3) and
the iterates yn+1

i , pn+1
i solve (4). Then, the iteration (4) converges under the following conditions.

Case (i.) σ = 0, µ > 0.

∥ỹn
i ∥L2(0,T;L2(0,ℓi))

→ 0, ∥ p̃n
i ∥L2(0,T;L2(0,ℓi))

→ 0. (36)

Case (ii.) σ > 0, µ > 0.
For sufficiently large µ

σ , depending on κ and ν we have

∥ỹn
i ∥L2(0,T;H1

0,1(0,ℓi))
→ 0, ∥ p̃n

i ∥L2(0,T;H1
0,1(0,ℓi))

→ 0, (37)

where H1
0,1(0, ℓi) denotes the space H1(0, ℓi) with elements having zero trace at x = ℓi,

i = 1, 2.

Proof. Recalling (26) and (31), we set Xn+1 = T Xn. We then iterate the equality
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∥Xn+1∥2| = ∥Xn∥ − Fn = ∥Xn−1∥ − Fn −Fn−1

down to the index n = 0 to obtain

n

∑
i=0

F i + ∥Xn+1∥2 = ∥X0∥2, ∀n ∈ N.

Now, whether Fn is positive (definite) for each n depends on the constellation of the
parameters σ, µ, κ, ν, in which case we can conclude that Fn → 0 as n → ∞.

Case (i.) In this case,

Fn = 4µ

κ
2

∑
i=1

T∫
0

ℓi∫
0

(yn
i )

2dxdt +
1
ν

2

∑
i=1

T∫
0

ℓi∫
0

(pn
i )

2dxdt

. (38)

Therefore, we have the stated convergence.

Case (ii.) According to Lemma 4, in particular Formula (31), along with Lemma 5, we know
that the terms involving the fractional derivatives are at least non-negative. Therefore,
the first space–time integrals in (31) provide the convergence in L2(0, T, H1(0, ℓi)).

The problem then reduces to estimating the mixed zero-order terms
T∫
0

yi pidxdt. We

use a generalized Cauchy–Schwartz inequality ab ≤ ϵa2 + 1
ϵ b2 and absorb the corre-

sponding squares into the quadratic terms in (31) by adjusting the process parameters
σ, µ appropriately, which provides the desired result in this case.

We now show the equivalence of the iteration process in (4) and (6).

Theorem 4. Let the optimization penalties κ ≥ 0, µ > 0 and the initial condition y0 ∈ L2(Ω) be
given. Assume that we have the initial transmission data λ0

ij, ρ0
ij ∈ L2(0, T), i, j = 1, 2. Then, the

domain decomposition procedure for the optimality system in (4) is equivalent to the sequence of
virtual optimal control problems in (6).

Proof. Recalling the cost function in (6)

Ji(yi, ui, hij) =
κ

2

∫ T

0

∫ ℓi

0
|yi(x, t)− zd

i (x, t)|2dxdt

+
ν

2

∫ T

0

∫ ℓi

0
|ud

i (x, t)|2dxdt +
1

2µ

T∫
0

(
|hij(t)|2 + |µyi(0, t)− ρn+1

ij |2
)

dt

=: Ji(yi, ui) + +
1

2µ

T∫
0

(
|hij(t)|2 + |µyi(0, t)− ρn+1

ij |2
)

dt.

and the corresponding Lagrange function

Li(yi, ui, hij, pi) := Ji(yi, ui, hij, pi) +

T∫
0

ℓi∫
0

(
CDα

0,tyi −
∂

∂x
yi − ui

)
pidxdt.

We integrate by parts in order to reveal the Robin boundary conditions for yi. Taking
variations, we arrive at the same adjoint equation as in (4) (with the actual iteration index
deleted for the sake of simplicity). The corresponding resulting Robin boundary condition
for pi reads as follows:

−∂x pi(0, t) + σpi(0, t) + µyi(0, t) = ρn+1
ij , t ∈ (0, T),
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and the action of the virtual control hij is revealed by the variation of Li with respect to ĥij,
i.e., ∂hij

Li(yi, ui, hij, pi)(ĥij) = 0, which leads to

hij(t) = µpi(0, t), t ∈ (0, T).

Putting these equations together provides the Robin conditions in (4). After each
optimization step, the coupling parameters λn+1

ij , ρn+1
ij need to be evaluated by the update

rule (5). In the given case of purely distributed controls, the adjoint variable needed for the
update is simply provided by νui.

6. Finite Difference Approximation

We now provide a numerical scheme for solving the resulting optimality system
and the corresponding decomposed system (4) using an implicit finite difference method.
We change the sign of p, which, as the system is linear, does not change the solutions,
only the signs of the controls and the coupling. Hence, in this case, the optimality
system (15)–(17) reads as follows.

CDα
0,tyi −

∂2yi
∂x2 = fi −

pi
ν CDα

t,T pi −
∂2 pi
∂x2 = κ(yi − zd

i ) in (0, ℓi)× (0, T)

yi(x, 0) = y0
i (x) pi(x, T) = 0, x ∈ (0, ℓi)

yi(0, t) = yj(0, t) pi(0, t) = pj(0, t), t ∈ (0, T), i = 1, 2, i ̸= j,

y′1(0, t) + y′2(0, t) = 0 p′1(0, t) + p′2(0, t) = 0

yi(ℓi, t) = 0 pi(ℓi, t) = 0, t ∈ (0, T).

(39)

We first provide a finite difference (FD) scheme for the state Equation (2). We discretize
each edge ei, i.e., the interval (0, ℓi), as xi,r = r∆xi, where ∆xi denotes the spatial discretiza-
tion step for the edge ei provided by ∆xi = ℓi/R, r = 0, 1, . . . , R, xi,0 = 0, xi,R = ℓi, i = 1, 2.
The time grid is given by tm = m∆t, m = 0, 1, . . . , M, t0 = 0, tM = T with ∆t = T/M. We
apply the L1 method [38] for the discrete approximation of the Caputo derivative:

CDα
0,tyi(xr, tm+1) =

1
Γ(1 − α)

m

∑
s=0

(∫ ts+1

ts
(tm+1 − ξ)−α ∂yi

∂ξ
(xr, ξ)dξ

)
≈ 1

Γ(1 − α)

m

∑
s=0

yi(xr, ts+1)− yi(xr, ts)

∆t

(∫ ts+1

ts
(tm+1 − ξ)−αdξ

)
=

∆t−α

Γ(2 − α)

n

∑
s=0

bs[yi(xr, tm+1−s)− yi(xr, tm−s)],

where bs = (s + 1)1−α − s1−α, s = 0, 1, . . . , m, 0 < α < 1, and i = 1, 2. We then define the
discrete fractional differential operator

Lα
t y(xr, tm+1) :=

∆t−α

Γ(2 − α)

m

∑
s=0

bs[y(xr, tm+1−s)− y(xr, tm−s)]. (40)

Then, the L1 method admits the following error estimate:∣∣CDα
0,ty(·, tm+1)− Lα

t y(·, tm+1)
∣∣ ≤ C∆t2−α, (41)

where C is a positive constant.

Remark 6. We note that the above estimate (41) holds only for smooth functions, i.e., when
y ∈ C2[0, tm]. However, due to the weakly singular kernel of the Caputo fractional derivative, the
solution of fractional parabolic equations generally does not possess a smooth solution throughout the
closed domain even in the case of smooth input data. In particular, we recall from Stynes et al. [39]
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(Theorem 2.1) that the typical solution of time-fractional parabolic equations (TFPEs) involving
Caputo fractional derivatives possesses a singularity near the initial time t = 0. Thus, by taking into
account this initial singularity, the authors of [39] proposed the L1 method on a graded mesh and
obtained the following error estimate for y ∈ C[0, tm] ∩ C2(0, tm]:∣∣CDα

0,ty(·, tm)− Lα
t y(·, tm)

∣∣ ≤ Cm−min{rα,2−α}, (42)

where tm ∈ Ωτ := {tm : tm = T
( m

M
)r, 0 ≤ m ≤ M}, with r ≥ 1 as the mesh grading constant.

Therefore, the order of accuracy of the L1 method can be obtained according to (41) in
the case of a smooth solution and (42) in the case of a non-smooth solution. However, as
the emphasis of this article is to introduce (for the first time) a non-overlapping domain
decomposition procedure for such problems and not to dwell on the numerical analysis,
for the sake of simplicity and numerical comparison we have only considered the discrete
approximation of the Caputo fractional derivative according to (41), i.e., for those solutions
which are sufficiently smooth in time. However, in the case of a non-smooth solution (initial
singularity) of TFPEs on metric graphs, a graded mesh could be employed to obtain the
desired order of accuracy in time while following the spatial discretization according to the
one carried out here, which we will explicitly describe in a forthcoming article.

As for the spatial operator, we use the standard the second-order central finite dif-
ference for approximation of the spatial derivative and denote Ym+1

i,r and Pm+1
i,r as the

approximations for the state variable yi(xi,r, tm+1) and adjoint variable pi(xi,r, tm+1), re-
spectively. Therefore, using (40), we obtain the following finite difference scheme for the
state equation in the optimality system (39):

Lα
t Ym+1

i,r =
Ym+1

i,r+1 − 2Ym+1
i,r + Ym+1

i,r−1

∆x2
i

+ Pm+1
i,r , r = 1, 2, . . . , R − 1,

m = 0, 1, . . . , M − 1 and i = 1, 2,

(43)

with the following additional conditions:

• initial conditions
Yi,r(0) = y0

i (xr), r = 0, 1, . . . , R, i = 1, 2; (44)

• boundary conditions at (x = ℓi)

Ym+1
i,R = 0, m = 0, 1, . . . , M − 1, i = 1, 2; (45)

• continuity condition at (x = 0)

Ym+1
1,0 = Ym+1

2,0 = Ȳm+1, m = 0, 1, . . . , M − 1 (46)

with an unknown function Ȳ; and
• discretization of the Kirchhoff condition at x = 0, as follows:

y′′i (x) =
2

∆xi

[
yi(x + ∆xi)− yi(x)

∆xi
− y′i(x)

]
− ∆xi

3
y′′′i (ξ), ξ ∈ (x, x + h).

Now, considering Equation (2)1 at x = 0 while approximating the fractional derivative
by (40) and y′′i (0) using the above formula, we obtain

∆xiLα
t Ym+1

i,0 = 2

[
Ym+1

i,1 − Ym+1
i,0

∆xi

]
− 2y′i(0, tm+1) + ∆xi f m+1

i,0 − ∆xi
ν

pm+1
i,0 .

Finally, summing up over all edges in the above expression and using Equation (2)4,
we obtain
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1
2

Lα
t Ȳn+1

(
2

∑
i=1

∆xi

)
=

2

∑
i=1

(
Yn+1

i,1

∆xi

)
− Ȳn+1

(
2

∑
i=1

1
∆xi

)

+
1
2

2

∑
i=1

∆xi f n+1
i,0 − 1

2ν
P̄m+1

(
2

∑
i=1

∆xi

)
,

(47)

where Pm
1,0 = Pm

2,0 = P̄m.
• Robin-type conditions: − ∂

∂x yi(0, t) + σyi(0, t) = gi(t), i = 1, 2, in a similar manner as
above; hence, we obtain

∆x2
i Lα

t Ȳn+1 = 2Ym+1
i,1 − 2(1 + σ∆xi)Ȳm+1 + 2∆xigm+1

i −
∆x2

i
ν

P̄m+1, i = 1, 2. (48)

Regarding the accuracy of the proposed difference scheme (43)–(47) for approximating
the state Equation (2), we have the following result (see, [40] (Theorem 3.2)).

Theorem 5. Let yi(xi,r, tm+1) be the exact solution of (2) at grid point (xi,r, tm+1) on the Interval
Ii, i = 1, 2, and let ym+1

i,r be the solution of the difference scheme (43)–(47); then, for sufficiently
small ∆t and ∆xi, we have

∥ei
m+1∥2,∆xi = O

(
∆t2−α + ∆x2

i

)
,

where ∥ei
m+1∥2,∆xi =

(
R−1

∑
r=0

∣∣∣em+1
i,r

∣∣∣2∆xi

)1/2

, em+1
i,r = yi(xi,r, tm+1)− ym+1

i,r .

Next, in order to obtain the difference scheme for the adjoint equation, we introduce

Lα
T pm

i =
∆t−α

Γ(2 − α)

M−1

∑
s=m

bs−m,α

[
ps

i − ps+1
i

]
=

∆t−α

Γ(2 − α)

M−m−1

∑
s=0

bs,α

[
ps+m

i − ps+m+1
i

]
,

(49)

where Lα
T denotes the discrete right-sided fractional differential operator. Hence, in view

of (49) and following the same algorithm (43)–(47) as above, we obtain the following
discrete version of the optimality system.

∆x2
i Lα

t Ym+1
i,r = Ym+1

i,r+1 − 2Ym+1
i,r + Ym+1

i,r−1 ∆x2
i Lα

T Pm
i,r = Pm

i,r+1 − 2Pm
i,r + Pm

i,r−1

+ ∆x2
i f m+1

i,r −
∆x2

i
ν

Pm+1
i,r + κ∆x2

i

(
Ym

i,r − zd,m
i,r

)
r = 1, 2, . . . , R, m = 0, 1, . . . M − 1 and i = 1, 2,

1
2

Lα
t Ȳm+1

(
2

∑
i=1

∆xi

)
1
2

Lα
T P̄m

(
2

∑
i=1

∆xi

)

=
2

∑
i=1

(
Ym+1

i,1
∆xi

)
− Ȳm+1

(
2

∑
i=1

1
∆xi

)
=

2

∑
i=1

(
Pm

i,1
∆xi

)
− P̄m

(
2

∑
i=1

1
∆xi

)

+
1
2

2

∑
i=1

∆xi f m+1
i,0 − P̄m+1

2ν

2

∑
i=1

∆xi +
κȲm

2

2

∑
i=1

∆xi −
κ

2

2

∑
i=1

∆xiz
d,m
i,0

m = 0, 1, . . . M − 1 and i = 1, 2,

Ym+1
1,0 = Ym+1

2,0 = Ȳm+1 Pm
1,0 = Pm

2,0 = P̄m, m = 0, 1, . . . M − 1,

Y0
i,r = y0

i (xi,r) PM
i,r = 0, r = 0, 1, . . . , R, i = 1, 2,

Ym+1
i,R = 0 Pm

i,R = 0, m = 0, 1, . . . , M − 1, i = 1, 2

(50)
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The discrete optimality system (50) is solved for the value of Yi and Pi at all the grid
points for i = 1, 2. Finally, based on the above discretization, we now introduce the discrete
decoupling scheme. For the sake of simplicity, we ignore the iteration index at the state and
adjoint variable, and instead keep only the index at the iteration histories λij, ρij, obtaining

∆x2
i Lα

t Ym+1
i,r = Ym+1

i,r+1 − 2Ym+1
i,r + ym+1

i,r−1 + ∆x2
i f m+1

i,r − ∆x2

ν Pm+1
i,r ,

∆x2
i Lα

T Pm
i,r = Pm

i,r+1 − 2Pm
i,r + Pm

i,r−1 + κ∆x2
i

(
Ym

i,r − zd,m
i,r

)
,

r = 1 . . . , R, m = 0, 1, . . . M − 1,

∆x2
i Lα

t Ȳm+1 = 2Ym+1
i,1 − 2(1 + σ∆x)Ȳm+1 + 2∆xµP̄m+1 − ∆x2

ν P̄m+1 + 2∆xλn+1
ij ,

∆x2
i Lα

T P̄m = 2Pm
i,1 − 2(1 + σ∆x)P̄m − 2∆xµȲm + κ∆x2

i

(
Ȳm − zd,m

i,0

)
+ 2∆xρn+1

ij ,

m = 0, 1, . . . M − 1,

Yi,r(0) = y0
i (xi,r), PM

i,r = 0, r = 0, 1, . . . , R, i = 1, 2,

Ym+1
i,R = 0, Pm

i,R = 0, m = 0, 1, . . . , M − 1, i = 1, 2.

(51)

7. Examples

We consider two sets of examples, one based on the direct decomposition of the
optimality system according to (4) and one on the iteration of virtual optimal control
problems (6).

Example 1. In the first example, we consider an exact solution for comparison. We rearrange
the intervals Ii = (0, 0.5), i = 1, 2 such that their union, after a proper change of variables, can
be represented by Ω = (0, 1). We take yexact(t, x) = t sin(πx); correspondingly, we take the
right-hand side f (t, x) = ( Γ(2)

Γ(2−α)
t1−α + tπ2) sin(πx). Now, we take as the target the solution

zd = yexact, meaning that the adjoint is effectively zero everywhere and the optimal state is the exact
solution. We take the parameters κ = 1e.4, ν = 1, µ = 0.5, σ = 0.2, ϵ = 0.5 (see Remark 2) and
start with zero initial data. We start the iterations with zero values. For the discretization, we choose
Nx = 32 spatial points and Nt = 100 time points. In the first part of the experiment, we take the
domain decomposition algorithm based on the optimality system (DD for the OS) (4), (5), while in
the second part of the experiment we take the domain decompostion for the virtual optimal control
problem (DD for the virtual OCP) (6), (5). In both cases, we take the same process parameters
in order to ensure a good comparison. In the first part we solve the local optimality systems in
each iteration, while in the second part we invoke an optimization routine for the corresponding
virtual control problem. For the latter, we take IPOPT as the optimizer, which uses the MUMPS
linear solver. The package we use is CASADI-OPT https://web.casadi.org/ (accessed on 10 January
2024). Clearly, the optimal choice of the parameters σ, µ depends on the penalty parameters κ, ν,
and the choice may differ depending on the method; here, we keep both sets in order to make for a
better comparison. Of course, when using the optimization approach for the virtual control problem,
the IPOPT solver again employs a number of parameters, which makes a very precise numerical
comparison of this matter difficult. In Figure 1, we show on the left (Figure 1a) the states on the two
sub-domains and on the right (Figure 1b) the states at the interface x = 0.5. As a result, there is no
visible difference between the results obtained from the iterations (4) and (6). The corresponding
errors of the states and the derivatives are shown in Figure 2.

Example 2. In the second example, we take the target zd = 1. The sub-domains Ii = (0, 1), i = 1, 2
are such that the overall domain can be represented by Ω = (−1, 1) after an appropriate change
of variables. Here, using the same parameter as in the previous example, we compare the solutions
with the computed solutions of the global optimality system. See Figure 3 for the states and adjoints
and Figure 4 for the states and errors at the interface. In Figure 5, we show the corresponding errors
for the virtual control problem. It is interesting to see that for high penalties the fully distributed
control concentrates on the action where the initial and boundary data are prescribed. In addition, it
is apparent that the errors of the iterations at the interface decline more slowly after a few iterations
due to the accuracy of the finite difference solution.

https://web.casadi.org/


Fractal Fract. 2024, 8, 129 17 of 20

1 

0.8 

0.6 

0.4 

0.2 

0 

1 

X 

1 

0 0 t 

(a)

0 0.2 0.4 0.6 0.8 1
time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

st
at

es
 a

t i
nt

er
fa

ce

domain1
domain2
y

exact

y
optcon

(b)

Figure 1. Optimal states: example 1. (a) Optimal States for α = 1/2: global on Ω = (0, 1) and local on
Ii. (b) States at the interface x = 0: yexact, yopt, yi, i = 1, 2.
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Figure 2. Errors at the interface: example 1. (a) Errors at the interface for the DD of the OS. (b) Errors
at the interface for the DD of the virtual OCP.
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Figure 3. DD of the optimality system, solutions and adjoints on the sub-domains: example 2.
(a) Optimal States for α = 1/2. (b) Adjoints for α = 1/2.
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Figure 4. States and errors at the interface x = 0: example 2. (a) Solutions at the interface for α = 1/2:
yi(0, t), yexact. (b) Errors at the interface for α = 1/2.
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Figure 5. Errors at the interface for the DD of the virtual OCP, different discretizations: example 2.
(a) Errors at interface Nx = 10. (b) Errors at interface Nx = 40.

8. Conclusions and Future Work

We have introduced a non-overlapping domain decomposition method for optimal
control problems associated with time-fractional diffusion equations in one space dimension
on a two-link domain. By decomposing the resulting optimality system of the considered
optimal control problem by an iterative procedure, we have obtained the iteration of optimal
control problems on the individual edges (intervals) and solved the alternating sequence of
Robin-type virtual optimal control problems. In addition, we have shown the consistency
and convergence of the proposed algorithm and demonstrated the equivalence between
the domain decomposition procedure for the optimality system and the sequence of virtual
optimal control problems. Finally, we have discussed the discretization of the resulting
optimality system and the corresponding decomposed system of the considered problem,
and shown some numerical evidence. In future, we will consider the non-overlapping
domain decomposition method for optimal control problems with boundary controls on
general metric graphs.
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