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Simple Summary: Metastasis is one of the biggest challenges in treating breast cancer. Breast
tumors grow in different areas such as the brain, lungs and bone and have distinct characteristics.
The interaction between the breast tumor and its metastatic microenvironment is similar to seeds
planted into soil where the cancer can grow. This review will describe characteristics of breast cancer
metastasis and its corresponding microenvironment. We will also discuss evolving treatment options
targeting breast cancer metastasis.

Abstract: Metastasis remains a major challenge in treating breast cancer. Breast tumors metastasize to
organ-specific locations such as the brain, lungs, and bone, but why some organs are favored over
others remains unclear. Breast tumors also show heterogeneity, plasticity, and distinct microenviron-
ments. This contributes to treatment failure and relapse. The interaction of breast cancer cells with
their metastatic microenvironment has led to the concept that primary breast cancer cells act as seeds,
whereas the metastatic tissue microenvironment (TME) is the soil. Improving our understanding
of this interaction could lead to better treatment strategies for metastatic breast cancer. Targeted
treatments for different subtypes of breast cancers have improved overall patient survival, even with
metastasis. However, these targeted treatments are based upon the biology of the primary tumor and
often these patients’ relapse, after therapy, with metastatic tumors. The advent of immunotherapy
allowed the immune system to target metastatic tumors. Unfortunately, immunotherapy has not been
as effective in metastatic breast cancer relative to other cancers with metastases, such as melanoma.
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This review will describe the heterogeneic nature of breast cancer cells and their microenviron-
ments. The distinct properties of metastatic breast cancer cells and their microenvironments that
allow interactions, especially in bone and brain metastasis, will also be described. Finally, we will
review immunotherapy approaches to treat metastatic breast tumors and discuss future therapeutic
approaches to improve treatments for metastatic breast cancer.

Keywords: metastasis; breast cancer; immunotherapy; clonal heterogeneity; bone and brain metastasis

1. Introduction

Breast cancer (BC) is among the most diagnosed cancers in women; furthermore, it
is the leading cancer-related mortality in women. In 2020, over 2 million new BC cases
and more than 680,000 deaths were reported [1]. Importantly, the incidence of BC is
also increasing every year. The good news is that therapies for BC are improving, and
more women are living longer with BC. Nevertheless, BC cells are highly heterogeneous
and interact with the surrounding microenvironment to form different subtypes with
variable degrees of metastasis [2]. Consequently, this leads to distinct clinical outcomes and
responsiveness to therapy.

Metastasis is characterized by the migration of primary cancer cells to distant sites in
the body that then form secondary tumors. Metastatic breast tumors are notoriously hard
to treat and eventually lead to treatment failure and death in many BC patients. Metastasis
represents a hallmark of cancer where primary cancer cells must invade into surrounding
tissue to migrate into the vascular and lymphatic vessels, survive in circulation, evade the
immune system, enter into pre-metastatic sites and survive to proceed to proliferate into
secondary tumors [3]. In BC, this process is governed by the heterogeneous nature of the
primary tumor and changes in the microenvironment of both the primary tumor and the
site of metastasis [2]. In addition, it has become evident that these pre-metastatic sites have
changed to become receptive to the BC cells that have escaped the primary tumor [2]. This
could be due to changes in stromal cells, immune cells or vascular permeability at the site
of metastasis. This represents a concept of seed versus soil where the seed is the metastatic
BC cells, and the soil is the tissue into which metastatic BC cells enter and grow [4].

In this review article, we will address the factors in BC cells (seed) leading to metastasis,
define the role of the metastatic tissue microenvironment (soil) and summarize treatment
strategies to target both seed and soil in metastatic BC.

2. Seed: Tumor Clonal Heterogeneity
2.1. Breast Cancer Subtypes

Traditionally, breast tumors have been classified into three clinical subtypes. The
estrogen receptor (ER)+/progesterone receptor (PR) subtype represents ~70% of all the
BCs. The human epithelial growth factor receptor 2 (HER2)+ subtype represents 15% of
BCs, where HER2 amplification and a higher expression of HER2 are detected. Finally,
triple-negative BC (TNBC) represents 15% of BCs, which lacks expression of ER, PR, and
HER2. TNBC is the most heterogeneous BC with aggressive clinical outcomes. It tends to
occur in younger women, recurs frequently and leads to metastasis, particularly to the lung
and the brain [5].

With the development of “omic” technology, genomic and transcriptomic profiling
of breast tumors have been conducted in the past two decades. These activities have
provided novel insights into BC biology, profoundly influenced our understanding of BC
heterogeneity and impacted patient stratification. Based on genome-wide mRNA data, BCs
have been classified into five molecular subtypes [6]: luminal A, luminal B, HER2−enriched,
basal-like, and claudin-low. Molecular subtypes can capture more accurately the biological,
prognostic, and clinical features of tumors than traditionally used subtypes (i.e., ER+,
HER2+ and TNBC). Women with luminal A tumors have more favorable relapse-free
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survival and overall survival among those with other breast tumors, while women with
luminal B tumors have the second-best favorable relapse-free survival and overall survival.
Both luminal A and B tumors are a part of the ER+ subtype, differing in the expression of
PR and HER2. Basal-like tumors, representing 15% of tumors, have a higher chromosomal
instability and are strongly associated with germline BRCA1 mutations. Claudin-low
tumors have more mesenchymal features and poor sensitivity to chemotherapy [7]. Both
basal-like and claudin-low tumors are part of the TNBC tumor subtype. We conducted
genomic analysis of these subtypes based on TCGA data and found that most of the HER2+
and basal-like tumors bear somatic mutations of TP53 (70%, 90%, respectively), while most
of the luminal tumors bear PIK3CA mutations (45% and 30% for luminal A and B tumors,
respectively) [8].

Defining molecular subtypes supports the identification of personalized treatment for
women with BC. For example, Herceptin is often used to target tumors with an HER2+ sub-
type. As well, most luminal A and B tumors do not need to be treated with chemotherapy,
and surgical resection of the tumor is sufficient. Artificial intelligence (AI) technology has
been used in evaluating luminal A and B tumors (ER+ BC) to discover gene expression
signatures of those that do not need to be treated with chemotherapy. We developed a new
AI algorithm and identified several gene signatures (markers) to identify which ER+ tumors
do not need to be treated with chemotherapy with highly predicting accuracies (87–96%) [9].
Most importantly, different from other BC signatures, which often failed to be predictive in
other independent BC cohorts, the gene signatures we identified were highly robust: they
were predictive in all the public independent BC cohorts (i.e., eight independent cohorts
containing more than 1000 samples) at that time [9]. For the luminal A and B tumors which
need to be treated, we conducted network modeling of luminal and basal-like tumors,
respectively, based on the proposed cancer hallmark network framework [10] to correctly
match drugs for luminal and basal-like tumors, respectively [11]. However, the treatment
of claudin-low tumors is still very challenging.

2.2. Clonal Evolution, Intratumor Heterogeneity and Metastasis

The different BC molecular subtypes represent a highly heterogeneous disease. In
fact, heterogeneity is also found within tumors or intratumor heterogeneity, which is a key
driver of metastasis. The transformation from a normal cell into a cancer cell is a gradual
evolutionary process in which genomic alterations accumulate in a stepwise manner.
Genome sequencing of breast tumors suggests that mutational processes evolve across the
lifespan of a tumor. As the cells accumulate thousands of mutations, the developing cancer
cell (i.e., the most recent common ancestor) starts to diverge into subclones of genetically
related cells. We called the most recent common ancestor a ‘cancer-founding clone’. All
the mutations and genomic alterations leading to the emergence of the cancer-founding
clone will be carried in every cancer cell in the tumor. New genomic alterations in the
founding clone will generate subclones of cancer cells. We have summarized several
cancer models of subclone evolution [12–14]. These models suggest that tumorigenesis
involves the progression from early, slow-growing subclones to late, fast-growing subclones.
Although subclones within a tumor are genetically related, they gain different growth
and/or invasive capabilities so that they may show different responses to therapy. Tumor
genome sequencing studies [15,16] suggested that many distinct subpopulations of cells
or subclones co-exist within a tumor. Genome sequencing reveals the genetic record of
their emergence over time and allows us to trace the divergence of a cell to form different
subclones. By the time cancer is diagnosed, one of these subclones forms the dominant
population within the tumor.

As multiple subclones co-exist within a primary tumor, they have different relation-
ships in terms of genetic profiles. We therefore summarized potential interactions among
the subclones as follows [12,13]: (1) one subclone could support the growth of other sub-
clones (for example, a subclone could amplify a ligand such as FGF, which could trigger
FGF signaling pathways in other subclones); or a subclone could interact with the tumor
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microenvironment to protect itself and other subclones within the tumor from host immune
responses; (2) one subclone could suppress the growth of another subclone by either secret-
ing inhibiting factors or by using a larger portion of the available nutrients and growing to
take over a large volume/space within a tumor; and (3) the subclones grow independently
and have no interactions with each other. Multiple subclones co-exist within a tumor,
representing cancer cell heterogeneity. Heterogeneity provides one of the major reasons for
the failure of drug treatment in cancer.

Some subclones could undergo new genomic alterations to acquire invasive capabili-
ties to stimulate metastasis. Analyses of the genomic data from metastatic breast tumors
have shown that subclones of the metastatic lesions are derived from subclones of the
primary tumor [17,18]. Subclones of metastases or recurrences, in turn, have acquired
mutations and additional variants beyond the subclones in the primary tumor [19,20]. The
private ‘driver’ mutations in metastases from treated versus untreated patients indicates
that these changes are associated with drug resistance, but they are not associated with driv-
ing metastasis [17,21]. These results agree with our findings that the genomic alterations of
founding clones largely determine if a subclone could gain invasive capabilities to generate
metastasis in BC. For example, by analyzing the genome sequences of several hundred
breast tumors, we identified founding clone mutations that alone were significantly associ-
ated with tumor recurrence and survival [22]. This suggests that genomic alterations, which
occur before the emergence of the cancer-founding clone, are critical for the development
of subclones with recurrence traits. In fact, the root of the invasive capabilities of tumor
subclones for metastasis is most likely encoded in the germline genomes of the patients. For
example, by analyzing 10,000 germline genomes of tumors including more than 1000 breast
tumors, we revealed that germline genomic variants influence tumor somatic mutations,
and they are significantly associated with tumor recurrence and survival [23,24].

3. Soil: The Breast Cancer Metastasis Sites and the Immune Environment
3.1. Metastatic Sites of Breast Cancer

Metastatic BC, which accounts for most BC recurrences, is largely associated with
conventional and targeted therapy resistance [2]. Thus, metastatic BC is a major predictor
of poor prognosis, morbidity and death. Cancer cells derived from primary tumors acquire
many changes including becoming less adhesive and more invasive and motile. These cells
can then penetrate into the surrounding normal tissue and eventually intravasate into the
blood and lymphatic circulations. Some of these cancer cells, which are termed circulating
tumor cells (CTCs), will survive cell death cues, exit circulation and seed into distant organs
from the originating organ, i.e., mammary glands [25]. These extravasated cancer cells may
remain dormant for different periods of time, until new conditions and stimuli promote
their proliferation into new limited numbers of tumors or metastases. The plastic nature of
particular tumor-derived cancer cells, termed tumor-initiating cells or cancer stem cell-like
cells, likely enables them to acquire different cell phenotype states, which are critical for
cellular events leading to their escape from the primary tumor site and the formation of
new tumor masses in distant organs [26,27].

The fundamental cellular process of an epithelial–mesenchymal transition (EMT) is
critical in the developing organism and contributes to homeostasis. EMT can be hijacked
by cancer cells, with significance for CTC enrichment, contributing to many of the events
involved in the metastatic phenotype [26,28]. Upon the successful establishment of metas-
tases, cells undergo the reverse process of an mesenchymal–epithelial transition (MET) to
promote metastatic growth. EMT has also been linked to the development of resistance to
anti-neoplastic treatments [26,29]. It is becoming increasingly clear that cells transitioning
between EMT and MET can give rise to the existence of cells with hybrid EMT/MET
phenotypes, in which cells can co-express both epithelial and mesenchymal markers. Fur-
thermore, this hybrid EMT/MET status has been associated with metastasis and drug
resistance [30,31]. Many signaling pathways have been implicated in the induction of
EMT and hybrid EMT in BC cells including the Notch, Wnt, β-catenin, hedgehog, and
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transforming growth factor beta (TGFβ) signaling axes, with implications for metastasis to
different sites including lungs and bones [30–32].

Metastatic tropism depends on cancer cells from the primary tumor arriving at an
organ where CTCs can seed and colonize. These cells are described as disseminated tumor
cells (DTCs). Both pre-existing genetic and epigenetic factors in DTCs and the ability of
these cancer cells to adapt to their microenvironment are believed to play key roles in
determining organ specific metastasis [33]. Prevalent sites of BC metastasis include the
lung, liver, bone, central nervous system (brain, spinal cord and leptomeninges), and lymph
nodes [29]. The increased survival rates of BC patients receiving various therapies, together
with the emergence of new imaging modalities, have led to an increase in the detection of
metastasis to some rare sites including the oral cavity, eye, peritoneum, gastrointestinal tract
and skin. Tissue-specific differences in functional cell types, immune cell populations and
vascular permeability in metastatic sites affect the entry of CTCs and the development of
secondary breast tumors. Attention is now being placed on how these sites of BC metastasis
are different.

Extracellular vesicles play an important role in breast cancer metastasis. Breast cancer
cells secrete extracellular vesicles (EVs) with cargo that alters the tumor microenvironment,
allowing for metastasis to occur [33]. This could be through the activation of angiogene-
sis, enhancing cancer cell invasion and migration and reprogramming the extracellular
matrix [34–36]. In addition, EVs can condition metastatic niches (soil) for breast cancer
cell growth such as changing the fibroblast phenotype to a cancer-associated fibroblast
(CAF) which supports breast tumor growth [37]. One cargo in EVs is miRNAs that alter
gene expression in target cells. In breast cancer, miR-122 incorporates into non-tumor cells
in pre-metastatic niches targeting pyruvate kinase M2 and inhibiting glycolysis, thereby
increasing glucose levels for breast cancer cells [38]. Metastatic breast cancer cells secrete
EVs containing miR105, increasing migration and vascular permeabilization [39]. EVs con-
tain VEGF which increases angiogenesis and loosens tight junctions between endothelial
cells allowing breast cancer cells to enter the vascular system [33]. Finally, breast cancer
cell EVs induce changes in the immune system, promoting metastasis. One example is
breast cancer-derived EVs activating the transcription factor NFκB in macrophages, result-
ing in the secretion of cytokines and the promotion of pro-inflammatory conditions [40].
This indicates that EVs are a major component of breast cancer metastasis by changing
the microenvironment.

We are focusing on bone and brain metastasis because of their devastating effects on
the quality of life and distinct changes in the surrounding microenvironment of BC patients.
For example, breast tumors in the bone cause bone degradation, whereas brain metastasis
causes cognitive impairment.

3.2. Metastasized Tumor-Immune Microenvironment

The immune microenvironment in each pre-metastatic site differs with respect to
the balance of tissue-resident immune cells [41] and the cytokines/chemokines that these
immune cells produce and respond to [42]. Unique signals from inside the organ/tissue as
well as those affecting that tissue systemically continually influence these cells and factors
within each organ. Although tissue-resident immune cells act as sensors and a first line of
defense against localized infection and tissue damage [43,44], many of these cells also have
tissue-specific non-immune functions [45–47] (Figure 1).

Local and systemic challenges can prepare for, rather than inhibit, circulating cancer
cell entry and growth. These could include immunosuppression or inflammation induced
by aging [48,49], chronic and acute infections [50–53], metabolic dysfunction [54,55], phys-
ical and mental stress [56], chemotherapeutic and/or radiation treatments [57–59] and
immunosuppression or environmental influences including the composition of mucosal
microbiota [60].



Cancers 2024, 16, 911 6 of 26

Cancers 2024, 16, x FOR PEER REVIEW 6 of 28 
 

 

defense against localized infection and tissue damage [43,44], many of these cells also have 
tissue-specific non-immune functions [45–47] (Figure 1). 

 
Figure 1. Inflammation and platelet-induced vascular endothelial permeability increases the 
extravasation of cancer cells into pre-metastatic sites. (A) The vessel lumen-facing glycocalyx acts as 
a barrier that limits extravasation of cancer cells and immune cells. (B) During inflammation, the 
glycocalyx is degraded by matrix metalloproteases (MMPs) and neutrophil extracellular traps 
(NETs) which increase vascular permeability and cellular extravasation from the vessel lumen. 
Additionally, during inflammation, activated macrophages in the tissue produce the cytokines 
TNFα, IFN-γ and IL-1β among others which can further increase endothelial permeability. (C) 
Circulating cancer cells aggregate with platelets, thus avoiding shear stress and immune cell 
recognition. These platelets are a racted to damaged endothelial cells and will also release 
sphingosine 1-phosphate (S1P) and lysophosphatidate (LPA), two bioactive lipids that when locally 
elevated will increase vascular endothelial permeability and cancer cell extravasation. NETs 
produced by activated neutrophils can also capture the circulating cancer cell/platelet complexes, 
facilitating their entry into the tissue. 

Local and systemic challenges can prepare for, rather than inhibit, circulating cancer 
cell entry and growth. These could include immunosuppression or inflammation induced 
by aging [48,49], chronic and acute infections [50–53], metabolic dysfunction [54,55], 
physical and mental stress [56], chemotherapeutic and/or radiation treatments [57–59] and 
immunosuppression or environmental influences including the composition of mucosal 
microbiota [60]. 

The local immune microenvironment of metastatic sites impacts both entry and 
metastatic cell proliferation. Metastatic cells that enter into sites can exist in a state of 
dormancy that is maintained by the resident immune cells, predominantly NK cells and 
cytotoxic T cells [61]. However, activation of the immune cells by the above-noted 
challenges can release this control and lead to metastatic growth. A recent article in Nature 
Reviews Immunology elegantly describes the immune system microenvironment in 
metastasis-prone tissues including the brain, bone and lungs [61]. 

Figure 1. Inflammation and platelet-induced vascular endothelial permeability increases the ex-
travasation of cancer cells into pre-metastatic sites. (A) The vessel lumen-facing glycocalyx acts as
a barrier that limits extravasation of cancer cells and immune cells. (B) During inflammation, the
glycocalyx is degraded by matrix metalloproteases (MMPs) and neutrophil extracellular traps (NETs)
which increase vascular permeability and cellular extravasation from the vessel lumen. Additionally,
during inflammation, activated macrophages in the tissue produce the cytokines TNFα, IFN-γ and
IL-1β among others which can further increase endothelial permeability. (C) Circulating cancer cells
aggregate with platelets, thus avoiding shear stress and immune cell recognition. These platelets
are attracted to damaged endothelial cells and will also release sphingosine 1-phosphate (S1P) and
lysophosphatidate (LPA), two bioactive lipids that when locally elevated will increase vascular en-
dothelial permeability and cancer cell extravasation. NETs produced by activated neutrophils can
also capture the circulating cancer cell/platelet complexes, facilitating their entry into the tissue.

The local immune microenvironment of metastatic sites impacts both entry and
metastatic cell proliferation. Metastatic cells that enter into sites can exist in a state of
dormancy that is maintained by the resident immune cells, predominantly NK cells and cy-
totoxic T cells [61]. However, activation of the immune cells by the above-noted challenges
can release this control and lead to metastatic growth. A recent article in Nature Reviews Im-
munology elegantly describes the immune system microenvironment in metastasis-prone
tissues including the brain, bone and lungs [61].

Resident immune cells in the lungs ensure that responses to continuously inhaled
foreign antigens are appropriate for the challenge. Regulatory T cells (Tregs) and the
abundant tissue-resident macrophages mediate a balance between tolerance and protective
immune responses by suppressing cytotoxic T cell function as needed [62,63]. When
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activated, lung macrophages produce IFNγ [64] and IL-1β, cytokines that are known to
induce endothelial cell (EC) permeability [65]. Instead, EC permeability at these sites of
metastases render the resident immune cell populations dysfunctional. EC permeability of
normal functioning brains, bones and lungs differ based on the physiological requirements
of these organs [66]. Increased permeability facilitates the entry of circulating cancer
cells [67,68] (Figure 1).

One mechanism by which circulating cancer cells are protected from immune cell
recognition and the forces of shear stress [69] is through the formation of aggregates
with platelets [70–73]. Circulating cancer cells in platelet aggregates can be captured
by neutrophil extracellular traps (NETs), and these NETs can then facilitate the entry of
circulating cancer cells into metastatic sites [51,72,74]. Inflammation also conditions pre-
metastatic sites and attracts neutrophils. Excessive NETs released by activated neutrophils
increase EC permeability by degrading the glycocalyx [74,75]. These roles for NETs have
been found in several metastatic sites including the lung, bone and brain [74,76]. Platelets
are typically attracted to activated or damaged ECs, and so these platelet-bound cancer
cell complexes will be attracted to pre-metastatic niches with this type of damage. These
platelets will also facilitate extravasation by the localized release of high concentrations
of the bioactive lipids, lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P),
both of which will increase EC permeability [77–81]. LPA also accelerates a damaging
inflammatory cycle associated with tumor growth and metastasis [82,83]. S1P released from
mammary epithelial cells into circulation could also behave as an attractant to circulating
cancer cells similarly to the role of S1P in controlling the movement of T cells into and out
of lymph nodes through S1P gradients between blood and lymph [84] (Figure 1).

The extent and impact of vascular permeability on the movement of cells into tissues
is controlled by tight junctions and adherent junctions between ECs [85]. Transcellular per-
meability (between cells) is enhanced by numerous factors produced during inflammation
and EC activation, including VEGF, TNFα and other proinflammatory cytokines [85] and
bioactive lipids [77,78,82]. These factors can be produced by cancer cells, resident immune
cells within organs such as macrophages, NK cells, T cells, mast cells and by non-immune
resident cells such as fibroblasts, epithelial cells, or osteoblasts [86]. EC permeability is
also regulated by the thickness and intactness of the vessel lumen-facing glycocalyx [87,88].
The glycocalyx layer acts as a complex barrier that limits the access of permeability factors
and cells to the ECs [89]. Glycocalyx is composed of proteoglycans and glycoproteins with
attached heparan sulfate and chondroitin sulfate chains and hyaluronic acid [90]. Adhesion
molecules that are needed for the cellular extravasation of cells through the endothelium
are below the surface of the glycocalyx and are not normally accessed by cells unless
the glycocalyx is dysfunctional, which occurs under inflammatory conditions [87]. The
glycocalyx of pulmonary arteries is considerably thicker than in arteries from other organs.

This may reflect a need under normal physiological conditions to carefully control the
access of neutrophils to the lungs [88]. Inflammation induces the cleavage of chondroitin
sulfate, heparan sulfate chains or sialic acid by specific enzymes and the cleavage of the
proteins by matrix metalloproteinases (MMPs), resulting in the thinning of the glycocalyx
and impaired protective functions [91]. The degradation of heparan sulfate, sialic acid and
chondroitin sulfate residues in the glycocalyx increases the attachment of leukocytes and
circulating cancer cells to ECs [91–93].

4. Soil: Tissue-Specific Properties at Metastatic Sites
4.1. Bone Metastasis of Breast Cancer (Figure 2)

BC bone metastasis is incurable. BC metastasizes to the bone occurs in approximately
70% of all cases of advanced BC [94,95]. The pattern of bone metastasis is more frequent
in luminal A and luminal B subtypes based upon a large Chinese study [96]. The most
common subtype associated with bone metastasis is also the ER+/HER2– subtype according
to the American Surveillance, Epidemiology and End Results (SEER) database [97].
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Bone metastasis can be osteoblastic, characterized by the buildup of bone, or osteolytic,
characterized by the loss of bone. Bone metastasis in BC patients is primarily osteolytic,
which involves the destruction of the bone by factors produced from BC cells at the site of
their spread to the bone in a vicious cycle that is accelerated by prolactin (PRL). BC cells in
the bone secrete factors that act on osteoclasts to induce differentiation and break down the
bone or on osteoblasts, which can build up bone. The release of growth factors and Ca2+

from the bone matrix stimulates the proliferation of BC cells, perpetuating a vicious cycle
of bone destruction (for a review, see [98], Figure 2).
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Figure 2. Vicious cycle of bone metastasis. Breast cancer cells within the bone microenvironment
secrete a number of factors, including sonic hedgehog (SHH), which can act on the osteoblasts or
pre-osteoclasts and mature osteoclasts of the bone. Lysis of the bone by the osteoclasts results in
breakdown of the bone matrix and the release of growth factors and calcium, which stimulate cancer
cell replication and survival. Prolactin (PRL) binds to the PRL receptor (PRLR) on breast cancer cells,
leading to PRL-mediated signaling that stimulates SHH production and other unidentified factors.

The contribution of PRL and the PRL receptor (PRLR) to BC etiology and progression
is overall associated with invasive behavior [99], poor prognosis [100], increased BC cell sur-
vival [101], DNA damage resistance [102], and the induction of lytic bone metastases [103].
PRL-PRLR activation in BC cells accelerates bone metastasis [103]. Circulating cancer cells
were enumerated from advanced BC patients using Veridex CellSearch and then isolated
using Ficoll separation. PRLR-positive BC cells were found circulating in the blood as well
as in BC bone metastases biopsies. Using a PRLR antagonist, it was shown that PRL via
PRLR on BC cells accelerates osteoclast differentiation (osteoclastogenesis) and bone lysis
in vitro by the production of secreted factors [103]. Osteoclasts do not express PRLRs [104],
and so the PRL induction of osteoclastogenesis is BC cell-mediated.
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There is a large number of cytokisnes, proteins and other molecules which can alter
bone homeostasis and therefore impact a large number of osteoclast receptors. There are at
least 10 cytokines known to induce multi-step osteoclast differentiation and 9 cytokines
that inhibit it [105]. There are at least 28 known secreted factors from BC cells that induce
osteoclast differentiation, some of which are cytokines [98]. Macrophage colony-stimulating
factor (M-CSF) and its receptor encoded by the c-FMS gene and the receptor activator of
nuclear factor kappa-B (RANK) ligand (RANKL) and the RANK receptor form the two main
osteoclast differentiation pathways [14] with well-characterized signal transduction [106]
(Figure 2).

The microenvironment of the bone is predominantly immunosuppressive with Tregs,
few mature immune effector cells and large populations of myeloid progenitor cells [107].
The immune cells and their production of Type 1 interferons are mainly protecting the bone
by suppressing the bone-resorbing function of osteoclasts [108]. However, while Type 1
interferons increase vascular permeability, which can promote the entry of circulating cancer
cells [109], these interferons can also maintain dormancy of potentially metastatic cells [110].
The microenvironment of bone metastases in BC appears to suppress T cells, compared to
the primary tumor, and this increases osteoclast formation and bone damage in osteolytic
bone lesions. A syngeneic mouse 4T1 mammary cancer model was used to demonstrate
that the tumor-infiltrating lymphocytes (TILs), in particular non-activated T cells, increased
osteoclast formation and bone lesions. The bone metastases associated with 4T1 cells were
associated with T cell-suppressing polymorphonuclear and monocytic myeloid-derived
suppressor cells (MDSCs) [111]. Using primary breast tumors and their matched bone
metastases, it was determined that stromal TILs (CD4+ and CD8+) were reduced in the bone
metastasis compared to the primary tumor; macrophages (CD68+ and HLA-DR+) were
unchanged. Programmed cell death protein 1 (PD-1) and PD ligand 1 (PD-L1) expression
were strongly reduced, suggesting a less active immune microenvironment [112]. The
implications of these results indicate that immunotherapy and T cell activation could be
potential treatment avenues.

4.2. Brain Metastasis of Breast Cancer (Figure 3)

The blood–brain barrier (BBB) is a key obstacle for circulating cancer cells to enter the
brain. Brain microvascular ECs are a critical component of this selective barrier [113]. Brain
ECs are interconnected by tight junctions and demonstrate a very low rate of transcytosis—
two properties that limit both para- and transcellular transport across the BBB [114]. Mi-
crovascular ECs are supported by a continuous basal membrane that anchors ECs and
ensures apicobasal polarity. The BBB is part of the neurovascular unit [114]. Apart from
microvascular ECs and the basal membrane, the neurovascular unit includes astrocytes,
pericytes, smooth muscle cells, neurons, and an extracellular matrix. The complexity of re-
ciprocal interactions between multiple components of the neurovascular unit is thoroughly
reviewed elsewhere [115,116].

The initial step of brain metastasis includes CTCs arresting within the lumen of
brain microvessels [117]. A small microvascular lumen size [117] and the interaction of
cell adhesion molecules (CAMs) on the surface of CTCs with corresponding CAMs on
brain ECs [118] are considered to contribute to this CTC arrest. In particular, BC cells
expressing high levels of MUC1, VCAM1, and VLA-4 were able to strongly adhere to brain
endothelium and withstand fluid shear stress normally occurring within blood vessels [118].
In addition, breast CTCs induced the expression of E-selectin, VCAM-1, ALCAM, ICAM-
1, VLA-4, and β4 integrin by brain ECs, demonstrating the reciprocal nature of these
adherence mechanisms [119]. In addition to the cyclooxygenase COX2 and EGFR ligands
previously shown to mediate lung metastasis, the 2,6-sialyltransferase ST6GALNAC5 was
shown to specifically promote BC cell adhesion to brain ECs by increasing the surface
expression of the ganglioside GD1α for improved trans-endothelial migration [120]. The
metalloprotease ADAM8 was found to be increased in brain metastases and was shown to
promote adhesion to brain ECs by releasing glycoprotein PSGL-1, a ligand of the endothelial



Cancers 2024, 16, 911 10 of 26

adhesion molecule P-selectin [121]. Adhesion studies in vitro with brain ECs demonstrated
that TNFα inflammatory signaling increased the expression of selected adhesion proteins
in ECs (ICAM1, CD112, CD47, JAM-C) and in cancer cells (ALCAM, CD6) [122] (Figure 3).
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Figure 3. Breast cancer brain metastasis. (A) Establishing patient-derived breast cancer brain metasta-
sis in vivo models: intracardial xenografting of breast cancer cells reflects hematogenic colonization
of the brain. (B) Early steps of BC brain colonization involve crossing the blood–brain barrier to
reach the perivascular space with contacts to pericytes, astrocyte foot processes and perivascular
macrophages. (C) Established brain metastatic lesions may grow as demarcated spherical tumors
with angiogenesis or by vascular co-option along preexisting blood vessels as observed for HER2
overexpressing (HER2+ BC) or triple-negative (TNBC) breast cancer brain metastasis, respectively.

While the brain is protected by a particularly tight-junction blood–brain barrier, the
brain contains or attracts the entry of several immune cells that control metastatic growth
including Type 2 innate lymphoid cells (ILC2s) [123]. Microglia, the most prevalent res-
ident immune cell in the brain, can be polarized similar to other macrophages and thus
suppress [124] or allow [125] metastatic growth depending on the context of the microenvi-
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ronment, regional differences and activation state. If microglia are activated, they begin to
produce proinflammatory factors such as TNFα, IL-1β, IL-6, VEGF, and these can increase
EC permeability and create an opportunity for the entry of circulating cancer cells [126].
Drug treatment of brain metastases is challenging as it requires access through the BBB and
accumulation in the brain at effective therapeutic concentrations [127].

Direct cell-to-cell contacts are not the only way to promote the metastasis process
in the brain. An activation of astrocytes was observed even prior to the extravasation of
the CTCs [128]. This correlates with the complex involvement of activated astrocytes in
the MMP-driven deterioration of EC tight junctions, the transmigration of CTCs, and the
progression of metastatic growth in the brain [129–131]. The cell adhesion protein protocad-
herin (PCDH7) expressed by BCBM cells from the TNBC subtype interacts with connexin-43
of astrocytes, facilitates cell communication between astrocytes and BC cells and promotes
BCBM growth by inducing interferon and NF-κB signaling in TNBC cells [132]. The trans-
migration of CTCs can potentially occur at any site of the brain microvascular bed; however,
properties such as the presence of a perivascular space providing reduced resistance on the
abluminal side [133,134] and the ability to accommodate the transendothelial migration of
immune cells [134] favor postcapillary venules as a more susceptible site for the transmi-
gration of CTCs. The transmigration of CTCs through the endothelial barrier also results
in stripping pericytes from the abluminal surface of normal microvessels, which renders
them even more leaky and penetrable by CTCs [135].

The BBB within brain metastatic tumors was shown to be leaky, and a more de-
tailed analysis discovered regional variability in leakiness due to differences in cancer cell
crosstalk with resident cells of the neurovascular unit and tumor angiogenesis [136]. The
altered BBB permeability in brain tumor lesions is referred to as the brain tumor barrier
(BTB) and has been associated with a high expression of the pericyte marker, desmin, and
lower collagen-IV content in the EC basement membrane [137]. Contrast enhancement
studies in experimental brain metastasis models of TNBC and HER2+ BC revealed a leaky
BTB in more than 90% of brain metastatic lesions and a substantial heterogeneity between
different metastatic lesions within brains in these patients. Interestingly, BTB permeability
was enhanced for both small and large permeability markers independent of lesion size
and the metastatic growth phenotype (vascular cooption or spheroid growth). Importantly,
no correlation between BTB permeability and lesion size was observed for treatments with
paclitaxel or doxorubicin. The measured drug concentrations in brain metastases were
10 times lower than those in peripheral metastatic tissues, emphasizing that a barrier still
exists, preventing therapeutic drug levels [137]. Metastatic lesion uptake studies in patients
revealed that the levels of capecitabine metabolites and lapatinib in BCBM tumors varied
widely between patients and between different lesions [138]. The immunolocalization of
glucose transporter 1 (GLUT1) and the BC resistance protein at the apical membrane of
ECs in resected patient BCBM confirms the presence of a barrier function and suggests that
the BTB of HER2+ metastatic lesions is less permeable compared to TNBC or basal-type
BCBM [139].

Structural and functional interactions within the brain parenchyma are not limited to
the cellular components but also involve the extracellular matrix. The composition of the
brain extracellular matrix is unique and is divided into several distinct compartments [140].
While collagen is still present within the basement membrane of cerebral vasculature, the
neural interstitial matrix is almost completely devoid of collagen and consists primarily
of chondroitin sulphate proteoglycans, tenascins, and hyaluronan [140]. In glioblastoma,
peritumoral overexpression of tenascins and hyaluronan as well as the depletion of chon-
droitin sulphate proteoglycans are linked to more aggressive behavior [141,142]. Despite
the current lack of studies directly characterizing extracellular matrix changes in BCBM, it is
well established that multiple cancers, including BC, utilize extracellular matrix remodeling
to facilitate invasion and metastasis [143,144].

BC utilizes a rich repertoire of signaling pathways during tumor progression (re-
viewed in: [145]). This includes the canonical Wnt and Notch signaling pathways, which
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specifically promote the invasiveness and brain colonization of cancer cells from basal-type
BCs [146–148]. Both pathways are essential drivers of stemness in the brain perivascular
niche. The phosphorylation of the Src kinase at Y416 is increased in brain metastases
compared to primary BC tumors. Experimental brain metastasis models and in vitro BBB
models were used to show that Src signaling promotes brain colonization by cancer cells
from TNBC and HER2+ BC through BBB disruption [149]. ErbB2 and Src kinase activity
promote the downstream PI3K-AKT-mTOR pathway to enhance the growth and survival
of brain metastatic HER2+ BC cells [149,150]. Not surprisingly, PI3K/AKT/mTOR activity
has also been identified as the major driver of resistance to HER2−targeting therapies [151].
In BC brain lesions, but not primary tumors, the HER3 (ErbB3) receptor is gaining par-
ticular importance as emphasized by an increased expression of HER3 and HER3/HER2
downstream signaling [152]. In HER2+ BC cell lines, HER3 is the dimerization partner
of HER2 and facilitates the action of brain-derived neuregulin-1 during trans-endothelial
migration in vitro [153]. In summary, brain metastasis commonly occurring in TNBC and
HER2+ BC differ in histopathology and molecular pathway activation which presents an
urgent unmet clinical need for more efficacious brain permeable therapeutic strategies.

5. Treatment Opportunities for Targeted Versus Immunotherapy Approaches for
Metastatic Breast Cancer
5.1. Seed: Targeted Treatments of Different Subtypes of Metastatic Breast Cancer Cells

Only 6% of women will present at initial BC diagnosis with metastatic disease [154];
however, up to 30% of women with BC will eventually develop metastatic disease. Adju-
vant therapy is used to control the development or reoccurrence of the tumor including
metastatic disease. Unfortunately, most therapies are not curative, and metastatic disease is
often drug resistant [155]. This illustrates the need to develop new therapeutic strategies
targeted at metastatic breast cancer.

Aromatase inhibitors have almost replaced the selective estrogen receptor modulators,
such as tamoxifen, as the first-line hormone therapy for ER+ BC. Aromatase inhibitors
block the production of estrogen and are used to treat postmenopausal women, as reviewed
in [156,157]. Considering the rapid emergence of resistance to ER-blocking agents, selective
androgen receptor modulators (SARMs) can provide us with one additional treatment
option to avoid or at least postpone standard chemotherapy. Currently, the most advanced
SARM member is enobosarm, which is under Phase III clinical trials and is one of the closest
agents of this class to entering the market (National Library of Medicine, NCT05065411,
Table 1). The combination of other targeted therapies that can be included are PARP
inhibitors for patients with BRCA mutations and PI3K inhibitors for patients with activating
PIK3CA mutations. Standard chemotherapy remains the final option if all these targeted
therapies fail or if there is a risk of organ failure.

Similarly to ER+ BC, there are targeted treatment options for HER2+ BCs against
the HER2 receptor. The first-line treatment is trastuzumab and pertuzumab, both of
which are antibodies to different domains of HER2, plus a taxane chemotherapy agent,
such as docetaxel. The gold standard second-line therapy is ado-trastuzumab emtansine,
although the DESTINY-Breast-03 clinical trial suggests that better outcomes are seen with
trastuzumab deruxtecan, but this is not currently available in all jurisdictions. Patients
with brain metastases are treated with tucatinib–capecitabine–trastuzumab combined with
radiotherapy. Despite the success of these monoclonal antibodies, they are only capable of
targeting one epitope. Thus, this treatment will eventually be followed by alterations in
the down-stream signaling pathways and the emergence of resistance. This issue is being
addressed due to the fact that the clinical efficacy of DC vaccines is under investigation.
This novel approach aims to induce a strong T cell-mediated immune response against
cancer cells expressing HER2. In this regard, dendritic cell vaccines against HER2/3 for the
treatment of TNBC or HER2+ BC with brain metastasis have been used in one of the most
recent trials, which is currently in Phase IIa (National Library of Medicine, NCT04348747,
2023, Table 1).
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Table 1. Investigational treatments for metastatic breast cancer.

Type of Metastatic
Breast Cancer Intervention/Treatment Mechanisms of Action Phase Identifier

HER2− Utidelone vs. docetaxel Microtubule stabilizers 3 NCT05430399

HER2−
Alpelisib in combination with
chemotherapy (nab-paclitaxel) and
L-NMMA
Combination regimen

PI3K inhibitor (alpelisib); microtubule
stabilizer (nab-paclitaxel);
iNOS inhibitor (L-NMMA);

2 NCT05660083

ER+ HER2− Enobosarm in combination with
abemaciclib

Selective androgen receptor
modulator (enobosarm); CDK4/6
inhibitor (abemaciclib)

3 NCT05065411

ER+ HER2−
Combination therapy with
anastrozole, fulvestrant, and
abemaciclib

Aromatase inhibitor (anastrazole);
selective estrogen receptor
down-regulator (fulvestrant); CDK4/6
inhibitor (abemaciclib)

2 NCT05524584

ER+ HER2− ARV-471 in combination with
everolimus

Selective estrogen receptor
down-regulator (ARV-471); mTOR
inhibitor (everolimus)

1 NCT05501769

ER+ HER2− Gedatolisib plus fulvestrant with or
without palbociclib

A dual inhibitor, targets both PI3K and
mTOR (gedatolisib), selective estrogen
receptor down-regulator (fulvestrant),
CDK4/6 inhibitor (palbociclib)

3 NCT05501886

HER2+ YH32367 HER2/4-1BB bispecific antibody
(BsAb) 1/2 NCT05523947

HER2+
Tucatinib in combination with
pegylated liposomal doxorubicin
(Doxil)

HER2 tyrosine kinase inhibitor
(tucatinib);
DNA intercalation and inhibition of
topoisomerase II-driven DNA repair
(doxil)

2 NCT05748834

PIK3CA-Mutant
HER2+

Combination of alpelisb with
tucatinib

PI3K inhibitor (alpelisb); HER2
tyrosine kinase inhibitor (tucatinib); 1/2 NCT05230810

TNBC or HER2+
with brain metastasis

Dendritic cell vaccines against
Her2/Her3 and pembrolizumab

Booster of immune response against
tumor cells (dendritic cell vaccine);
PD-1 receptor monoclonal antibody
(pembrolizumab)

2 NCT04348747

TNBC

CDX-301 and CDX-1140 in
combination with the standard
chemotherapy (pegylated liposomal
doxorubicin (Doxil))

Recombinant FMS-like tyrosine kinase
3 ligand (CDX-301); monoclonal
antibody as the agonist of CD40
(CDX-1140); DNA intercalation and
inhibition of topoisomerase II-driven
DNA repair (doxil)

1 NCT05029999

TNBC
ASTX727 (cedazuridine, decitabine)
to chemotherapy (paclitaxel) and
immunotherapy (pembrolizumab)

ASTX727 composed of decitabine as a
hypomethylating agent protected
against deamination by the cytidine
deaminase inhibitor component,
cedazuridine;
microtubule stabilizer (paclitaxel);
PD-1 inhibitor (pembrolizumab)

1 NCT05673200

TNBC refractory to
anthracycline with
PI3KCA or PTEN
alterations

Alpelisib in combination with
nab-paclitaxel

PI3K inhibitor (alpelisib); microtubule
stabilizer (nab-paclitaxel); 2 NCT04216472

TNBC with either
PI3KCA mutation or
PTEN loss

Alpelisib in combination with
nab-paclitaxel

PI3K inhibitor (alpelisib); microtubule
stabilizer (nab-paclitaxel); 3 NCT04251533

MUC1* positive breast
cancer Autologous huMNC2-CAR44 T cells

Chimeric antigen receptor
(CAR)-modified T cells that target
specifically the cancerous form of
cleaved MUC1 (called MUC1*), which
is known as a growth factor receptor
of many solid tumors.

1 NCT04020575
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With TNBC, there are no specific receptors to target; therefore, treatment of metastatic
disease focuses on screening tumors for BRCA mutations for treatment with PARP in-
hibitors, or for PD-L1 expression for the use of a PD-L1 checkpoint inhibitor. Sacituzumab
govitecan is an antibody that recognizes Trop-2 expressing cells, has a topoisomerase I
inhibitor as a drug conjugate and is a second-line therapy, but further clinical evidence
is needed. Interestingly, PIK3CA mutations are not currently considered in the treatment
of TNBC. PIK3CA mutations are thought to occur in ~17% of TNBC [158], which is a
similar rate to BRCA mutations within TNBC [159]. However, there are several active
clinical trials looking to target PIK3CA mutations in TNBC for treatment. The combination
of nab-paclitaxel with alpelisib for the treatment of TNBC cases with PIK3CA or PTEN
alterations has shown promising efficacy.

Another area of active research to develop treatments for metastatic breast cancer is
focused on targeting the autotaxin (ATX)–lysophosphatidate (LPA)-inflammatory cycle
characterized by ATX, a secreted lysophospholipase D enzyme, which catalyzes the pro-
duction of extracellular LPA from lysophosphatidylcholine. ATX is involved in increasing
chronic inflammation, which in turn stimulates more ATX secretion and the subsequent
increase in activation of six G protein-coupled receptors that are differentially expressed in
different cells in the tumor. Overall, LPA increases cell division, survival, migration and
immune suppression that promotes tumor growth, angiogenesis and metastasis [82,83].
Additionally, targeting this axis through the inhibition of ATX has been correlated with the
improved efficacy of some chemotherapeutics including taxanes [160], doxorubicin [161]
and tamoxifen [162]. Currently, there are no clinical trials to evaluate ATX inhibitors in
the treatment of breast cancer, and so far, none of the developed ATX inhibitors have been
approved as an anti-cancer agent. However, IOA-289 is now in Phase 1B trials for the
treatment of metastatic pancreatic cancer (National Library of Medicine, NCT05586516,
Table 1).

Metastatic BC most often forms in the bone, brain and lungs, and there are some
site-specific modifications to treatment plans based on the site of metastasis. Bone and
brain metastatic sites are most commonly treated with surgery and radiation therapy as
first-line treatment options. Metastatic disease to the bone can cause osteoporosis; therefore,
the patient is often treated with denosumab and/or a bisphosphonate drug. Other than
that, the patient has the treatment as outlined above. With BCBM, the drug must cross
the BBB, which not all drugs can do. Patients with progressing brain metastases most
often occur in women with HER2+ BC. The only guidelines for changing treatment beyond
surgery and radiation therapy are to use tucatinib, trastuzumab and capecitabine.

All the current treatments of metastatic BC still focus on treatment of the cancer cells
but not the metastatic process itself. Currently, there are no successful methods to treat the
metastatic process, although there have been a few attempts to do so. One example is the
use of MMP inhibitors to block cancer progression. Several clinical trials were performed
in the early 2000s, but these failed in Phase 3 often due to dose-limiting toxicities and
the lack of efficacy [163]. Doxycycline is the only FDA-approved MMP inhibitor, which
is approved as an antibiotic against infections caused by Gram-negative bacteria. The
anti-cancer effects of doxycycline and other MMP inhibitors have been demonstrated by
several pre-clinical studies [164], but further research is needed for the development of
effective and safe MMP inhibitors for cancer therapy [165,166]. Significantly, doxycycline
increases the degradation of extracellular LPA by lipid phosphate phosphatases. This effect
on LPA signaling decreases the production of several inflammatory cytokines in breast
tumors, the activation of NFkB and thus the inflammatory milieu of the tumor. These
anti-inflammatory effects of doxycycline delayed breast tumor growth [162].

It could be argued that one of the reasons for the lack of drug development to target
metastatic disease is that we have not developed strong tools to study the effects of already
existing cancer therapies on this process. One discovery that may change this is the
identification and quantification of CTCs in the blood [76]. There are now several different
methods under active research to detect CTCs [167]. However, CellSearch is the only
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method that has been approved by the FDA for CTC detection [168]. CTC levels within the
blood have been correlated with increased metastatic disease and poor prognosis [169,170].
Moreover, the organization (single cells versus clusters of cells) of CTCs found in the blood
has been associated with their metastatic potential [171]. This suggests that studying how
interventions regulate the CTC level could identify the treatments that at least disrupt the
early steps of metastasis.

5.2. Soil: Immunotherapy Targeting the Metastatic Breast Tumor through Alteration of Its
Microenvironment

The concept that the immune system can recognize and eliminate malignantly trans-
formed cells dates back to the late 19th century when William Coley was experimenting
with heat-killed bacteria preparations to induce immune cell responses and spontaneous
tumor regression in cancer patients [172]. Since then, much has been learned about the
role of the adaptive immune cells and, to some degree, the innate immune cells responses
against cancer cells. The discovery of the first tumor-associated antigen, the melanoma-
associated antigen-1 (MAGEA1), paved the way for T cell-based therapies with the idea
that the patient’s own T cells can be primed to recognize specific antigens on cancer cells
and eliminate them [173]. Soon after this conceptual advance, agents such as interferon-α2
and IL-2, which enhance T cell functions, were approved by the US FDA for the treatment
of metastatic melanomas [174]. Based on these conceptual frameworks and other advances,
different forms of immunotherapy approaches are currently being developed against solid
tumors. These approaches include (A) immunomodulators, (B) adoptive cell transfer thera-
pies and (C) cancer vaccines. We will first briefly explore each approach and then discuss
ongoing clinical trials with respect to the treatment of metastatic BC tumors.

(A) Immunomodulators: Upon exposure to a tumor-specific antigen, naïve T cells differen-
tiate into effector cytotoxic CD8+ T lymphocytes (CTLs) that recognize and eliminate
cancer cells through the secretion of cytokines and degrading enzymes through cell-to-
cell contact. Ultimately, these effector T cells undergo apoptosis or further differentiate
into tissue-resident memory T cells [175]. To prevent the prolonged activation of T
cells, the immune system has evolved to develop an inhibitory mechanism to cause T
cell dysfunction and exhaustion. This mechanism was initially described in a mouse
model of chronic viral infection where T cell exhaustion was found to be due to
antigen overstimulation [176–178]. In this context, T cell dysfunction or exhaustion
was caused by increased expression of “checkpoint” inhibitory receptors such as PD-1,
cytotoxic T lymphocyte antigen-4 (CTLA-4) and T cell immunoglobulin domain and
mucin domain protein-3 (TIM-3) on the T cells [174]. Such inhibitory receptors are
activated by the expression of their cognate ligands (e.g., PD-L1) on antigen presenting
cells, such as dendritic cells and macrophages. In the microenvironments of solid
tumors, such as BC, T cell exhaustion is frequently observed due to the increased
expression of PD-L1 on the cancer cells and increased and sustained expression of in-
hibitory receptors on the TILs which could then lead to CTL exhaustion [179]. Perhaps
the most convincing evidence was provided from experiments showing that blocking
the PD-1 interaction with its ligand PD-L1, with a monoclonal antibody, reactivated
the CTLs and suppressed the growth of tumors [180,181]. Based on this and similar
confirmatory data, immune checkpoint blockade using monoclonal antibodies such
nivolumab and avelumab have been approved for use in the clinic to treat melanomas,
Hodgkin lymphoma, and lung and other cancers. More recently, to extend the effec-
tiveness and duration of reactivity, some patients were treated with a combination of
two immune checkpoint inhibitors: one to negate the PD-1/PD-L1 interaction and
another to counteract the CTLA4/CD80 or/CD86 interactions. Clinical trials are now
underway to test the effectiveness of these immune checkpoint inhibitors in other
solid tumors including liver cancer, non-small cell lung cancer and some BCs [182]
(Table 2).
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Table 2. Immunotherapy clinical trials in metastatic breast cancer. • = designate if multitherapy or
mono-therapy was delivered.

Breast Cancer
Stage

Immunotherapeutic Therapy Type
ReferencePD-L1

Inhibitor
PD-1

Inhibitor
CTLA-4

Inhibitor
Mono-

Therapy
Multi-

Therapy

Phase 1

Early

Atezolizumab • NCT03802604

Locally Advanced

Atezolizumab • NCT03800836

Durvalumab • NCT03356860

M7824 • NCT02699515

Pembrolizumab • NCT03310957

Metastatic

Atezolizumab • NCT03853707

Avelumab • NCT04360941

Nivolumab • NCT02393794

Pembrolizumab • NCT03362060
NCT03272334

Not Specified

Pembrolizumab • NCT06246968

Phase 2

Early

Avelumab • NCT04841148

Pembrolizumab • NCT05675579

Locally Advanced

Atezolizumab • NCT02924883
NCT03424005

Pembrolizumab • 3

Metastatic

Atezolizumab • NCTT0294883

Avelumab • NCT04215146
NT03147287

Ipilimumab • NCT03789110

Nivolumab • NCT03316586

Pembrolizumab • • NCT03139851
NCT02447003

Not Specified

Atezolizumab • NCT03170960

Ipilimumab • NCT03815890

Nivolumab • NCT03815890
NCT03742968

Pembrolizumab • NCT03025035

Phase 3

Early

Atezolizumab • NCT03726879
NCT03595592

Nivolumab • NCT04109066

Pembrolizumab • NCT03725059

Locally Advanced

Atezolizumab • NCT04148911
NCT03125902

Pembrolizumab • NCT05382286
NCT03036488

Metastatic

Atezolizumab • NCT04177108
NCT04740918
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(B) Adoptive cell transfer therapies: Cellular immunotherapy or the adoptive cell ther-
apies refer to approaches that involve isolating the patient’s own T cells and either
expanding them directly or genetically modifying them to enhance their anti-cancer
effector functions prior to their expansion ex vivo. These activated T cells are then
reinfused back into the patient with the idea that these cells are tumor reactive and
will result in tumor regression. These treatments include TIL therapy and chimeric
antigen receptor (CAR) T cell therapy.

BC patients whose tumors show extensive TILs have better prognosis [183,184]. This
clinical observation provided a framework to hypothesize that, at the least, some T cells in
the tumor microenvironment have been primed to specifically recognize tumor-associated
antigens, and therefore, their expansion ex vivo and transfer back to the patient could have
therapeutic benefits [185]. The reinfusion of the patient’s expanded TILs with IL-2 showed
some success in treating metastatic melanomas; however, the TILs showed a short response
rate [186]. Although TIL therapy has great therapeutic potential as it gets around the
autoimmune and the graft-versus-host disease immune responses, TIL therapy has shown
little effect against breast and other cancer types [187]. However, recent data provided by
Zacharakis et al. showed that the reinfusion of TILs from a patient with a therapy-refractory
metastatic ER+HER2− tumor provided durable tumor regression. In this case, the TILs
were selected based on their ability to specifically detect four different mutated proteins that
were observed in the patient-specific cancer cells [188]. However, the sustained reactivity
of these TILs was achieved in combination with immune checkpoint inhibitors and IL-2 to
activate the TILs [188].

With the recognition that activated CTLs can specifically identify and eliminate cancer
cells, cell engineering techniques were employed to generate T cells that recognize cells
expressing tumor-associated antigens while sparing the normal cells. These antigens can
be enzymes or receptors found on the surface of the cancer cells. In the case of tumors
whose cancer cells express these distinct antigens, these engineered T cells expressing
receptors with a variable domain recognizing the tumor-associated antigen, along with a
transmembrane-anchoring domain and a T cell receptor activation domain (CAR T cells),
are created using cells obtained from the patient’s peripheral blood [189,190]. In this context,
the cytolytic actions of CAR T cells are independent of the need for antigen presentation on
the human leukocyte antigen molecules [191]. The first generation of CAR T cells did not
yield promising results due to poor expansion and low persistence in vivo [192,193]. The
next generation CAR T cells now include costimulatory domains (e.g., CD27 and CD28)
to enhance the cytocidal and persistence of the engineered T cells [193]. In addition, the
fourth generation of CAR T cells now include an IL-12-inducible NFAT expression cassette.
Once the CAR T cells recognize the tumor-associated antigen expressed on the cancer cells,
the increased production of the proinflammatory cytokine IL-12 results in the activation of
downstream signaling and full activation of the CAR T cells to enhance their antitumor
functions [194,195].

In BC cells, the development of CAR T cell therapies has been slow. This is mainly
due to the lack of breast tumor-associated antigens. In HER2+ BC tumors, for example, the
use of anti-HER2− CAR T cell therapy is being considered. Preclinical results from animal
experiments look promising in that the use of HER2−CAR T cells decreased primary
tumor growth and caused the regression of brain tumor metastasis [196,197]. However,
it should be noted that normal breast and other epithelial cells also express the HER2
receptor, although at lower levels. Another example of a tumor-associated antigen in BC is
mesothelin, and this is being considered for the generation of the patient’s CAR T cells that
would recognize and eliminate the TNBC cells [191,198]. CAR T cell therapies are also being
considered in clinical trials. In addition to HER2 and mesothelin, other tumor-associated
antigens that are being considered for Phase I/II clinical trials for CAR T cell therapy are
MUC1 and MET [199]. Unfortunately, no CAR T cell therapies are yet approved to treat
BC tumors.
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(C) Cancer vaccines: Vaccines for use as prophylactic measures to prevent tumor devel-
opment have been developed against viral infections that cause malignancies such
the human papilloma virus and the hepatitis B virus [174]. The role of other viruses
such the human cytomegalovirus (HCMV) in the development of many malignancies
including BC is an active area of research. Recent data indicate that evidence of an
HCMV infection can be found in up to 90% of BC patients with expression of the
HCMV viral proteins by BC cells [200]. On the other hand, the therapeutic cancer
vaccines are still at various stages of development. For example, some prostate cancer
cells exhibit overexpression of prostatic acid phosphatase which has led to the devel-
opment of a vaccine to help the immune system detect and eliminate such prostate
cancer cells. Another approach that is being actively considered is the creation of
oncolytic viruses where a virus is used to cause forced expression of a toxic protein in
cancer cells [174].

BC tumors, in general, have a low mutational burden, making the identification
of cancer cell-specific antigens very difficult [198]. However, the immune system does
detect abnormally overexpressed proteins such as the HER2 receptor, IGFBP-2, and IGF-
IR [201,202]. Among these antigenic proteins, HER2 has been the subject of intense study
towards the development of a therapeutic vaccine against HER2+ BCs [202]. Although
promising results are observed in clinical trials, these immunotherapies only are effective
in 20% of patients, and among the initially responding tumors, sustained responses are a
clinical challenge that needs to be addressed. Additional research is needed to provide a
framework to develop efficacious immunotherapies for those patients who do not benefit
from the currently available immunotherapies.

6. Concluding Remarks

Metastasis remains a crucial challenge in treating BC. Understanding the tumor mi-
croenvironment of metastatic breast tumors has revealed further heterogeneity in both
BC cells and in their microenvironments, including immune responses in metastatic tu-
mors. Unfortunately, immunotherapy has been disappointing. Cancer immunotherapies
still hold great promise to offer treatment options for metastatic breast tumors that are
currently incurable. To be effective against BC tumors, however, immune suppression
needs to be eliminated and better CAR T cells developed to specifically target metastatic
breast tumors. Until such technologies are available, biomarkers are needed to identify
patients that would benefit from immune checkpoint inhibitors and adoptive cell transfer
treatments. Presently, only the expression of PD-L1 in TNBC is used as an indicator for use
of checkpoint inhibitors. As we gain insight into the interplay between breast tumors and
their metastatic environments, new and effective targeted treatments and immunotherapies
will be developed.
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