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Abstract: As open channel simulations are of great economic and human significance, many numer-
ical approaches have been developed, with the Godunov schemes showing particular promise. To 
evaluate, confirm, and extend the simulation results of others, a variety of first- and second-order 
FVMs are available, with Rusanov and Roe schemes being used here to simulate the demanding case 
of 1D and 2D flows following a dam break. The virtual boundary cells approach is shown to achieve a 
monotonic solution for both interior and boundary cells, and while flux computation is employed at 
boundary cells, a refinement is only rarely used in existing models. A number of variations are ex-
plored, including the TVD MUSCL-Hancock (monotone upwind scheme for conservation laws) nu-
merical scheme with several slope limiters in a quest to avoid spurious oscillations. The sensitivity of 
the results to both channel length and the ratio of downstream to initial upstream water depth is ex-
plored using 1D and 2D models. The Roe scheme with a Van Leer limiter as a slope limiter is shown 
to be both fast and slightly more accurate than other slope limiters for this problem, but the Rusanov 
scheme with different slope limiters works well for 1D simulations. Significantly, the selection of an 
appropriate slope limiter is shown to be best based on the ratio of the downstream to upstream water 
depth. However, this study focuses on the special case where the ratio of the initial depth down-
stream to upstream of the dam is equal to or less than 0.5, and these outcomes are compared to the-
oretical results. The 2D dam-break problem is used to further explore first- and second-order meth-
ods using different slope limiters, and the results show that the Superbee limiter can be problematic 
due to an observed large dispersion in depth contours. However, the most promising approaches 
from previous studies are confirmed to deserve the high regard given to them by many researchers. 
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1. Introduction and Background 
Open channel calculations have huge significance in many contexts, from flood 

studies to power system applications to dam-break problems. The dam-break issue has 
gained global recognition due to the adverse and often severe effects that flooding can 
have environmentally and economically, or even to human life. Intense rain, the role of 
sea-level rise, inadequately controlled urban development, and the possible severity of 
dam-break events have all increased associated flooding concerns [1]. As tsunamis move 
along the coast, for example, their wave height often increases, along with their conse-
quences [2,3]. The sudden release of water from a dam break can produce untold human 
misery and environmental damage [4], sometimes resulting in thousands of lost lives 
and billions of dollars in damages [5–8]. For example, the 1889 failure of the South Fork 
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Dam near Johnstown, Pennsylvania (US) occurred after heavy rain, and over 2000 lives 
were lost [9]. In 2005, a dam collapsed in Brazil and led to a mammoth mud slide that 
killed 19 people and contaminated a 668 km stretch of river. 

Given this importance, many open channel models have been developed with an 
on-going quest for reliability, accuracy, and stability. Even with inevitable model uncer-
tainty in terms of initial and boundary values and the initiating event, such simulations 
are often a mandated requirement. Early on, the dam-break problem was studied ana-
lytically using a lagrangian description [10]. Unfortunately, early modelling results were 
approximate and ignored key parameters. Enhanced methods employed the shal-
low-water form of the Saint-Venant equations [11], an approach that had already been 
found useful for river forecasting, canal operations, sewer modeling, irrigation, and 
dam-break simulations [12–15]. 

Several numerical models based on shallow-water equations have modeled free 
surface flow to predict hydraulic failures. A key goal has been to establish a numerical 
model capable of avoiding spurious results while achieving accurate, stable, and effi-
cient predictions. The approaches included using the finite element method (FEM), an 
approach that had been used successfully in structural applications. For example, Yang 
[13] computed one-dimensional unsteady free surface flows resulting from a dam break, 
specifically by using various characteristics-based high-resolution nonoscillatory 
shock-capturing finite difference and Petrov-Galerkin finite element methods. From 
comparisons between the computed results and analytic solutions, researchers demon-
strated that accurate predictions of high-speed open channel flows are obtainable. Pre-
vious computational solutions to the shallow-water equations have included the finite 
difference method (FDM) by Hirsch [16], the method of characteristic (MOC) for the 
kinematic wave equation [17], and the finite volume method (FVM) [18]. Even aside 
from the need to evaluate the potential consequences of a dam failure, the sudden re-
lease of water and the consequent evaluation of flow depth is a crucial numerical test for 
the evaluation of open channel flow models. 

Finite volume schemes have been shown to better resolve the shallow-water equa-
tions particularly when they are associated with Godunov-type schemes. Thus, the FVM 
Godunov-type schemes have proved excellent for solving hyperbolic equations and have 
been shown to have improved computation of the momentum and mass fluxes [19–21]. 
For example, Hirsch [19] introduced the FVM Godunov-type scheme for shallow-water 
equations and used a Riemann solver for the fluxes at cell interfaces along with the 
monotone upwind scheme conservation law (MUSCL) method to achieve second-order 
spatial accuracy. Subsequently, Vila [22] used a simplified Godunov scheme [23] and 
achieved second-order accuracy by considering generalized Riemann problems. A phys-
ical model of the partial dam break has been developed by Fennema [24]. These authors 
compared their results with the explicit methods of McCormack and Gabutti. Similarly, 
a semi-implicit MacCormack scheme allowed adaptation to morphological variation on 
an alluvial erodible bed [25]. Alcrudo [26] proposed the Riemann problem associated 
with Roe-type approximation to evaluate inter-flux cell transfers in the 2D dam-break 
simulations. Sanders [27] used the same approach to solve one-dimensional (1D) shal-
low-water equations for non-rectangular and non-prismatic channels. The multi-slope 
concept was recently introduced to solve the problem of MUSCL reconstruction of tri-
angular and tetrahedral unstructured meshes in cell-centered finite volume environ-
ments. Unlike the single-slope method, which uses a unique bounded gradient, special 
scalar slopes are used to compute the interpolation on each side of a given element [28]. 

Moreover, the high-resolution FVM-Godunov type scheme associated with various 
limiters is used by Sanders and Bradford [18,20] to analyze the wave propagation near 
the coastal zone and in the 1D dam-break problem. The total variation diminishing 
(TVD) schemes are widely applied to the physical problem of moving shocks due to 
their reduced spurious oscillations [29,30]. In the case of wave propagation near the 
coastal zone, Gao [31] numerically investigated transient harbor oscillations induced by 
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various incident N-waves. Four years later, Gao [32] studied the influences of a fringing 
reef on harbor oscillations triggered by N-waves. They simulated both the propagation 
of N-waves over the reef and the subsequently induced harbor oscillations using a Bous-
sinesq-type numerical model, FUNWAVE-TVD. In the case of the dam break, Bai [29] 
developed the TVD scheme to solve the two-dimensional (2D) shallow-water model and 
investigated the effects of different limiters on the numerical accuracy of the dam-break 
flow. Ata [33] applied a weighted-average flux (WAF) approximation to the shal-
low-water equations with friction and detailed bathymetry on unstructured 
two-dimensional grids. The general and efficient discretization of the topographic source 
term and friction is also presented in this study. Additionally, Hu [34] investigated the 
performances of four typical TVD slope limiters, namely the minmod, van Leer, monot-
onized central (MC), and superbee limiters, on modelling stratified shear flows based on 
the open-source non-hydrostatic model, NHWAVE. All the limiters were, respectively 
applied in two classical test cases, namely, for the shear instability and the lock-exchange 
problem. 

Furthermore, in the current work, an approximation using the HLLC Riemann 
solver within a vertex-centered finite volume framework is applied. The results from the 
comparison between the WAF-HLLC scheme and the several other well-known schemes 
such as HLLC and Roe- and kinetic-type schemes confirm that the behavior of the 
scheme is well-balanced, shows strict mass conservation, provides positive water depths, 
has efficient treatment of wetting and drying phenomena, and has good shock-capturing 
characteristics with low numerical diffusion. ENO (Essentially Non-Oscillatory) schemes 
are developed in Harten’s classic paper [35]. Later, a simple fifth-order weighted essen-
tially non-oscillatory (WENO) scheme was presented in the finite difference framework 
for the hyperbolic conservation laws by Zhu [36]. The study used the convex combina-
tion of a fourth-degree polynomial with two linear polynomials for the reconstruction of 
fluxes. The experimentally observed wave patterns depend on the initial depths down-
stream (hd) and upstream (h0) of the dam. Values of hd/h0 between 0.45 and 0.55 must be 
considered in a transition zone, which depends on several factors (friction, slope, dam 
breaking duration, type of dam breaking, etc.). This is confirmed both experimentally 
and numerically in, for example, José [37] and Christos [38], for the special case of partial 
rupture with hd/h0 = 0.51. 

Recently, Zhuang [39] proposed a hybrid weighted essentially non-oscillatory 
(WENO) scheme in the finite difference framework by combining the simple WENO 
scheme and the modified WENO scheme of Zhu [40] for solving hyperbolic conservation 
laws. They found that the hybrid WENO scheme is easily implemented and uses less 
CPU time than the simple WENO scheme, and can be utilized to simulate the rather ex-
treme test cases such as the Sedov blast wave problem, the Leblanc problem, and the 
high Mach number astrophysical jet problem, and others, with a normal CFL number, 
without any additional need to preserve positivity. Extensive numerical results for both 
one- and two-dimensional equations have confirmed a consistently strong performance. 
Abdou [41] used the finite volumes–Godunov-type method associated with the Riemann 
HLL scheme approach solver. By considering non-structured meshes obtained using the 
emc2 mesh generator and thanks to the property of invariance through rotating the flow 
of the shallow-water equations, they show that the performance of the 2D case arose 
from the perfect resolution of the one-dimensional system of the shallow-water equa-
tions. Furthermore, Bai [29] investigated the effects of different limiters on the numerical 
accuracy of the 1D and circular dam break. They used the Finite volume method com-
bined with the MUSCL-Hancock scheme, and the Harten-Lax-Van Leer-Contact (HLLC) 
approximate Riemann solver was integrated to compute the flux. 

Later, Yang [42] proposed a family of second- and third-order new temporal dis-
cretization methods obtained from a combination of the traditional Runge–Kutta meth-
od (for non-stiff equations) and the exponential Runge–Kutta method (for stiff equa-
tions), and they combined it with the well-balanced discontinuous Galerkin spatial dis-
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cretization to solve the nonlinear shallow-water equations with non-flat bottom topog-
raphy and (stiff) friction terms, with good one- and two-dimensional outcomes. Guanlan 
[43] proposed a high-order semi-implicit well-balanced and asymptotic preserving finite 
difference WENO scheme coupled with a stiffly accurate implicit–explicit (IMEX) 
Runge–Kutta time discretization for the shallow-water equations with non-flat bottom 
topography. They conclude that both one- and two-dimensional numerical results are 
accurate and nicely capture small perturbations in the steady-state solution. Moreover, 
Gonzalez [44] used the finite volume scheme to solve the hyperbolic part of the govern-
ing system, computing the numerical flux in three ways: the Q-scheme of van Leer, the 
HLLCS approximate Riemann solution, with the final one considering the presence of 
non-conservative terms. The comparative study showed good agreement between ex-
perimental and numerical results. Eleuterio [45] presented a flux vector splitting method 
for the one- and two-dimensional shallow-water equations following the approach first 
proposed by Toro and Vazquez for the compressible Euler equations. The technique 
splits the full system into two subsystems, namely an advection system and a pressure 
system; as to the source terms, there is potential for treating general source terms by in-
corporating them into either subsystem. They found that a discontinuous bottom could 
be incorporated in the computation of the pressure system, and these results can be ex-
tended to 2D unstructured meshes. 

Among the different numerical approaches developed previously, some of them 
offer a range of promising research directions. For example, Bai [29] uses the HLL 
scheme in a comparative study of the impact of various limiters on the accuracy of the 
numerical flow model with dam break including a short channel (50 m) for both a dry 
and wet bed. In the same manner, Darwis [46] compared the capability of Roe, RHLL, 
and Rusanov flux functions in capturing shock phenomena. The authors used the com-
putational fluid dynamics in the simulation of one-dimensional and two-dimensional 
cases. Furthermore, Delis [47] used the finite difference method for calculating numerical 
solutions for the two-dimensional shallow-water system of equations. The methods were 
based on classical relaxation models combined with TVD Runge–Kutta time-stepping 
mechanisms where neither Riemann solvers nor characteristic decompositions were 
needed. But, a comprehensive comparison has not yet been fully achieved. 

To this end, the current paper provides a broad and systematic comparison of a 
wide range of numerical choices, using the dam-break case to compare and contrast the 
performance of many schemes. The dam-break problem is a strong choice for this be-
cause it is (i) a challenging numerical problem (sudden change of channel length, dry 
bed and wet bed issue, dam break with triangular obstacle, computation of the water 
depth for the points located throughout the dam, etc.) and is (ii) independently im-
portant, particularly since dam-break studies are routinely mandated. Thus, five (5) 
slope limiters are employed to demonstrate and confirm the quality and accuracy of the 
dam-break simulations. Little attention has yet been paid to the role of flow depth and 
its relation to both channel length variation and the ratio between downstream and up-
stream water height. Most approaches used in the dam-break simulation consider con-
ventional cells and do not capture what is called the “ghost or virtual cell”. These latter 
variations help to achieve second-order accuracy in the upstream and downstream cells 
of the computational domain. Hence, the virtual boundary cell can be defined as an ap-
proach to calculate the flux in different cells by assuming the flow information in the 
boundaries is the same as in the virtual cells and by coupling the Riemann invariant 
with a head-flow boundary at time n [48]. Thus, so-called ghost cells are used to com-
pute uniform solutions for both the interior and boundary cells. The current study de-
velops a 2D numerical simulation model based on the TVD MUSCL-Hancock scheme 
and examines the impact of the various limiters on the accuracy of dam-break flow with 
wet and dry beds. Due to its simplicity and ease of its implementation, the structured 
grid has been chosen. The slope limiter is used in the data-reconstruction step, and the 
Riemann fluxes are calculated based on this reconstruction. This study focuses on the 
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effect of suppressing the spurious numerical oscillations near the discontinuity of 
different slope limiters. 

The next section briefly reviews the governing equations of the dam-break problem. 
After this, the performance of various numerical solution approaches is explored in 1D 
and 2D dam-break applications. 

2. Description of the Numerical Model 
The water depth and velocity downstream of the assumed sudden dam-break event 

shown in the following sections are based on numerical simulations of 1D and 2D shal-
low-water equations. The numerical model used in this study is based on computational 
fluid dynamic principles, specifically through the finite volume method associated with 
the Godunov type. The Roe and Rusanov schemes have been integrated in the numerical 
resolution of the shallow-water equations, and the comparison between the results uses a 
variety of first- and second-order schemes that are detailed in the next section. More 
specifically, to evaluate the importance of slope limiters, the second-order finite volume 
method uses five different approaches to limit gradients (Minmod, Superbee, Van Leer, 
Van Albada, and double Minmod) with each scheme featuring in the computation of the 
water depth downstream of the failed dam. 

3. Numerical Resolution of the Shallow-Water Equation 
The matrix form of two-dimensional shallow-water equations can be expressed in 

the Cartesian coordinate system as follows: డ௎డ௧ + డிడ௫ + డீడ௬ = 𝑆  (1)

where t denotes time; x and y are Cartesian coordinates; U represents the conservative 
variables; F and G are the flux vectors in the x and y directions, respectively; and the 
vector source is expressed by S. In particular, U, F, G, and S are expressed as 

𝑈 = ൥ ℎℎ𝑢ℎ𝑣൩ ;   𝐹 = ൥ ℎ𝑢ℎ𝑢ଶ + 0.5𝑔ℎଶℎ𝑢𝑣 ൩ ;   𝐺 = ൥ ℎ𝑣ℎ𝑢𝑣ℎ𝑣ଶ + 0.5𝑔ℎଶ൩ ;  𝑆 = ቎ 0𝑔ℎ൫𝑆௢௫ − 𝑆௙௫൯𝑔ℎ൫𝑆௢௬ − 𝑆௙௬൯቏  (2)

where h is water depth; u and v are velocity components in the x and y directions; (𝑆௢௫ = −𝜕𝑧 𝜕𝑥⁄ ) and (𝑆௢௬ = −𝜕𝑧 𝜕𝑦⁄ ) are the bed slopes in two directions; and g 
is the gravitational acceleration. F and G are the flux a vector in the x and y directions, 
respectively, and the vector source is expressed by S. The two friction terms 𝑆௙௫ and 𝑆௙௬ are computed through the Manning equation as 𝑆௙௫ = ௡௠మ௨√௨మା௩మ௛ర/య  ;   𝑆௙௬ = ௡௠మ௩√௨మା௩మ௛ర/య   (3)

where nm is the Manning coefficient. 

3.1. Discretization of the Shallow-Water Equation 
Previous work led by Ferrari [49] demonstrates that the influence of the bed friction 

and source terms on the simulation of the dam-break problem is often negligible in the 
2D dam break, but in 1D, its significance depends on the specifics of the case. The 
two-dimensional homogeneous equation is 𝑈௧ + 𝐹(𝑈)௫ + 𝐺(𝑈)௬ = 0  (4)

The general integral form of Equation (4) is expressed as follows: ∯(𝑈𝑑𝑥𝑑𝑦 − 𝐹𝑑𝑡𝑑𝑦 − 𝐺𝑑𝑡𝑑𝑥) = 0  (5)
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By applying the Green’s theorem to Equation (4) and adding the source term, the 
result becomes 
 In the x-direction 𝑈௜,௝௡ାଵ/ସ = 𝑈௜,௝௡ + ∆௧∆௫ ൣ𝐹௜ାଵ/ଶ,௝௡ − 𝐹௜ିଵ/ଶ,௝௡ ൧ + ∆௧ଶ (𝑔ℎ(𝑆௢௫ − 𝑆௙௫)௜௡ + 𝑔ℎ(𝑆௢௫ − 𝑆௙௫)௜௡ାଵ/ସ)  (6)

 In the y-direction 𝑈௜,௝௡ାଶ/ସ = 𝑈௜,௝௡ାଵ/ସ − ∆௧∆௬ ൣ𝐺௜,௝ାଵ/ଶ௡ − 𝐺௜,௝ିଵ/ଶ௡ ൧ ∆௧ଶ (𝑔ℎ(𝑆௢௬ − 𝑆௙௬)௝௡ାଵ/ସ + 𝑔ℎ(𝑆௢௬ − 𝑆௙௬)௝௡ାଶ/ସ)  (7)

where 𝑈௜,௝௡ , 𝑈௜,௝௡ାଵ/ସ denote the average solution of U in cells i and j at time level n and 
n + 1/4, respectively, and ∆𝑡 is the time-step. The spatial intervals ∆𝑥 and ∆𝑦 are the 
width of the cells i,j in the x and y direction, respectively. 𝐹௜±ଵ/ଶ,௝௡  and 𝐺௜,௝±ଵ/ଶ௡  are the 
approximations to the physical fluxes function F(U) and G(U), respectively, from Equa-
tion (4). 

Godunov-type methods use the Riemann problem to compute the approximations 
of the fluxes function 𝐹௜±ଵ/ଶ,௝௡  and 𝐺௜,௝±ଵ/ଶ௡ . 
3.2. The Riemann Problem 

The Riemann problem is solved using Roe’s numerical method, a method widely 
used in 1D and 2D shallow equations to determine the flow [50]. Roe and Toro [51,52] 
propose the following formula: 𝐹 = ଵଶ (𝐹௅ + 𝐹ோ − |𝐴௘|∆𝑈)  (8)

The fluxes computed at the left and right sides are expressed by 𝐹௅ and 𝐹ோ, re-
spectively; Ae is the Jacobian matrix of F vector at the vertical direction in the boundary 
and can be evaluated as |𝐴௘| = డிడ௎ = 𝑅|𝐴|𝑊  (9)

Matrices R, W, and A can be expressed as 

𝑅 = ቎ 0 1 1−𝑛௬ 𝑢ො + 𝑐̂𝑛௫ 𝑢ො + 𝑐̂𝑛௫𝑛௫ 𝑣ො + 𝑐̂𝑛௬ 𝑣ො + 𝑐̂𝑛௬቏  (10)

𝐴 = ൦ห𝛽ଵ෢ห 0 00 ห𝛽ଶ෢ห 00 0 ห𝛽ଷ෢ห൪  (11)

𝑊 = 12𝑐̂ ቎2𝑐̂൫𝑢ො𝑛௬ − 𝑣ො𝑛௫൯ −2𝑐̂𝑛௬ 2𝑐̂𝑛௬𝑐̂ − 𝑢ො𝑛௫ − 𝑣ො𝑛௬ 𝑛௫ 𝑛௬𝑐̂ + 𝑢ො𝑛௫ + 𝑣ො𝑛௬ −𝑛௫ −𝑛௬ ቏ (12)

where 𝑛௫ and 𝑛௬ are components of the external unit vector in the x and y directions; 
the eigenvalues are expressed as 𝛽ଵ෢ = 𝑛௫𝑢ො + 𝑛௬𝑣ො;   𝛽ଶ෢ = 𝛽ଵ෢ + 𝑐̂;  𝛽ଷ෢ = 𝛽ଵ෢ − 𝑐̂   (13)

The average values ℎ෠,𝑢ො , and 𝑣ො are defined as 
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𝑐̂ = ටଵଶ 𝑔(ℎ௅ + ℎோ);  ℎ෠ = ඥℎோℎ௅ ;   𝑢ො = ඥ௚.௛ಽ௎ಽାඥ௚.௛ೃ௎ೃඥ௚.௛ೃାඥ௚.௛ಽ ; 𝑣ො = ඥ௚.௛ಽ௩ಽାඥ௚.௛ೃ௩ೃඥ௚.௛ೃାඥ௚.௛ಽ   (14)

(1) The MUSCL-Hancock Scheme 
The MUSCL-Hancock approach is itself determined via three key steps involving a 

data-reconstruction step, a step solving the Riemann problem following a direct deter-
mination of how the solution evolves in time. 
(2) Data Reconstruction 

The data-reconstruction step assesses at the cell’s left and right sides the water 
depth and velocity. Sanders [27] proposed the following equations: ℎ௅ = ℎ௜,௝ + ଵଶ ൫∆ℎప,ఫതതതതതത൯;   ℎோ = ℎ௜ାଵ,௝ − ଵଶ ൫∆ℎపାଵ,ఫതതതതതതതതത൯  (15)𝑉௅ = 𝑉௜,௝ + ଵଶ ൫∆𝑉ప,ఫതതതതത൯  ;   𝑉ோ = 𝑉௜ାଵ,௝ − ଵଶ (∆𝑉పାଵ,ఫതതതതതതതതത)   (16)

here 𝑉௅ and 𝑉ோ  are the average cell velocity of the left and right of interface, respec-
tively, and ℎ௅ and ℎோ  are the average cell height of the left and right of interface, re-
spectively. 
(3) Time Evolution 

The computation grid for the 1D and 2D shallow-water equations consist of bound-
ary and interior cells discretized in the flow direction x and y. The x and y direction are 
labeled by i = 1, 2, 3 … M and j = 1, 2, 3, … N (see Figure 1). This approach takes into ac-
count two ghost cells at all sides, for i = −1, 0 and i = M + 1 and j = −1, 0 and j = N + 1; also, 
the computation made in the ghost cell should be based on data in the interior cells, 
namely 𝑈ିଵ,௝௡ାଵ = 𝑈଴,௝௡ାଵ = 𝑈ଵ/ଶ,௝  and 𝑈ெାଵ,௝௡ାଵ = 𝑈ெାଶ,௝௡ାଵ = 𝑈ெାଵ/ଶ,௝, 𝑈௜,ିଵ௡ାଵ = 𝑈௜,଴௡ାଵ = 𝑈௜,ଵ/ଶ and 𝑈௜,ேାଵ௡ାଵ = 𝑈௜,ெାଶ௡ାଵ = 𝑈௜,ெାଵ/ଶ,  

(17)

The head-flow boundary is expressed using 𝑈ெାଵ,௝௡ାଵ = 𝑈ெାଶ,௝௡ାଵ = ൬𝐻ெାଵ/ଶ,௝𝑉ெାଵ/ଶ,௝ ൰  and 𝑈௜,ேାଵ௡ାଵ = 𝑈௜,ேାଶ௡ାଵ = ൬𝐻௜,ேାଵ/ଶ𝑉௜,ேାଵ/ଶ൰. 

 
Figure 1. Computational grid. The black dot (*) represents the center of the grid. 
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3.2.1. Rusanov Scheme 
The resolution of the Riemann problem in edge space steps the solution forward 

using the Rusanov Scheme as 𝐹 = ଵଶ (𝐹௅ + 𝐹ோ − 𝑆௠௔௫(𝑈ோ − 𝑈௅)  (18)

On each side of the edge, namely 𝑈௅ and 𝑈ோ are the left and right states of the 
conservative variables and where the parameter Smax has been developed in [52] as 𝑆௠௔௫ = 𝑚𝑎𝑥൫ൣห𝑢௅ + ඥ𝑔ℎ௅ห, ห𝑢ோ + ඥ𝑔ℎோห൧൯  (19)

3.2.2. Slope Limiter 
The intermediate boundary extrapolation in both the x and y directions is used to 

compute the conservative variables at the left and right side of the cell as follows: 𝑈௜ାଵ/ଶ,௝௅ = 𝑈௜,௝ + 12𝑅൫𝑟௜ାଵ/ଶ,௝൯൫𝑈௜,௝ − 𝑈௜ିଵ,௝൯ 𝑈௜ାଵ/ଶ,௝ோ = 𝑈௜ାଵ,௝ − ଵଶ 𝑅൫𝑟௜ାଵ/ଶ,௝൯൫𝑈௜ାଶ,௝ − 𝑈௜ାଵ,௝൯  

(20)

Here, the subscripts L and R represent the left and right side of the cell, respective-
ly; the cell indices are expressed using the subscripts i and j; 𝑅൫𝑟௜ାଵ/ଶ,௝൯ is the slope 
limiter; and 𝑟௜ାଵ/ଶ,௝ is computed as 𝑟௜ାଵ/ଶ,௝ = ∆௎೔శభ/మ,ೕ∆௎೔షభ/మ,ೕ  (21)

with ∆𝑈௜ିଵ/ଶ,௝ = 𝑈௜,௝௡ − 𝑈௜ିଵ,௝௡ ;    ∆𝑈௜ାଵ/ଶ,௝ = 𝑈௜ାଵ,௝௡ − 𝑈௜,௝௡     (22)

where n denotes the time level. 
The resolution of the second-order shallow-water equation through the finite vol-

ume method is required by the use of the slope limiters. These slope limiters play an 
important role in that resolution [33,53–55]. Sanders [54] pointed out that the slope lim-
iter evaluates the cell-average gradients of the variables to preserve the monotonicity of 
the solution at discontinuities (Figure 2). They defined R(r) as the slope limiter; r = 𝑟௜ାଵ/ଶ,௝  is the dimensionless ratio between ∆𝑈௜ାଵ/ଶ,௝  and ∆𝑈௜ିଵ/ଶ,௝  Equation (21) 
and gave the following condition for r ≥ 0, then 𝑅(𝑟) ≤𝑚𝑖𝑛(4𝑟 (1 + 𝑟)⁄ , 4 (1 + 𝑟)⁄ )  which satisfies the TVD. When r < 0, all limiters are 
equal to zero [55]. The expressions of the slope limiter’s formula are as follows: 
(1) Van Albada 𝑅(𝑟) = ଶ(௥ା|௥|)(ଵା௥)మ   (23) 

(2) Van Leer 𝑅(𝑟) = 2𝑟1 + 𝑟ଶ (24) 

(3) Double Minmod 𝑅(𝑟) = 𝑚𝑖𝑛 ൬1, 4𝑟1 + 𝑟 , 41 + 𝑟൰ (25) 

(4) Minmod 
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𝑅(𝑟) = 𝑚𝑖𝑛 ൬ 21 + 𝑟 , 2𝑟1 + 𝑟൰ (26) 

(5) Superbee 𝑅(𝑟) = 𝑚𝑎𝑥 ൤𝑚𝑖𝑛 ൬ 4𝑟1 + 𝑟 , 21 + 𝑟൰ ,𝑚𝑖𝑛 ൬ 2𝑟1 + 𝑟 , 41 + 𝑟൰൨ (27) 

 
Figure 2. Curve of the slope limiters. 

The overall numerical process is obviously quite involved with several possible 
choices to be made along the way. However, the simulation is quite robust even with a 
challenging problem such as that associated with dam break, as the following results 
make clearer. 

3.2.3. Courant Number 
The Courant number is a dimensionless value, representing the time a particle stays 

in one mesh cell and should be less than or equal to 1. It is computed as follows: 𝐶𝐹𝐿 = ∆௧௠௜௡ { ∆ೣ,∆೤(಴శඥೠమశೡమ)೔,ೕ}  (28)

where 𝑢 and v are the characteristic wave speed, ∆𝑡 is the time-step of the numerical 
model, and ∆𝑥, ∆𝑦 are again the grid spacing. 𝐶 = ඥ𝑔ℎ is the celerity, and the CFL 
number is fixed at 1 for the simulation. 

4. Results and Discussion 
4.1. 1D Dam-Break Simulation 

A comparative study is conducted between the numerical models and the theoreti-
cal results for different case studies. The first case presents a simulation of a dam break 
with a dry bed on a short channel (50 m), while the second case analyzes a simulation of 
a dam break with a dry and wet bed on a long channel (2000 m). The third case presents 
a simulation of a dam break with a trapezoid obstacle located at the downstream of the 
dam, which involves the source term. 
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4.1.1. Computation of the Water Depth: Test 1 
To explore the properties of the proposed computational framework, a frictionless 

horizontal channel with 50 m length is first considered. The dam is located 20 m up-
stream of the channel. The thickness of the dam is initially neglected, while the upstream 
water depth is set to 10 m, with a computational space step of 0.5 m and a time step of 
0.8 s. With nominal values 0.1 m of the downstream water height is considered as dry. 
Note that in this section the “theoretical results” are obtained from Bai [29]. 

Figure 3 shows the comparisons between the theoretical results (solid line) and the 
two numerical schemes. With a Minmod limiter, an inflection (x = 18 m) and discontinu-
ity point at 31 m can be seen in the simulation (Figure 3a). Van Leer (Figure 3c) and Van 
Albada (Figure 3d) limiters highlight better results than others; a strong agreement be-
tween the two numerical models is observed. The gap between the theoretical and the 
other two models is very small at the inflection and discontinuity points. 

 
Figure 3. Comparative study of the water height between the Roe and Rusanov schemes and the 
theoretical results made within the various limiters at t = 0.8 s with a downstream hl = 0.1 m (1st 
and 5th slope limiters). 

The Superbee (Figure 3b) and double Minmod (Figure 3e) limiters display good 
agreement between the two models and the theoretical results at the inflection point, but 
a small difference appears at the discontinuity. The concavity obtained with the Roe 
scheme is smaller than Rusanov (0.18 and 0.17 m respectively) in the Van Leer limiter 
(Figure 3c). The simulation based on the first-order equation reveals that the Rusanov 
scheme is poorer than the Roe scheme (Figure 3f). 

4.1.2. Computation of the Water Depth and Velocity: Test 2 
A horizontal channel with friction is simulated, with L = 2000 m and the dam located 

at 1000 m. The water height upstream was 10 m, with the downstream values varying 
from 5 m (wet bed case) to 0.1 m for the dry bed [56]. 
(1) Water depth 

Considering different limiters, the simulations conducted in the case of the wet bed 
(5 m) with 2000 m as a channel length give the following results: the Minmod limiter 
(Figure 4a) indicates a slight difference between the two models and the theoretical re-
sults at the first (x = 500 m) and second (x = 550 m) inflection points, but the gap widens at 
the third inflection point (x = 1500 m). 
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The two models show good agreement with the theoretical results for both the Su-
perbee (Figure 4b) and double Minmod (Figure 4e); a small difference is observed at the 
third inflection (x = 1500 m). 

 
Figure 4. Comparative study of the water height between the Roe and Rusanov schemes and the 
theoretical results made within different limiters at t = 50 s with a downstream hl = 5 m (1st and 5th 
slope limiters). 

The limiters of Van Leer and Van Albada (Figure 4c,d) also show good agreement 
with the theoretical results, although a small gap appears at the third inflection. The gap 
observed at the third point between the same solution and the two models is higher with 
Van Leer and Van Albada than the ones using double Minmod and Superbee. The two 
models do not fully reproduce the theoretical results of the first-order equation (Figure 
4f). The gaps are observed at different inflection points. The case of the dry bed (0.1 m) 
with the channel length which remains 2000 m is analyzed in this part. Firstly, it can be 
observed that Roe and Rusanov schemes do produce reasonable results with different 
slope limiters for the 2000 m long channel. 

Simulations display a small gap, with the Minmod limiter (Figure 5a) at the inflec-
tion point (x = 600 m) and the third inflection (x = 1700 m). The Van Leer and Van Albada 
limiters (Figure 5c,d) show excellent agreement between the two numerical models with 
the theoretical results. The results retain their accuracy until the third inflection point, 
where a small discrepancy arises. 

In Figure 5b,e, reasonable results are obtained with Superbee and double Minmod. 
The difference between the two models and the theoretical results can be observed at the 
second inflection, and that gap is more significant with the Superbee than the double 
Minmod limiter. The Roe scheme presents a better result than the Rusanov scheme when 
the equations are solved in the first order (Figure 5f). 
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Figure 5. Comparative study of water height between the Roe and Rusanov schemes and the the-
oretical results data with various limiters at t = 50 s with a downstream hl = 0.1 m (1st and 5th slope 
limiters). 

The simulations reveal small discrepancies with the Minmod limiter (Figure 5a) at 
the inflection point (x = 600 m) and the third inflection (x = 1700 m). The Van Leer and Van 
Albada limiters (Figure 5c,d) show an excellent pairing between the two numerical 
models and the theoretical results. The results are quite accurate until the third inflection 
point, where a small gap appears between the numerical models and the theoretical ones. 
In Figure 5b,e, strong results can also be obtained with the Superbee and double Minmod 
methods. The difference between the two models and the theoretical results can be ob-
served at the second inflection point, and that gap is somewhat more significant with the 
Superbee than the double Minmod limiter. The Roe scheme is slightly better than the 
Rusanov scheme, at least for first-order models (Figure 5f). 
(2) Water velocity 

In the case of a wet bed with different limiters, consistent results are summarized in 
Figure 6. The flow velocity computed with the second-order of the shallow-water equa-
tion at different slope limiters shows strong agreement between the Roe scheme, the 
Rusanov scheme, and the theoretical results. 

Figure 6b,e, reveals that the Superbee and double Minmod provide quite good re-
sults. Some minimal discrepancies can be observed at the second (x = 700 m) and third (x 
= 1500 m) inflection points. The gap between the models and theoretical results at 
different inflection (4) points are more prominent with the Minmod limiter (Figure 6a). 

Van Leer and Van Albada limiters used in (Figure 6c,d) also show quite good results 
with some minimal gaps at the second and third inflection between the models and the 
theoretical results. The resolution of the first-order equation does not provide good re-
sults but suggests a fair adhesion between the theoretical results and the Roe scheme 
(Figure 6f). 
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Figure 6. Comparative study of the velocity between the Roe and Rusanov schemes and the theo-
retical results made within the various limiters at t = 50 s with a downstream hl = 5 m (1st and 5th 
slope limiters). 

In a dry bed case (hl = 0.1 m), the flow velocity is also determined, and the results are 
displayed in Figure 7, again with good agreement between the two models. In these 
different figures, Van Leer and Van Albada limiters (Figure 7c,d) reasonably reproduce 
the theoretical results. A strong agreement between the models and the theoretical results 
is also observed with Superbee and double Minmod (Figure 7b,e) despite the appearance 
of an oscillation at the second inflection (x = 1400 m). The height of the oscillation is 
higher with Superbee than the one with double Minmod. The results are also acceptable 
with Minmod limiters (Figure 7a), although a small gap is observed at the second (x = 
1400 m) and third (x = 1700 m) inflection. 

 
Figure 7. Comparative study of the velocity between the Roe and Rusanov schemes and the theo-
retical results data made within the various limiters at t = 50 s with a downstream hl = 0.1 m (1st and 
5th slope limiters). 

The difference between the two models is more substantial for the case of the dam 
break with a shorter channel length (50 m). In the case of a dam break with a fairly long 
channel length (2000 m), the results obtained from the simulation, based on the theoret-
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ical results, are accurate and reliable. The simulated height and water velocity compare 
nicely with the theoretical results. But the model presents defaults for the short lengths 
(50 m) of the canal, especially for the dry beds (0.1 m). The difference between the simu-
lated value and the theoretical results are greater when the dry bed becomes smaller (0.01 
m). The reason for this difference may result from not considering certain parameters 
such as the friction coefficient or infiltration or the number of cells. 

The determination of the CPU time for the case study not only highlights the 
differences between the two models but also confirms that the Roe scheme tends to be 
more accurate than the Rusanov approach. The hardware used in calculating the differ-
ent CPU times is a laptop Asus i7-3537U CPU at 2.00 GHz 2.50 GHz, a 64-bit operating 
system, and an x64-based processor and that computer was purchased in Nanjing, 
Jiangsu province in the Peopleʹs Republic of China. Table 1 summarizes the CPU time for 
test 2. 

Table 1. Computation of the CPU time (s) for test 2. 

Limiter Roe Scheme 
(hr = 5 m) 

Roe Scheme  
(hr = 0.1 m) 

Rusanov Scheme 
(hr = 5 m) 

Rusanov Scheme  
(hr = 0.1 m) 

Minmod 8.249 7.926 8.208 8.048 
Superbee 8.139 7.907 8.106 8.130 
Van Leer 7.967 7.969 8.104 8.017 

Van Albada 7.987 8.119 8.174 8.091 
Double Minmod 8.257 8.321 7.931 8.289 

1st Order 8.037 8.225 8.147 8.237 

4.1.3. Dam Break over a Trapezoid Obstacle: Test 3 
This third test addresses a comparative study between the numerical model and the 

experimental data of dam-break flow over a dry bed with a trapezoid bottom as an ob-
stacle. The dam is located right at the upstream boundary of the channel where the spa-
tial domain is defined as [−465, 425], the simulation duration has been chosen as T = 41.84/ඥ𝑔/ℎ௟, and the initial water height is ℎ(𝑥, 0) = ൜ℎ௟ = 25,      𝑖𝑓  465 ≤ 𝑥ℎ௥ = 0,         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   (29)

and  𝑢(𝑥, 0) = 0.  (30)

Additionally, ∆𝑥 = 2.5; ∆𝑡 = 0.002∆𝑥 and the topography is defined using an 
isosceles trapezoid which has 30 m as its length, a height of 7.5 m, and a base length of 
100 m. The topography equation is expressed as follows [57,58]: 

𝑧(𝑥) =
⎩⎪⎨
⎪⎧7.535 (𝑥 − 153),               𝑖𝑓 153 ≤ 𝑥 ≤ 1887.5,                               𝑖𝑓 188 ≤ 𝑥 ≤ 2187.5 − 7.535 (𝑥 − 218),    𝑖𝑓 218 ≤ 𝑥 ≤ 2530,                                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   

 (31)

The water depth h and the horizontal distance x are non-dimensionalized by the in-
itial water depth ho. The duration of the simulation has been chosen as T = 11.9 s, and the 
results are illustrated in the Figure 8. 
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Figure 8. Simulation result of dam break over a trapezoid obstacle after T = 11.9 s. 

The Rusanov and Roe schemes show a shift compared to the experimental data 
when the first wave from the dam impacts the base of the obstacle. A second discrepancy 
is observed after impact in which the experimental curve is generally higher than the 
simulated values. 

The CPU time (Table 2) computed for the two models shows that the second-order 
Roe scheme with Minmod (Figure 8a), Superbee (Figure 8b), Van leer (Figure 8c), and van 
albada (Figure 8d) is slightly faster than with the Rusanov results. The two models show 
additional divergence with experimental values after the obstacle particularly for the 
first-order models (Figure 8f). 

Table 2. CPU time (s) for the dam break with trapezoidal obstacle. 
Limiters Roe Scheme  Rusanov Scheme  
Minmod 50.384 50.646 
Superbee 50.311 51.093 
Van Leer 50.378 50.800 

Van Albada 50.337 50.349 
Double Minmod 50.968 50.392 

First Order 51.188 50.889 

The results obtained during the CPU Time calculation for the case of dam break with 
an obstacle, shows that the Roe scheme is much better than the Rusanov scheme. Table 2 
presents the results of the CPU time for a dam break with a trapezoidal obstacle. 

The results related to the dam break obtained in the framework of the first part are 
all for one dimension. The first study on the partial failure of a dam with an asymmetric 
breach was carried out by Alcrudo [24]. This study has been referenced by many re-
searchers to validate their models. 

Having considered one-dimensional simulation results, a two-dimensional study of 
dam failure is addressed in the next section by again using the Finite volume method–
Godunov type with the Roe scheme. 

4.2. 2D Dam-Break Simulation 
4.2.1. Description of the Study Case 

A study is carried out on a dam 200 m wide, 200 m long, and with a frictionless 
bottom (nm = 0). The water is retained upstream of the dam, namely 200 m in width and 
100 m in length. After a sudden rupture of the dam, the breach is 75 m in length which is 
30 m from the left bank and 95 m from the right. Figure 9 gives an illustration. 
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Figure 9. Structure of dam break. 

4.2.2. Initial and Boundaries Conditions 
The water depth upstream of the dam is H = 10 m; downstream is assumed to be 

either h = 5 m for the wet bed and 0.1 and 0 m for the dry. The computational domain is 
a 200 m × 200 m region which has been subdivided into 40 × 40 rectangular grids. A 
“non-slip” condition is imposed on all walls. The time of the simulation is settled as 7.2 
s. 
 The reflective boundary condition is applied at i + 1/2 of the cell and the equations 

are given using ℎ(𝑖 + 1, 𝑗) = ℎ(𝑖, 𝑗) 𝑢(𝑖 + 1, 𝑗) = −𝑢(𝑖, 𝑗) (32)ℎ(𝑖 + 2, 𝑗) = ℎ(𝑖 − 1, 𝑗) 𝑢(𝑖 + 2, 𝑗) = −𝑢(𝑖 − 1, 𝑗) (33)

where h, u, and v are the water height, the velocity at the x and y direction, respectively. 
 In the liberty boundary condition, the borders do not enforce any coercion. That 

means 𝑢(𝑖 − 1, 𝑗) = 𝑢(𝑖, 𝑗)  (34)

 In the periodicity boundary condition, the left and right borders are connected. 𝑢(1, 𝑗) = 𝑢(𝑛 + 1, 𝑗)  (35)𝑢(𝑖, 1) = −𝑢(𝑖,𝑛 + 1)  (36)

 First-Order partial Dam Break 
The 2D partial-dam-break problem is solved using the Roe scheme and the results 

are compared to those collected by Zoppou, Delis, and Vosoughifar [7,47,59]. Although 
the calculation methods are different, the emphasis should be on the contour lines and 
the shape of the dam. 

In the case of rupturing dams with a wet bed (5 m) and a dry bed (0.1 m), the con-
tours are nearly identical to those obtained by Vosoughifar [59] for the first case, but 
were not previously published for the case of a dry bed (0 m). Meanwhile, the shape of 
the dam after sudden rupture is similar to that proposed by Zoppou and Delis [7,47] for 
the three cases (Figure 10a–c), namely wet (5 m) and dry bed (0.1 m and 0 m). The 
first-order 2D dam-break simulation was conducted for wet bed and dry bed cases. 
During the simulation, the CPU time was calculated, and the results are presented in Ta-
ble 3. 
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Figure 10. Water height and height contours for the 2D dam break with (a) wet bed (5 m); (b) dry 
bed (0.1 m); and (c) dry bed (0 m). 

Table 3. CPU time (s) for the first-order 2D dam-break simulation. 

Water Depth at Downstream CPU Time (s) 
Wet bed (5 m) 30.534 

Dry bed (0.1 m) 30.765 
Dry bed (0 m) 30.875 

The CPU times recapitulated in Table 3 show an increase with the water height 
downstream of the dam. The maximum value of the CPU time is obtained when the wa-
ter level downstream of the dam is high and that decreases with a reduction in this wa-
ter level. 

4.3. Transverse and Longitudinal Profiles 
In this study, the profiles of some points located throughout the dam are analyzed. 

A few points are chosen with coordinates and are mentioned in Figure 11. 
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Figure 11. Projection of the dam structure in an orthonormal landmark. 

The results of the cross-sectional profiles obtained as a result of the simulation for a 
duration of 7.2 s are illustrated in Figure 12. The red line shows the MacCormack’s re-
sults, the blue line Gabutti’s, and the black line the Roe scheme results. A comparison 
between the three simulated results is conducted when the ratio of down-
stream/upstream is very small. The published literature suggests that Gabutti provides 
very good results until the downstream/upstream ratio is < 0.2, while MacCormack is 
generally accurate until a downstream/upstream ratio falls less than 0.25. The current 
comparison is for the case of a wet bed, and the simulation agrees closely with Gabutti’s 
results; it is the most robust approach between the two schemes [24,60]. 

 
(a) (b) 

Figure 12. Cross-sectional profiles at 7.2s for (a) x = 75 m and (b) x = 115 m. 

Figure 12a shows the results obtained for a point located at x = 75 m. The figure 
suggests a fairly good comparison between Gabutti’s result and the Roe scheme results. 
The results of MacCormack are very close to the Roe scheme results at the start of the 
simulation, up to y = 110 m before deviating completely. At point x = 115 m (Figure 12b), 
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the results of MacCormack and Gabutti are almost identical and are alternatively close to 
the Roe scheme results. 

Figure 13 illustrates the results of a comparative study between the longitudinal 
profiles of two points located, respectively, at y = 50 m (Figure 13a) and y = 130 m (Figure 
13b), obtained with the Roe scheme simulation (black line), and those produced using 
the MacCormack scheme (red line). 

 
(a) (b) 

Figure 13. Longitudinal profiles at 7.2 s for (a) y = 50 m and (b) y = 130 m. 

For y = 50 m (Figure 13a), it appears that the two schemes are identical at the start of 
the simulation and then diverge at x = 50 m and meet again at the point x = 90 m; the 
trend of the two curves is in good agreement. When y = 130 m (Figure 13b), the two 
curves alternately cross throughout the simulation but have an almost identical trend. 
Strong similarity between the results is obtained from the simulation of two schemes 
(the Roe and the MacCormack scheme), with slight differences depending on the details 
of the method of calculation, including the size and shape of the grids. 
 Second-Order partial Dam Break 

The results of the second-order model are shown and compared, with various slope 
limiters, will be compared to those developed by Delis [47] as follows: Superbee and 
Minmod limiters for a wet bed (5 m) and Van Leer limiter for two dry bed cases (0.1 m 
and 0 m). 

Figure 14a,b shows the water height as well as the height contours after a simula-
tion of 7.2 s for the case of a dam break with a wet bed (5 m); the Minmod and Superbee 
are taken as slope limiters. The results obtained within the framework of this study pre-
sent some differences from those in the literature, particularly in the level of contours. 
The shapes of the curves are almost identical, but there are some small differences in the 
trend. Figure 14c present the water height and contours obtained after a simulation of 
7.2 s for the case of a dam break with a dry bed (0.1 m). The case is analyzed with Van 
Leer as the slope limit. The water height obtained from the simulation is similar to those 
produced by the researchers in their previous studies on the same subject, but the 
difference always arises in the level of the tendency of the contours. The CPU time from 
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the second-order 2D dam-break simulation is shown in Table 4. This table presents the 
results for the cases of the Minmod, Superbee, and Van Leer methods. 

Table 4. CPU time (s) for the second-order 2D dam-break simulation. 

Slope Limiters Water Depth of Downstream (m) CPU Time (s) 
Minmod 5 10.645 
Superbee 5 12.321 
Van Leer 0.1 9.564 

 

 

 
Figure 14. Water height and contours for a dam break with (a) wet bed (5 m) for Minmod limiter; 
(b) wet bed (5 m) for Superbee; and (c) dry bed (0.1 m) for Van Leer. 

The results of Table 4 show that the Superbee as the slope limiter provides the 
greatest value compared to the others; the Van Leer appears much better than the 
Minmod, although the cases are different, particularly when comparing the wet and dry 
beds. 

The origin of this difference can arise, not only from the calculation method, and the 
size and shape of the grids, but particularly from the boundary conditions used which 
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can be reflective only, or transmissive, or a combination of both. Within the framework 
of this study, the rectangular grids of 40 × 40 were considered with a non-slip condition 
applied to the walls as well as a slip condition permitted at the breach. 

Overall, the presented models can simulate the cases of dam failure with a wet bed 
(5 m) and dry bed (0.1 and 0) as well as to better track the shock wave which arises from 
the start of the break until the end of the simulation. Simulations relating to the physical 
form as well as the related contours are approximately similar to those obtained in past 
studies. The ratio between the downstream/upstream heights for points located on either 
side of the dam are accurately calculated with excellent agreement with those of existing 
models such as the Gabutti and MacCormack models. 

5. Conclusions 
Open channel simulations are critically important, whether they are used for eco-

logical, economic, or legal purposes; thus, many numerical procedures have been de-
veloped to address the issues of water depth, velocity, and event sequencing. Some of 
the most promising of these methods are tested here, using the challenging and im-
portant dam-break problem. The dam-break problem is itself important and an excellent 
numerical test case of the various proposed approaches for solving the flow equations. 
This work considers the influence of various slope limiters on the dam-break simulation 
and of the finite volume method with a Godunov-type model with both first- and sec-
ond-order precision. Theoretical data are compared to simulated results and the stability 
and calculation accuracy of the second-order model of both the Roe and Rusanov 
schemes are explored. The dam-break problem admits many possible variations: long 
and short channel lengths; dry and wet beds; and being with or without an obstacle at 
the downstream position. The influence of the different slope limiters is analyzed for 
each case. Moreover, the comparison between the theoretical and the Roe and Rusanov 
schemes is explored in the case of a 1D dam break. Furthermore, the Roe scheme is then 
used to simulate the 2D dam break. 

The simulations allow the following conclusions to be provisionally stated: 
(1) It is established that the proposed second-order approaches with Rusanov and Roe 

schemes accurately reproduce the theoretical results better than the first-order 
model. However, the Roe scheme with Van Leer schemes is slightly more accurate 
when predicting flow events in various combinations of the two schemes and five 
slope limiters. The Roe scheme with Van Leer is robust and is recommended for 
further investigations of the dam-break flow. 

(2) It confirmed that as the channel length and the ratio of downstream water height 
increase Van Leer, Minmod, and Van Albada do not distort the results; however, in 
the case of Superbee and double Minmod some non-physical oscillations are ob-
served at the second inflection point. 

(3) When the channel is relatively long, the proposed second-order Godunov–finite 
volume method with Roe and Rusanov schemes accurately reproduce the water 
height and velocity for a dam-break flow for both dry and wet bed cases. When us-
ing the first-order Godunov–finite volume method, the Roe scheme appears to be 
more accurate and thus seems ideal for predicting the dam-break flow, and by ex-
tension many other less-demanding flows that are highly significance. 

(4) Two models only weakly reproduce the theoretical results when using the sec-
ond-order schemes with Minmod, Superbee, Van Leer, Van Albada, and double 
Minmod. This is true both at the level of the first point of contact between the ob-
stacle and the failure wave but also at the top of the obstacle. Not surprisingly, the 
results in the second order are better than those of the first-order schemes. The Roe 
scheme appears to be slightly more numerically efficient than the Rusanov scheme. 

(5) The case of the 2D dam-break simulation reveals a greater approximation with the 
results obtained using the Gabutti scheme than with those of MacCormack. This 
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reflects the capacity of the model to track the shock wave resulting from the sudden 
dam rupture. 

(6) The second-order precision of the 2D partial dam-break problem with Minmod, 
Superbee, and Van Leer as slope limiters reveals that the Minmod, Van Leer, and 
Van Albada slope limiters can be more strongly recommended for further investiga-
tions than the Superbee approach. 
Future work might include other variations. For example, infiltration might be con-

sidered, as well as wider variations in boundary conditions and, crucially, in the 
dam-failure mechanism. Numerical extensions such as the multilayer shallow-water 
equations or hyperbolic shallow-water moment equations are possible avenues for fur-
ther study. However, the overriding consideration is that the dam-break realities pose a 
much greater risk to humans and property than could ever be captured using a numerical 
model. 
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Notation 
The following symbols are used in this paper: 

F, G Flux vectors in the x and y directions; 
g Gravitational acceleration; 
h Water height; ℎ௅ Water height at the left; ℎோ Water height at the right; ℎ∗ Wave height at the “star” side; 
i, j Subscript in the x and y direction; 
L, R The left and right side of the cell; 
n Time level; 
nm Manning coefficient; 
R(r) Slope limiter; 
Sfx, Sfy Manning equation in the x and y directions; 
Sox, Soy Source term in the x and y directions; 𝑆௅ Wave speed at the left side; 𝑆ோ Wave speed at the right side; 
t Time; 
u, v Velocities in x and y directions ; 𝑢௅ Velocities at the left of x direction; 𝑢ோ Velocities at the right of x direction; 
U Conservative variables; 𝑈௅ Constant states at the left side of Riemann; 𝑈ோ Constant states at the right side of Riemann; 𝑢∗ Wave speed at the “star” side; 𝑣௅ Velocities at the left of y direction; 𝑣ோ Velocities at the right of y direction; 
x, y Cartesian Coordinates; 
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∆𝑡 Time-step; ∆𝑥 Width of the cells i; ∆𝑦 Width of the cells j. 

Abbreviations 
Cfs Cubic foot per second; 
HLL Harten-Lax-Leer ; 
HLLC Harten-Lax-Van Leer-Contact; 
Ft Feet; 
FVM Finite volume method; 
NEMA National Emergency Management Agency; 
Min Minutes; 
MUSCL Monotone Upstream-centered Scheme for Conservation Laws; 
SWEs Shallow-water equations; 
TVD Total variation diminishing. 
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