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Abstract

Background

Peripheral nerve recordings can enhance the efficacy of neurostimulation therapies by pro-

viding a feedback signal to adjust stimulation settings for greater efficacy or reduced side

effects. Computational models can accelerate the development of interfaces with high sig-

nal-to-noise ratio and selective recording. However, validation and tuning of model outputs

against in vivo recordings remains computationally prohibitive due to the large number of

fibers in a nerve.

Methods

We designed and implemented highly efficient modeling methods for simulating electrically

evoked compound nerve action potential (CNAP) signals. The method simulated a subset

of fiber diameters present in the nerve using NEURON, interpolated action potential tem-

plates across fiber diameters, and filtered the templates with a weighting function derived

from fiber-specific conduction velocity and electromagnetic reciprocity outputs of a volume

conductor model. We applied the methods to simulate CNAPs from rat cervical vagus

nerve.

Results

Brute force simulation of a rat vagal CNAP with all 1,759 myelinated and 13,283 unmyelin-

ated fibers in NEURON required 286 and 15,860 CPU hours, respectively, while filtering

interpolated templates required 30 and 38 seconds on a desktop computer while maintain-

ing accuracy. Modeled CNAP amplitude could vary by over two orders of magnitude
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depending on tissue conductivities and cuff opening within experimentally relevant ranges.

Conduction distance and fiber diameter distribution also strongly influenced the modeled

CNAP amplitude, shape, and latency. Modeled and in vivo signals had comparable shape,

amplitude, and latency for myelinated fibers but not for unmyelinated fibers.

Conclusions

Highly efficient methods of modeling neural recordings quantified the large impact that tis-

sue properties, conduction distance, and nerve fiber parameters have on CNAPs. These

methods expand the computational accessibility of neural recording models, enable efficient

model tuning for validation, and facilitate the design of novel recording interfaces for neuro-

stimulation feedback and understanding physiological systems.

Author summary

Nerves transmit signals that carry information about organ function, and this information

could help improve our understanding and treatment of diseases like high blood pressure

and diabetes. Unfortunately, the signals are noisy, and developing ways to avoid or cancel

out this noise is slow because physically building and testing each possible solution is

time-consuming and resource-intensive. We developed a software tool to simulate

recorded neural signals very efficiently from realistic nerve models using the computa-

tional power of a standard desktop. Our new tool showed that nerve signals are very sensi-

tive to the details of what is being recorded and how it is being recorded, suggesting ways

to enhance signal quality and thus reduce the impact of noise. The software design will

make models of nerve recordings accessible to individuals with low computational

resources. Our tool will accelerate the ability of researchers to develop new methods of

extracting information from peripheral nerves, including in preclinical and clinical studies

of different disease targets.

3 Introduction

Nerves transmit information about organ function that can enhance our understanding of

physiological systems and serve as feedback for closed-loop electrical stimulation devices to

treat hypertension [1,2], diabetes [3,4], inflammatory disorders [5], and other diseases [6,7].

Given the prevalence of recording artifacts [8] and limited recording selectivity and longevity

of conventional recording methods [9], a range of new electrode interfaces [10–12] and signal

analysis methods [13–15] have emerged to extract information with reduced noise, greater

selectivity, and improved stability over time. Computational modeling has great potential to

accelerate the design of effective interfaces by allowing high throughput parameter evaluation

before manufacturing electrodes: modeling can enable quantitative prediction of the effects of

design parameters and other interface characteristics on the recorded electric potentials from a

nerve target. We designed and implemented a highly efficient computational modeling

method to simulate recorded neural signals from large populations of fibers, and we applied

this pipeline to conduct a comprehensive sensitivity analysis of the effects of model parameters

on the simulated nerve response.
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Electrically evoked compound nerve action potentials (CNAPs) are recorded clinically in

nerve conduction studies to diagnose nerve health [16,17] and are ubiquitous outcome mea-

sures in electrophysiological studies. Studies since the pioneering work of Gasser, Erlanger,

and Grundfest [18,19] modeled CNAPs as summations of single fiber action potentials

(SFAPs) propagating at a distinct conduction velocity (CV) for each nerve fiber. Early models

used measured or assumed SFAP time courses (Table 1). More sophisticated models calculated

SFAP time courses using measured or assumed transmembrane potentials and a cylindrical,

axially symmetric volume conductor model. Most models since [20] used numerical rather

than analytical methods to extract action potential transmembrane currents from biophysical

models of nerve fibers and used these currents as point sources within a numerically-solved

volume conductor model.

Despite the power of numerical approaches and the range of studies that used those

approaches to quantify the effects of tissue and electrical recording parameters on SFAP or

CNAP amplitude, shape, or latency (Table 2), there are limited data validating modeled neural

recordings against in vivo signals. Such model validation—and appropriate model tuning to

match model outputs to in vivo data—are essential for neural interface design since model

parameters based on literature values alone can produce outputs with large discrepancies in

amplitude and latency relative to in vivo data (Fig 1). Unfortunately, model validation, model

tuning, and application of models for design all require the generation of many modeled sig-

nals, which remains computationally infeasible with present methods. Each nerve may contain

tens of thousands to hundreds of thousands of nerve fibers, and the transmembrane current

Table 1. Summary of different computational methods used to construct recordings of SFAPs (single fiber action potentials) and CNAPs (compound nerve action

potentials) since the seminal work of Stegeman and colleagues [21], excluding studies that solely aimed to reconstruct fiber diameter distributions. Studies from the

same authors that used the same type of model are grouped. Vm(t): time course of transmembrane potential; Im(t): time course of transmembrane current.

Source SFAP Source of or equation for Vm(t) or Im(t) Volume conductor model

Olson and BeMent, 1981 [22] triangular (monophasic) N/A N/A

Kincaid et al., 1988 [23] triangular (monophasic, biphasic, and

triphasic)

N/A N/A

Okajima et al., 1994 [24] triangular (triphasic) N/A N/A

Wijesinghe et al., 1991 [25]

Wijesinghe and Wikswo, 1991

[26]

from Vm(t) and volume conductor model Empirical waveform from literature analytical

Stegeman and De Weerd, 1982a

[27]

Schoonhoven et al., 1986a [28]

Schoonhoven et al., 1986b [29]

Stegeman and De Weerd, 1982b

[30]

from Vm(t) and volume conductor model Empirical waveform from literature analytical

Donohoe et al., 2019 [31] from Vm(t) and volume conductor model Vint = (36,864 mV)*(t^3)*exp(-8*t)-70 mV analytical

Struijk, 1997 [20]

Andreasen et al., 2000 [32]

Andreasen and Struijk, 2002 [33]

from Im(t) and volume conductor model HH-style model numerical (rotationally

symmetric)

Sabetian et al., 2016 [34]

Sabetian et al., 2017b [35]

Sabetian et al., 2017a [36]

Sabetian and Yoo, 2019 [37]

Sabetian and Yoo, 2020 [38]

from Im(t) and volume conductor model HH-style model numerical

Lubba et al., 2019 [39] from Im(t) and volume conductor model HH-style model numerical (rotationally

symmetric)

Tarotin et al., 2019 [40] from coupled volume conductor model HH-style model coupled with volume conductor

model

numerical

Eiber et al., 2021 [41] from Im(t) and volume conductor model HH-style model numerical

https://doi.org/10.1371/journal.pcbi.1011833.t001
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Table 2. Summary of published computational sensitivity analyses of stimulation-evoked SFAPs and CNAPs. Where applicable, the summary indicates the correla-

tion with SFAP or CNAP amplitude (i.e., ‘+’ if increasing the parameter increased the SFAP or CNAP amplitude; ‘-’ if the opposite occurred). σr is radial conductivity. σz is

longitudinal conductivity.

Parameter Correlation with

Amplitude of SFAP or

CNAP

Source Finding

Tissue Properties
σr + Stegeman et al., 1979

[21]

decreasing the radial conductivity of the endoneurium decreased SFAP

amplitude

σr, σz + Wijesinghe et al., 1991

[25]

increasing either endoneurium’s radial conductivity (6x) or the longitudinal

conductivity (2x) increased the peak-to-peak CNAP amplitude (~1.5x or ~2.5x)

intracellular conductivity + Wijesinghe and

Wikswo, 1991 [26]

“very sensitive”; increasing the intracellular conductivity from 0.1 to 2.5 S/m

increased SFAP amplitude from ~0.02 to ~0.2 μV; also, increasing intracellular

conductivity by 50% increased SFAP conduction velocity by 25%

extracellular conductivity - Wijesinghe and

Wikswo, 1991 [26]

increasing the extracellular conductivity decreased SFAP amplitude

endoneurial anisotropy - Wijesinghe et al., 1991

[25]

increasing endoneurial anisotropy decreased SFAP amplitude

Wijesinghe et al., 1991

[25]

frequency-dependent endoneurium conductivity produced CNAPs with similar

or lower amplitudes than fixed endoneurium conductivity

perineurium thickness - Eiber et al., 2021 [41] thicker perineurium reduced SFAP amplitude

Temperature
+ Wijesinghe and

Wikswo, 1991 [26]

reducing the temperature from 30 to 25˚C (and from 25 to 20˚C) reduced

CNAP peak-to-peak amplitude from 80 to 40 μV (and 40 to 20 μV)

Stegeman and De

Weerd, 1982a [27]

CNAP duration increased with temperature; conduction velocity increased

linearly with temperature

Cuff Geometry and Distances
cuff opening size - Struijk, 1997 [20] 63 μm cuff opening (~2% of the circumference of the inner cuff surface)

reduced SFAP amplitude by 50% compared to no gap; the gap was modeled by

reducing the conductivity of the entire axially symmetric cuff to ~1% of the

surrounding medium)

- Struijk, 1997 [20] SFAP peak-to-peak amplitude was an order of magnitude smaller in a

homogeneous model (100% cuff opening) compared to a model with a fully

sealed cuff

cuff insulation length + Struijk, 1997 [20] SFAP peak-to-peak amplitude increased substantially with cuff length up to ~30

mm for 10 μm fibers (with monopolar electrode centered in the cuff)

+ Andreasen and Struijk,

2002 [33]

for 10–20 μm fibers, shortening cuff length from 50 mm to 20 mm reduced

SFAP peak-to-peak amplitude by up to 20% and reduced RMS of

electroneurogram by up to 50%

+ Lubba et al., 2019 [39] SFAPs from myelinated fibers had larger peak-to-peak amplitudes at cuff

lengths up to 1.3 mm (for 2 μm fibers) or up to 16 mm (for ~3.8 μm fibers),

while the SFAPs from unmyelinated fibers had maximal peak-to-peak

amplitude at a cuff length of ~1.1 mm

distance between edge and

electrode

+ Struijk, 1997 [20] SFAP negative peak amplitude became more negative as the electrode contact

was placed farther away from the cuff edge (up to a plateau at ~15 mm)

Struijk, 1997 [20] phases of SFAP changed with electrode location

electrode-to-axons distance

(R)

- Schoonhoven et al.,

1986a [28]

recordings at the surface of the skin were ~3-5x smaller and a bit broader than

“near-nerve” recordings

- Schoonhoven et al.,

1986b [29]

recordings at the surface of the skin were ~5x smaller and a bit broader than

“near-nerve” recordings

- Wijesinghe et al., 1991

[25]

CNAP peak-to-peak decreased substantially from R = 2 mm to R = 24 mm

- Wijesinghe and

Wikswo, 1991 [26]

increasing electrode-to-axon distance by 25% (0.8 to 1 mm) or by 50% (0.8 to

1.2 mm) decreased CNAP amplitude by 18% or by 22% (respectively)

- Struijk, 1997 [20] in a homogeneous model, SFAP peak-to-peak amplitude decreased at 1/R for

small R values and at 1/R3 for large R values

(Continued)
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time series for each compartment of each fiber must be simulated and stored. Several studies

aimed to reduce this computational burden using methods such as defining action potential

templates repeated over time to reconstruct transmembrane current matrices [20, 35, 42, 43],

simulating a subset of representative fibers [41], or using filter-based methods to avoid trans-

membrane current matrices entirely [44]. However, such methods have not been compiled

and validated for accuracy, and computing CNAPs for tens of thousands of fibers or more

remains burdensome for most research and clinical environments. Here, we developed a

highly efficient method that leverages and extends the range of previous computational tech-

niques, we validated the method against a brute force approach, and we applied the method to

quantify the CNAP sensitivity to a range of model parameters and to compare modeled

Table 2. (Continued)

Parameter Correlation with

Amplitude of SFAP or

CNAP

Source Finding

conduction distance - Olson and BeMent,

1981 [22]

increasing conduction distance by ~15% decreased the CNAP amplitude by

~15%

- Stegeman and De

Weerd, 1982b [30]

conduction distances 6, 9, 12, 15, 18, 21, 24 cm produced CNAP amplitudes of

28, 20, 16, 12, 10, 8, 7 μV

- Schoonhoven et al.,

1986b [29]

increasing conduction distance from 6 to 15 cm (2.5x) decreased CNAP

amplitude by ~4x and made CNAP shape more jagged

- Wijesinghe et al., 1991

[25]

increasing conduction distance by ~50% decreased the CNAP amplitude by

~50%

- Wijesinghe and

Wikswo, 1991 [26]

increasing conduction distance from 110 to 80 mm (and 80 to 50 mm)

decreased CNAP peak-to-peak amplitude by 50 to 25 μV (and 25 to 18 μV)

- Tarotin et al., 2019 [40] for conduction distances 10, 19, 25, 35 cm (unmyelinated fibers based on [45])

and 0.4, 0.8, 1, 1.4 cm (unmyelinated fibers based on [46]), negative peak

magnitude of CNAP was ~7, 6, 4, 2.5 mV [45] and 1, 0.6, 0.5, 0.3 mV (C fibers)

Fiber diameter sizes,
distributions, and fiber
geometry
mean fiber diameter + Olson and BeMent,

1981 [22]

~20% and ~25% decrease in mean fiber diameter of Gaussian distributions

decreased the CNAP amplitude by ~50%

+ Okajima et al., 1994

[24]

increasing the mean and decreasing the standard deviation of fiber diameter

distributions both increased CNAP amplitude due to decreased temporal

dispersion

+ Andreasen and Struijk,

2002 [33]

"RMS of the electroneurogram depends linearly on the fiber diameter in

contrast to the peak-to-peak amplitude of the SFAP, which increases nearly with

the square of the diameter"

+ Donohoe et al., 2019

[31]

axon population with large fiber diameters (4,000 fibers at 9.5 μm) produced a

CNAP with 8x larger amplitude than an axon population with small fiber

diameters (6,000 fibers at 4.5 μm)

number of fibers + Schoonhoven et al.,

1986a [28]

adding 3,000 fibers with CV>30 m/s caused CNAP amplitude to increase ~10x

compared to just 5,000 fibers with mostly CV<30 m/s

+ Stegeman et al., 1979

[21]

increasing the number of fibers increased CNAP amplitude and markedly

altered CNAP amplitude at low fiber counts

+ Schoonhoven et al.,

1986b [29]

CNAP from a “pathological nerve” (i.e., 3,500 large fibers) had ~10x weaker

signal than CNAP from a “normal nerve” (i.e., 8,000 large fibers)

Randomly sampling fiber diameters from a fixed distribution produced CNAPs

with different shape (but not amplitude) across samples of fibers

Eiber et al., 2021 [41] a population of axons with a range of distributed fiber diameters produced

CNAP that differed in shape and amplitude from CNAP produced by a

population of axons with a single homogeneous fiber diameter

fiber trajectory Lubba et al., 2019 [39] little effect of myelinated fiber tortuosity, but large effect on SFAP latency,

amplitude, and shape of unmyelinated fiber tortuosity

https://doi.org/10.1371/journal.pcbi.1011833.t002
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CNAPs with in vivo CNAP recordings. Our study reveals key parameters relevant to modeling

CNAPs and contributes important data for validating future models. The modeling framework

presented here is publicly available.

4 Methods

4.1 Ethics statement

All procedures were approved by the Institute for Animal Care and Use Committee of Duke

University (Durham, NC) and were in accordance with the Guide for Care and Use of Labora-

tory Animals (8th edition).

4.2 Overview

We modeled CNAPs from a rat cervical vagus nerve by using biophysical cable models of

axons and three-dimensional finite element models of the nerve and cuff electrode, with inho-

mogeneous tissue and material properties (Fig 2A). We then used those models to develop a

method for highly efficient CNAP modeling (Fig 2B–2E). Finally, we used this method to con-

duct a comprehensive analysis of the effects of key biological and electrode parameters on

CNAP recordings.

Our overall CNAP modeling approach consisted of the following: (1) Construct a volume

conductor model of the nerve with a recording cuff electrode and a stimulation cuff electrode

(Fig 2A); (2) Stimulate a population of biophysical axon models extracellularly using the spatial

Fig 1. Comparison of rat cervical vagus nerve compound nerve action potentials (CNAPs) that we recorded in vivo (solid) and that we modeled

computationally (dashed) from myelinated (A) and unmyelinated (B) fibers with a conduction distance of 11 mm. We simulated the model using

values from literature, including 0.16 S/m for the surrounding medium, and using a fully sealed cuff.

https://doi.org/10.1371/journal.pcbi.1011833.g001
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Fig 2. Overview of modeling CNAP recordings from rat cervical vagus nerve. (A) A bipolar stimulation electrode activated the nerve fibers at the

proximal end of the nerve. A tripolar electrode recorded the CNAP at each contact—in a monopolar configuration—at the distal end of the nerve. The

volume conductor model represented the monofascicular nerve as a cylinder with a perineurium (not illustrated) and an anisotropic endoneurium, and

it represented the electrodes as electrode contacts within insulating cuffs. The recording electrode had a cuff opening of either 0˚ or 16˚. A conductive

material (“surround”) filled the space within and around the nerve and cuffs. (B) Template creation inputs included the stimulation volume conductor

model, a stimulation waveform, and a set of 193 (myelinated) or 97 (unmyelinated) discrete fiber diameters that defined a population of nerve fibers at

the centroid of the nerve to simulate in a biophysical model. (C) Template creation outputs included CV and transmembrane currents for each of the

193 (myelinated) or 97 (unmyelinated) simulated fibers. (D) CNAP calculation inputs included a recording volume conductor model, fiber diameter

measurements, fiber locations, and the template creation outputs (i.e., transmembrane current templates and CV vs. fiber diameter relationship). Fiber

diameter measurements and random fiber locations defined a population of 1,676 (myelinated; not illustrated) or 13,283 (unmyelinated; illustrated)

nerve fibers to be recorded. Fiber diameter measurements were obtained from a publicly available dataset [47] and transformed by the shape-adjusted

ellipse method [48]. (E) We interpolated transmembrane current templates across all fiber diameters. We calculated the recording sensitivity functions

at all fiber locations via the recording volume conductor model. We calculated a filter for each fiber by inserting zeros into the recording sensitivity

function such that the time between non-zero samples equaled the internodal length divided by CV. We generated SFAPs by convolving each filter with

an interpolated transmembrane current template, and we superposed SFAPs to generate CNAPs.

https://doi.org/10.1371/journal.pcbi.1011833.g002
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potentials from the volume conductor model with current delivered through the stimulation

electrode (Fig 2B); (3) Extract transmembrane currents produced by those action potentials

from every compartment of every axon (Fig 2C); (4a) In a brute force approach, calculate the

potential at the recording cuff by multiplying all transmembrane currents at every compart-

ment and every point in time with the recording sensitivity function, or (4b) in our efficient

approach, calculate the potential at the recording cuff by interpolating a small number of

action potential templates across fiber diameters and filtering them (Fig 2D and 2E). Our

newly developed efficient methods enabled accurate CNAP modeling, evaluation of the quan-

titative impact of model parameters, and comparison against in vivo data.

4.3 Volume conductor model

Table 3 summarizes model parameters used. We used COMSOL Multiphysics v6.1 (Burling-

ton, MA) to construct a finite element volume conductor model of a monofascicular rat cervi-

cal vagus nerve instrumented with a bipolar stimulation electrode and a tripolar recording

electrode (Fig 2A). We represented the nerve as a cylinder of 30 mm length and 247 μm diame-

ter consistent with the average rat cervical vagus nerve radius reported in [49] assuming no

nerve shrinkage. We modeled the endoneurium as an anisotropic medium (0.57 S/m longitu-

dinally, 0.17 S/m radially [50,51]). We modeled the perineurium using a thin layer approxima-

tion with COMSOL’s contact impedance boundary condition; the perineurium was 4.56 μm in

thickness based on the equation for rat vagus nerve in [49], and its conductivity was 8.4e-4 S/

m [51]. The electrodes had silicone insulation tubing (1e-12 S/m [52]) and either two or three

platinum contacts (9.43e6 S/m [53]). The nerve was centered radially within the electrodes.

The electrodes had an opening of 0˚ or 16˚. To simplify the sensitivity analysis, we set the

medium surrounding the cuff and nerve to be isotropic and to have the same conductivity as

the fluid filling the 10 μm-thick space between the nerve and the cuff (default value equal to

epineurium (0.16 S/m [54]). The stimulation and recording cuff geometry consisted of cylin-

drical tubes of length 2,580 μm and 3,650 μm, respectively, with an inner diameter of 265 μm,

Table 3. Summary of default model parameters. All models used these parameters unless otherwise stated in the

caption or in the sensitivity analysis. The default “CV vs. Fiber Diameter Relationships” emerged from the biophysical

model (see Nerve Fiber Models section).

Parameter Name and Unit Value

Conduction Distance (mm) 11

Tissue Conductivities (S/m)
Perineurium 8.7e-4

Endoneurium (longitudinal) 0.57

Endoneurium (radial) 0.17

Surrounding Medium 0.16

Electrode Properties
Recording Electrode Cuff Length (mm) 3.65

Contact Conductivity (S/m) 9.4e6

Cuff Insulator Conductivity (S/m) 1e-12

Cuff Opening (˚) 0

Recording Electrode Type Tripolar

Recording Configuration Monopolar on Contact 1 relative to Distant Ground

CV (m/s) vs. Fiber Diameter (D, in μm) Relationships
Myelinated Fibers CV = 4.01*D—2.5

Unmyelinated Fibers CV = 0.70*sqrt(D) - 1.9e-3

https://doi.org/10.1371/journal.pcbi.1011833.t003
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an outer diameter of 1,190 μm, and contacts having the same angular gap as the cuff (0˚ to

16˚), contact length 680 μm, and contact pitch 1,070 μm (center-to-center). In models where

conduction distance was not explicitly changed, the stimulation and recording electrodes were

centered at 4 and 15 mm along the nerve such that the default center-to-center conduction dis-

tance was 11 mm. The meshed model had 2,093,292 tetrahedral elements. We implemented

this baseline model in ASCENT v1.3.0 ([55]; https://github.com/wmglab-duke/ascent; https://

doi.org/10.5281/zenodo.10608262), and our dataset includes the JSON files required for repro-

duction (https://doi.org/10.7924/r4pc3624h).

The purposes of the volume conductor model were (1) to calculate the electric potentials on

each compartment of each target nerve fiber due to current from the stimulation electrode and

(2) to calculate the electric potentials on the recording electrode due to the current from each

compartment of each active nerve fiber (i.e., the recording sensitivity function). While the

recording sensitivity function can be calculated directly by placing a point current source at

each compartment of each active nerve fiber in the finite element model [35,41]—or a repre-

sentative subset of them [39]—this method is computationally infeasible for fibers with more

than a few compartments or for complex electrode geometries. We calculated the recording

sensitivity function by leveraging the widely used principle of electromagnetic reciprocity

[20,42,56–59], whereby the recording sensitivity function is given by the electric potentials on

the nerve fiber due to a unit current applied on the recording electrode. Therefore, we placed a

point current source within each platinum contact [60] of the stimulation and recording elec-

trodes, grounded all outermost surfaces of the models, applied +1 mA through each contact

one at a time, and solved for the electric potential due to current at each contact. We used qua-

dratic geometry and solution shape functions, and we used the conjugate gradients solver to

solve Laplace’s equation for potentials in the volume assuming quasi-static conditions and

non-dispersive materials [61]. We then used superposition to calculate the electric potentials

on the nerve fibers due to a bipolar configuration of the stimulation electrode (i.e., potentials

from contact 1 relative to potentials from contact 0; Fig 2A). We also calculated potentials due

to monopolar configurations of the recording electrode (i.e., potentials from contacts 2, 3, and

4 relative to a distant ground).

4.4 Nerve fiber models

Our model nerve contained the number and diameter of fibers present in the left cervical

vagus nerve of rat #11327 (female Sprague-Dawley, weight: 198 g, age: 68 days) from a publicly

available nerve fiber segmentation dataset [47,62]. We imported the rat #11327 nerve fiber seg-

mentations into Neurolucida 360 software (version 2021; MBF Bioscience, Williston, VT) to

calculate all default contour measurements (e.g., min ferret, max ferret, etc.), and then we pro-

cessed those contour measurements according to the shape-adjusted ellipse calculation [48] to

calculate the final nerve fiber diameters. The nerve contained 1,759 myelinated fibers with

myelin diameters from 0.33 to 9.81 μm and 13,283 unmyelinated fibers with axon diameters

from 0.11 to 1.90 μm. We excluded 83 myelinated fibers due to their diameters <1.01 μm

resulting in an invalid modeled ultrastructure (see section on ultrastructure below); we thus

modeled 1,676 myelinated fibers.

For the ‘brute force’ approach, we simulated every individual fiber in NEURON. For the

efficient ‘filtered interpolation’ method, we modeled in NEURON only 97 unmyelinated fibers

with diameters from 0.105 to 1.896 μm in 3.06% increments and 193 myelinated fibers with

diameters from 1.013 to 9.809 μm in 1.19% increments. We then simulated transmembrane

currents and conduction velocities for these 290 fibers; we interpolated the transmembrane

currents to model SFAPs and CNAPs for all fibers in the nerve (see “Filtered Interpolated
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Action Potential Templates” section below). In one simulation, we randomly positioned the

straight nerve fibers across the nerve such that there was no overlap between fibers of a given

type (i.e., myelinated, unmyelinated) after accounting for each fiber’s diameter. This position-

ing produced negligible differences compared to positioning all fibers at the centroid of the

fascicle (S1 Text); therefore, we positioned all fibers at the centroid of the nerve for all other

simulations to simplify the extraction of electric potentials. All fibers were 30 mm long and

centered longitudinally at the center of the recording electrode.

We used MRG (McIntyre-Richard-Grill) myelinated fiber models [63,64] and Tigerholm

unmyelinated fiber models [46] implemented in NEURON v7.5 [65], but we redefined the

geometric dimensions of myelinated fibers because the original models were not parameter-

ized for small diameters. We fit equations to ultrastructure parameter data from small fiber

diameters in the literature (Table 4; see S2 Text for plot of fits, and further details of fitting).

Small myelinated fiber models with ion channel conductances based on the original MRG

model [63] generated multiple action potentials per stimulus pulse. Therefore, we increased

the maximum conductance of voltage-gated potassium ion channels (gkbar = 0.116 S/cm2)

and decreased the maximum conductance of fast voltage-gated sodium ion channels (gna-

bar = 2.333 S/cm2) to obtain models that fired a single action potential per stimulus pulse (see

S3 and S4 Text files). All fibers had passive end nodes to reduce edge effects (gm = 0.0001 S/

cm2, cm = 2 μF/cm2, -70 mV reversal potential).

We stimulated fibers with a supra-threshold symmetric biphasic waveform at t = 2 ms to

evoke an action potential in all fibers (Table 5; dt = 10 ms from t = -200 ms to t = 0 ms;

dt = 0.0025 ms from t = 0 ms to tstop). For all analyses after the NEURON simulations, we

redefined t = 0 ms to be the start of the stimulus pulse. We extracted the net extracellular cur-

rent from every compartment of every nerve fiber simulated in milliamps by extracting the val-

ues of the ‘i_membrane’ variable in NEURON and—in myelinated axons—subtracting

periaxonal currents from those values (S5 Text). We stored each transmembrane current time

series as an N-by-M matrix containing N time points and M compartments.

Table 4. Fits or values of ultrastructure parameters for myelinated fibers.

Parameter Fit or Value

Nodal lengtha 1 mm
MYSA lengthc,d,e 3 mm
FLUT lengthf,g

� 0:17 1

mm ðD � 9:45 mmÞ2 þ 3:30 D � 9:45 mmð Þ þ 44:85 mm
� �

� N 1; 0:06ð Þ

Internodal lengthh

� 2:07 1

mm ðD � 9:04 mmÞ2 þ 87:95 D � 9:04 mmð Þ þ 900:88 mm
� �

� N 1; 0:13ð Þ

Internodal axon diameter (da)
i,j

0:020 1

mm D � 2:39 mmð Þ þ 0:55þ N 0; 0:102ð Þ
� �

D

Nodal axon diameter (dn)k

� 0:011 1

mm da � 7:15 mmð Þ þ 0:4þ N 0; 0:072ð Þ
� �

da

Number of myelin lamellae (nl)l

exp 0:5 1

mm da � 1:75 mmð Þ þ 3:2þ N 0; 0:3ð Þ
� �

The independent variables are either fiber diameter (D) in micrometers or internodal axon diameter (da) in

micrometers. All expressions evaluate to units of micrometers, except for the number of myelin lamellae. The

internodal length is the center-to-center distance between neighboring nodes of Ranvier. The “N(mean,std)” denotes

a normally distributed factor with a mean and standard deviation of the fit. See S2 Text for plots of the fits.

References: (a) Rydmark and Berthold 1983 [66]; (c)(Berthold 1968a, page 156 [67]; (d) Berthold 1968b, pg 45 [68];

(e) Berthold and Rydmark 1983, pg 966 [69]; (f) Table 1 of McIntyre et al., 2002 [63]; (g) Table 1 of McIntyre et al.,

2004 [64]; (h) adult cat data from Fig 3 of Hursh 1939 [70]; (i) Fig 4 of Friede and Samorajski 1967 [71]; (j) Fig 3 of

Fazan et al., 1997 [72]; (k) Figs 3 & 4 of Rydmark 1981 [73]; (l) Figs 3A-C of Friede and Samorajski [71].

https://doi.org/10.1371/journal.pcbi.1011833.t004

PLOS COMPUTATIONAL BIOLOGY Efficient CNAP models quantify recording parameter effects

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011833 March 1, 2024 10 / 35

https://doi.org/10.1371/journal.pcbi.1011833.t004
https://doi.org/10.1371/journal.pcbi.1011833


4.5 Filtered interpolated action potential templates

4.5.1 Filters. CNAPs are the sum of SFAPs from all fibers in a nerve (Fig 2E), and each

SFAP can be computed as the weighted sum of transmembrane currents from every nerve

fiber compartment:

f ðnÞ ¼
XM

m
iðn;mÞwðmÞ Eq1

where f is an N-by-1 vector containing the SFAP time series (in V); i is an N-by-Mmatrix con-

taining the transmembrane currents (in mA) generated byM compartments of a given type at

N time points; and w is theM-by-1 recording sensitivity function (in V/mA) that quantifies

the signal produced by compartment m per milliamp of transmembrane current. Eq. 1

requires the transmembrane current time series for every compartment, and storing these out-

puts can produce gigabytes of transmembrane current data per fiber depending on number of

compartments (i.e., fiber length and fiber discretization) and number of time points (i.e., dura-

tion). Therefore, calculating CNAPs across several individuals, nerve targets, or electrodes not

only requires running hundreds of thousands to millions of nerve fiber simulations but can

also generate gigabytes to terabytes of data collectively. The computational costs of processing,

transferring, and storing these data prevent widespread accessibility of CNAP modeling

methods.

Fortunately, exploiting redundancies within the transmembrane current traces can reduce

simulation burden and data storage needs by orders of magnitude. By assuming that the trans-

membrane current time series of a given compartment is the same—but time-shifted—as that

of any other compartment of the same compartment type, numerous previous authors

expressed Eq. 1 as the weighted sum of time-shifted action potential templates. We present this

expression in discrete time (Eq. 2), convert the time shift into a convolution with a time-shifted

unit sample function (Eq. 3), and factor the action potential template out of the summation

(Eq. 4) to obtain a numerically efficient expression for calculating SFAPs:

f ðnÞ ¼
XM

m¼1
iðn �

L
TV
ðm � KÞ;KÞwðmÞ Eq2

f ðnÞ ¼
XM

m¼1
iðn;KÞ∗dðn �

L
TV
ðm � KÞÞwðmÞ Eq3

f ðnÞ ¼ iðn;KÞ∗
XM

m¼1
dðn �

L
TV
ðm � KÞÞwðmÞ ¼ iðn;KÞ∗SðnÞ Eq4

where L is the distance between two adjacent compartments of the same type; T is the sampling

period of the signal; V is the conduction velocity of the action potential (i.e., CV); i(n,K) is the

action potential template, such that K is the index of a selected reference compartment; δ is the

unit sample function; and the filter S has the same nonzero values as w but with L/(TV) zeros

inserted between the nonzero elements such that S performs all the shifts and scaling

Table 5. Differences in stimulus waveform and duration between the myelinated and unmyelinated fiber simula-

tions. Both fiber types were stimulated with a symmetric biphasic waveform with 0.005 ms inter-phase delay.

Myelinated Fibers Unmyelinated Fibers

tstop (ms) 65 120

phase duration (ms) 0.05 0.2

stimulus amplitude (mA) -0.43 -0.58

https://doi.org/10.1371/journal.pcbi.1011833.t005
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operations of the summation. Eq. 2 enables calculation of SFAPs with only a single action

potential template per fiber. Eq. 4 efficiently combines the effects of all the time shifts into a

single filter operation.

Eq. 2, Eq. 3, and Eq. 4 assume that T is selected such that L/(TV) is an integer (although

replacing δ with the much less efficient sinc function enables use of non-integer values of L/
(TV) in Eq. 3 and Eq. 4). Further, the sampling rate 1/T should be greater than twice the

Nyquist frequency of the action potential template to avoid aliasing. We set T such that 1/T
met these conditions for each individual fiber diameter. While Eq. 4 can be implemented by

resampling the action potential template to a sampling period T that satisfies the constraints,

we transformed the expression into the frequency domain to bypass resampling and to con-

duct a faster elementwise multiplication in frequency domain rather than a slower convolution

in time domain:

f ðnÞ ¼ F� 1 F½iðn;KÞ�F
XM

m¼1
dðn �

L
TV
ðm � KÞÞwðmÞ

� �� �

¼ F� 1 F iðn;KÞÞF SðnÞ½ �½ �Eq5½

where F is the Discrete Fourier Transform (DFT; fft in MATLAB) and F-1 is the inverse DFT.

Eq. 5 enabled highly efficient reconstruction of SFAPs by transforming the action potential

templates and filter into a common frequency resolution prior to elementwise multiplication.

Details of our implementation are available in the code that we made available with our

dataset.

4.5.2 Multiple compartment types. Myelinated fibers had 11 compartment types per

node of Ranvier (i.e., NODE, MYSA1, FLUT1, STIN1, STIN2, STIN3, STIN4, STIN5, STIN6,

FLUT2, MYSA2). Eq. 5 applies to such fibers by defining the action potential templates as N-

by-M-by-11 matrices and by defining the recording sensitivity function as an M-by-11 matrix:

f ðnÞ ¼
X11

p¼1
F� 1½F½iðn;K; pÞ�F

XM

m¼1
dðn �

L
TV
ðm � KÞÞwðm; pÞ

� �

� Eq6

where i(n,K,p) is the action potential template of compartment type p associated with node of

Ranvier K, and w(m,p) is the recording sensitivity function of compartment type p associated

with the node of Ranvierm.

4.5.3 Fiber locations. We obtained the action potential templates from straight fibers

placed at the centroid of the modeled nerve. However, we could simulate CNAPs for straight

fibers at any xy coordinate of the nerve by sampling the recording sensitivity function, w, for

each fiber from the volume conductor model. The recording sensitivity function was the only

component of Eq. 5 that depended on fiber location, thus the specific location or trajectory of

fibers was fully accounted for by the recording sensitivity function sampled along the fiber

trajectory.

4.5.4 Interpolation across fiber diameters. Eq. 5 allows highly efficient simulation of

many nerve fibers that have the same diameter—and therefore the same action potential tem-

plate—because their recording sensitivity functions can be summed together to produce a

joint recording sensitivity function w before applying Eq. 5.

However, each unique fiber diameter requires its own action potential template, resulting

in a potentially comparable number of action potential templates to be simulated in NEURON

as the brute force method. We bypassed these fiber diameter simulations by taking advantage

of the similarity between action potential templates across diameters (Fig 2C) to linearly inter-

polate action potential templates between fiber diameters (Fig 2E). Given two action potential

templates that are aligned so that their max time points match, iR1 and iR2, from fibers with

two different fiber diameters, d1 and d2 (where d1< d2), we interpolated the temporal template
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from a fiber at an arbitrary fiber diameter, di (where di> d1 and di< d2) with the following

weighted average:

si tð Þ ¼
d2 � di
d2 � d1

� �

s1ðtÞ þ
di � d1

d2 � d1

� �

s2ðtÞ Eq7

We verified that the method of Eq. 5 reconstructed SFAPs accurately and that the number

of templates used for Eq. 7 was adequate to reconstruct SFAPs across the entire fiber diameter

range (S6 Text). Finally, to avoid applying Eq. 5 and Eq. 7 repeatedly to fiber diameters that

were nearly the same, we summed together the recording sensitivity functions of all nerve

fibers that had nearly identical fiber diameters (i.e., within 0.001 μm, based on our sensitivity

analyses (S7 Text)).

We recorded action potential templates from compartments that were 75% along the length

of the nerve fiber. We saved as a reference the location (in mm) and time (in ms) at which the

temporal templates achieved their maximum values, then we defined a new time vector from t

= -2 ms to t = 60 ms (unmyelinated) or t = -2.4 ms to t = 36 ms (myelinated) for the action

potential template such that t = 0 ms occurred at the maximum value of the temporal template.

Since myelinated fiber models were discretized with 11 compartment types, we defined t = 0

ms to be the maximum value of the node of Ranvier’s transmembrane current.

4.5.5 Monopolar vs. Dipolar representations. We encountered unexpected oscillations

when interpolating across action potential templates in the smallest myelinated fibers (S8

Text), presumably due to charge imbalances resulting from small errors in CV calculation.

This occurred with themonopolar representation of nerve fiber compartments in which each

compartment was assumed to be a monopolar point source of current. Interpolations for small

fiber diameters were more robust to oscillations when we used the dipolar representation in

which each compartment was assumed to be a point current dipole. Since the monopolar

transmembrane current matrix is the negative first spatial difference of the dipolar transmem-

brane current matrix—indiscriminate of compartment type—we calculated the dipolar trans-

membrane current matrix as the negative cumulative sum of the monopolar transmembrane

current matrix along the spatial dimension for all compartments. Notably, the dipole represen-

tation was distinct from dipole approximations of multipoles as is used in EEG and other neu-

ral recording applications. Instead, it is an alternative numerical representation of the full

transmembrane current spatiotemporal information. Indeed, Plonsey referred to the monopo-

lar and dipolar representations as “single layer disks” and “double layer disks”, respectively,

and showed that they are “fully equivalent” [74]. The inherent charge balance of the dipolar

representation, however, makes it less susceptible to charge imbalances from CV calculation

imprecision. All the equations above apply to either representation except that the dipolar

representation uses dipolar action potential templates for i and uses the first spatial derivative

of the recording sensitivity function for w. The code we made available includes the option of

either the monopole or dipole representation, and we used the dipolar representation for all

simulations.

4.6 In Vivo CNAP recordings

We adapted our prior methods [75] to record CNAPs from the cervical vagus nerve of a ure-

thane-anesthetized, paralyzed, ventilated Sprague-Dawley rat (female, 217 g; Charles River

Laboratories) (Fig 3). All procedures were approved by the Institute for Animal Care and Use

Committee of Duke University (Durham, NC) and were in accordance with the Guide for

Care and Use of Laboratory Animals (8th edition). The study was also in compliance with the

ARRIVE guidelines [76]. The rat was housed under USDA- and AAALAC-compliant
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conditions, with 12 h/12 h light/dark cycle and free access to food, water, and environmental

enrichment. The rat was anesthetized for 3 min with 3% isoflurane in air to facilitate subcuta-

neous injection of 1.2 g/kg urethane. We administered a supplemental dose of 0.4 g/kg ure-

thane intraperitoneally 66 min after the initial injection, and then we administered an

additional supplemental dose of 0.1 g/kg intramuscularly. We monitored heart rate and blood

oxygenation continuously using a pulse oximeter (PalmSAT 2500A; Nonin Medical; Plym-

outh, MN, USA), and we assessed anesthesia depth using the toe pinch reflex and heart rate.

We monitored body temperature using a rectal temperature probe (TH-8 Thermalert; Physi-

temp Instruments, Inc.; Clifton, NJ) and maintained body temperature between ~35–38˚C

with a heated water blanket. We delivered 0.05 mg/kg atropine (dissolved in 0.9% saline) intra-

peritoneally before the surgery to reduce the likelihood of mucus buildup in the trachea. After

the experiment, we euthanized the rat via perfusion.

We made a midline neck incision, conducted a tracheotomy to ventilate the rat (Physio-

Suite; Kent Scientific; Torrington, CT, USA), and established and maintained paralysis by

delivering 20 mg/mL gallamine triethiodide (dissolved in 0.9% saline) every 60 minutes

through an intraperitoneal catheter. We then exposed the left carotid sheath via blunt dissec-

tion, dissected the cervical vagus nerve from the carotid artery, and placed a bipolar cuff elec-

trode at the rostral end of the nerve and a tripolar cuff electrode at the caudal end (300 μm

inner diameter (ID), 1 mm outer diameter, 2580 μm (bipolar) or 3650 μm (tripolar) cuff

length, 1070 μm center-to-center contact spacing, 680 μm contact length; platinum-iridium

contacts; silicone and polyimide shells; Micro-Leads Neuro, Somerville, MA, USA). We filled

the cervical cavity with warm saline. Before implanting each cuff, we removed air bubbles in

the cuff by sonicating the cuffs in 70% isopropyl alcohol for 1 min and in saline for 5 min. We

then measured the impedance of the electrodes in a saline bath (at 1 kHz and 100 mV),

between the two contacts of the bipolar stimulation cuff and between each contact of the

recording cuff relative to a needle in the bath. We repeated these measurements after we

implanted the cuffs. Recording electrode impedances in vivo were 3.7, 4.7, and 3.5 kO on the

rostral, middle, and caudal contacts, respectively. During the experiment, we adjusted the con-

duction distance by moving the stimulation electrode rostrally or caudally to three different

conduction distances measured from the center of the stimulation electrode to the center of

the recording electrode: 6 mm, 11 mm, 15 mm.

Fig 3. In vivo CNAP recording setup overview. (A) Surgical setup of stimulation and recording electrodes along the rat cervical vagus nerve. The

black tick marks on the blue ruler are 1 mm apart. (B) Block diagram of stimulation (green) and recording (light blue) hardware setup. “G” denotes a

unit plugged into wall power. “FHC bp isolator” is a current source, “Fluke” is a battery-powered oscilloscope, and “SR560” is a preamplifier. The

“ground needle” in panel (A) was connected to the Faraday cage, while the “reference needle” was connected to channel B of all three SR560 units.

https://doi.org/10.1371/journal.pcbi.1011833.g003
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We used bipolar stimulation to evoke maximal CNAPs and conducted monopolar record-

ings to record CNAPs (B). We used symmetric biphasic waveforms (inter-phase delay: 0 ms;

rate: 3.096 Hz) with a phase duration of 50 μs (myelinated fibers) or 200 μs (unmyelinated

fibers); the first phase on the caudal contact was cathodic. We also tested the opposite phase to

verify that recorded signals were not due to stimulus artifacts. We identified a stimulus ampli-

tude that evoked a maximal CNAP by measuring a dose-response curve; we then used the

CNAP evoked by the highest tested stimulation amplitude for comparison to the computa-

tional model. For each stimulation amplitude, the stimulus-triggered average CNAP was calcu-

lated as the median of the CNAPs evoked by 10 test pulses and recorded differentially by a

voltage preamplifier (SR560; Stanford Research Systems; Sunnyvale, CA, USA) with a gain of

200x (conduction distance: 11 mm and 15 mm) or 100x (conduction distance: 6 mm) and ana-

log lowpass filtering (12 dB per octave rolloff at 100 Hz), digitally sampled at 100 kHz (Power-

Lab 4/35 DAQ; ADInstruments Inc.; Colorado Springs, CO). The output of the stimulus

current source was filtered through a circuit identical to that included in our prior studies [75,

77] to avoid undesired DC offsets [78]: 1 μF series capacitors along the positive and negative

pathways, a 100 kO resistor in parallel with the stimulator, and a 100 kO resistor in parallel

with the load. The current was delivered through a 1 kO resistor in series with the stimulation

cuff to monitor stimulus pulse shape and amplitude using a battery-powered oscilloscope

(Fluke 190–062 ScopeMeter Test Tool; Fluke Corporation; Everett, WA, USA) to measure the

intended amplitude of the stimulus pulses versus the actual amplitude for a range of stimulus

pulse amplitudes that were representative of the signals used during the experiment.

5 Results

We designed, implemented, and applied an efficient method to model CNAPs from a nerve

containing tens of thousands of nerve fibers. We quantified recording sensitivity functions

from numerically solved volume conductor models using the reciprocity principle [20,42,43].

We simulated the full transmembrane current matrix in a subset of fiber diameters to extract

‘action potential templates’ (i.e., transmembrane current time series at the compartments at

and around a single node) as done in [41] and applied a new method of interpolating across

the templates. We calculated SFAPs by filtering interpolated templates using a weighting func-

tion derived from the volume conductor model and fiber-specific CVs, similar to [44]. We cal-

culated CNAPs using this highly efficient method and demonstrated that it reproduced brute

force simulations accurately. We then applied this method to conduct a comprehensive sensi-

tivity analysis that revealed large effects of volume conductor tissue parameters, conduction

distance, and fiber diameter distribution on the CNAP amplitude, latency, and shape. Com-

parison of model outputs to an in vivo CNAP showed good agreement in amplitude and shape

with myelinated fibers but not unmyelinated fibers.

5.1 Filtering interpolated templates produced CNAPs that matched brute

force simulations

The brute force method used NEURON to simulate all 1,759 myelinated fibers and 13,283

unmyelinated fibers in a rat cervical vagus nerve, and we compared the resulting CNAPs to

signals calculated using our template method. The template method simulated only 193 mye-

linated and 97 unmyelinated fibers in NEURON, spanning the range of fiber diameters: we

extracted the action potential templates for each fiber, interpolated templates for the thousands

of remaining fibers, and convolved each template with fiber-specific filters calculated from the

volume conductor model and CV to generate SFAPs. The resulting CNAPs reproduced the

brute force results accurately (Fig 4).
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After obtaining the electrodes’ recording sensitivity functions from the volume conductor,

the time required to reconstruct the CNAP by filtering interpolated action potential templates

was 38 seconds for myelinated fibers and 30 seconds for unmyelinated fibers on a desktop

without using parallelization (processor: AMD Ryzen 7 1700 Eight-Core Processor 3.00 GHz;

RAM: 16 GB). In contrast, the brute force method that simulated every nerve fiber required

approximately 48 hours when parallelized across hundreds of CPUs on the Duke Compute

Cluster, corresponding to approximately 1,030,000 CPU seconds (286 CPU hours) for myelin-

ated fibers and 57,000,000 CPU seconds (15,860 CPU hours) for unmyelinated fibers. Thus,

our efficient method achieved 27,000–1,900,000x speedup. This speedup was achieved through

two primary approaches (see Methods for details): (1) interpolating transmembrane currents

across fiber diameters, and (2) calculating filters via inserting zeros into the recording sensitiv-

ity function and then transforming the filters into the frequency domain at appropriate fre-

quency resolution to conduct elementwise multiplication with the transmembrane current

templates. While the new method did initially require 193 myelinated and 97 unmyelinated

fiber simulations, these simulations were run only once and were used as the bases for all sub-

sequent analyses, including parameter sensitivities.

The accuracy of CNAP modeling depended on the number of templates, conduction distance,

and—most of all—the interpolation method. Decreasing the number of fiber diameters simulated

to obtain action potential templates slightly altered the amplitude of CNAPs, and this effect was

more pronounced for longer conduction distances (Fig 5). However, the timing, shape, and over-

all amplitude of the CNAPs remained relatively consistent irrespective of the number of templates

used for both myelinated and unmyelinated fiber CNAPs (Fig 5A–5F). Using a binning approach

that did not interpolate linearly but instead grouped fiber diameters into bins equal to the number

of templates (i.e., nearest neighbor interpolation) [41] resulted in large oscillations and deviations

in shape and amplitude of the CNAPs across both myelinated and unmyelinated fibers (S9 Text).

5.2 Effect of tissue conductivity values and cuff opening

5.2.1 Effects on CNAP amplitude. Tissue conductivities could strongly influence CNAP

amplitude. With a fully sealed cuff (0˚ opening), the largest effect was due to surround

Fig 4. Modeled CNAPs for myelinated (A) and unmyelinated (B) fibers in rat cervical vagus nerve calculated by using brute force (blue solid) or by

filtering interpolated templates (black dotted). In the brute force method, we simulated all 1,759 myelinated fibers and 13,283 unmyelinated fibers in

NEURON, while in the ‘filtering interpolated templates’ method, we simulated only 193 myelinated fibers and 97 unmyelinated fibers and interpolated

templates for the thousands of remaining fibers.

https://doi.org/10.1371/journal.pcbi.1011833.g004
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conductivity, which comprised the conductivity of the cuff slit, the medium containing the

cuff and nerve, and the thin space between the cuff and nerve (Fig 2A). Surround conductivity

changed CNAP amplitude by>2x across a biologically plausible range of conductivities: 0.03

S/m (fat) to 1.76 S/m (saline) (Fig 6A). Increasing endoneurial longitudinal conductivity over

a large range, i.e., from one-third to three times the published value of 0.57 S/m, decreased

peak-to-peak CNAP amplitude by ~2x (Fig 6B). Endoneurial anisotropy and perineurial con-

ductivity had the smallest effects even when sweeping their values over a substantial range

around their literature values of 3.43 (endoneurial anisotropy; Fig 6C) and 8.7e-4 S/m (peri-

neurium conductivity; Fig 6D). There were two interaction effects between tissue conductivi-

ties: perineurium conductivity had a larger effect at intermediate values of surround

conductivity; surround conductivity had a larger effect at smaller endoneurium longitudinal

conductivities (S10 Text). Results for unmyelinated fibers were comparable to myelinated

fibers (S11 and S12 Text files).

Fig 5. CNAPs modeled with different numbers of templates by using linear interpolation across fiber diameters (1.013 to 9.809 μm for

myelinated fibers and 0.105 to 1.896 μm for unmyelinated fibers) at five conduction distances. (A-F) Example myelinated and unmyelinated

CNAPs at conduction distances of 6, 21, and 81 mm. (G-H) Maximum percent discrepancy between CNAPn (i.e., CNAP constructed from n templates)

and CNAPfinest (i.e., finest = 193 for myelinated or finest = 97 for unmyelinated): 100*max(abs(CNAPn—CNAPfinest))/Vpk-pk,finest.

https://doi.org/10.1371/journal.pcbi.1011833.g005
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Compared to the fully sealed cuff, using a cuff with a 16˚ slit (“non-sealed cuff”) reduced

CNAP amplitudes by 4x or 8x at typical surround conductivities of 0.35 S/m (e.g., longitudinal

muscle conductivity) or 1.76 S/m (e.g., saline), respectively (Fig 6A). Thus, the expected reduc-

tion of CNAP amplitude with non-sealed cuffs [20] was stronger when the surrounding

medium was more conductive. Conversely, as the surrounding medium was made less con-

ductive (e.g., 0.01 S/m), the cuff opening effects approached zero. The 16˚ slit strengthened the

amplitude effects of surround conductivity (Fig 6A), weakened the amplitude effects of longi-

tudinal endoneurial conductivity (Fig 6B), and strengthened the effects of perineurium con-

ductivity such that CNAP amplitude generally decreased as perineurium conductivity

increased (Fig 6D). Results in unmyelinated fibers were comparable to myelinated fibers (S12,

S13, and S14 Text files).

5.2.2 Effects on CNAP shape. Tissue conductivities had modest effects on waveform

shape. In sealed cuffs, CNAP shape was only slightly smoother at higher longitudinal endo-

neurial conductivities (Fig 7B) and lower perineurium conductivities (Fig 7D). Surround con-

ductivity and endoneurial anisotropy had a negligible effect on CNAP shape (Fig 7A and 7C).

Non-sealed cuffs slightly intensified the conductivity-driven effects on CNAP shape, but the

Fig 6. Sensitivity of peak-to-peak CNAP amplitude (Vpk-pk) across tissue conductivity values and cuff opening size on the myelinated fiber CNAP

from the rat cervical vagus nerve at a single conduction distance (11 mm center-to-center). ‘σsurround’ is the conductivity of the cuff slit, of the

medium containing the cuff and nerve, and of the thin space between the cuff and the nerve (Fig 2A); ‘σr’ and ‘σz’ are the radial and longitudinal

conductivity of the endoneurium, respectively; ‘σperineurium’ is the conductivity of the perineurium.

https://doi.org/10.1371/journal.pcbi.1011833.g006
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effects remained modest (Fig 7). Results in unmyelinated fibers were comparable to myelin-

ated fibers (S15 Text)).

5.3 Effect of conduction distance

Increasing the conduction distance from 5.8 mm to 101.8 mm (center-to-center between stimu-

lation and recording cuffs) decreased CNAP amplitude, increased CNAP latency, and altered

the shape of signals from both myelinated and unmyelinated fibers (Fig 8). CNAP shape

changed as the conduction distance increased such that the first positive peak of myelinated

fiber CNAPs was larger than the first negative peak when conduction distance was 5.8 mm, but

comparable to the negative peak at longer conduction distances (Fig 8A). Unmyelinated fiber

CNAPs always had smaller first positive peaks than first negative peaks (Fig 8B). Within the fea-

sible length of a rat cervical vagus nerve (i.e., ~26 mm), the signal amplitude decreased approxi-

mately as the inverse square of the conduction distance (power fits for distances <26 mm:

amplitude = 83*distance^-1.7 (myelinated), amplitude = 339*distance^-1.7 (unmyelinated)).

5.4 Effect of nerve fiber properties

5.4.1 Fixed Bins vs. Random sampling of fiber distributions. CNAPs could be recon-

structed from fiber diameter distributions rather than from known specific fiber diameters.

Fig 7. Sensitivity of myelinated fiber CNAP shape to all tissue conductivities and cuff openings shown in Fig 6. Each subpanel shows a normalized

waveform (to facilitate shape comparison) from t = 0 to t = 2 ms.

https://doi.org/10.1371/journal.pcbi.1011833.g007
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However, the bin width used to quantify the distributions and the method of sampling the dis-

tributions had large effects on the CNAPs. Quantifying fiber diameter distributions using dif-

ferent bin widths (Fig 9A and S16 Text) and using the bin centers for calculating CNAPs

produced signals with accuracy that decreased as the bin width increased (Fig 9B and S16

Text). Using standard inverse transform sampling to randomly sample fibers from the cumula-

tive distribution function of the distributions was more accurate than using the bin centers

(Fig 9C and S16 Text vs. Fig 9B and S16 Text). The necessary resolution for fiber diameter

Fig 8. Effects of conduction distance on CNAPs from rat cervical vagus nerve. CNAPs from myelinated (A) and unmyelinated (B) fiber populations

for different conduction distances (center-to-center) between the stimulation and recording cuffs. (C) Effect of conduction distance (5.8 to 101.8 mm)

on peak-to-peak CNAP amplitude for myelinated and unmyelinated fibers. Nonlinear power fits of conduction distances<26 mm (black dashed lines)

related amplitude (in mV) to conduction distance (in mm): amplitude = 83*distance^-1.7 (myelinated), amplitude = 339*distance^-1.7

(unmyelinated).

https://doi.org/10.1371/journal.pcbi.1011833.g008

Fig 9. Effect of bin size and sampling method on myelinated fiber CNAPs during extraction of fiber diameters from distributions. (A) Histograms

of known myelinated fiber diameters across different bin sizes. A bin size of 0 μm used the individual fiber diameter measurements (precision of 1e-

6 μm). (B) Effect on CNAPs of generating fiber diameters based on the center of the bin and the bin height. As bin size increased, using the bin centers

produced inaccuracies due to less destructive interference and more constructive interference. (C) Effect on CNAPs of generating fiber diameters based

on inverse transform sampling to sample diameters randomly from the estimated cumulative distribution function. For a given non-zero bin size,

CNAPs were more accurate than when using bin centers.

https://doi.org/10.1371/journal.pcbi.1011833.g009
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distribution quantification to construct CNAPs accurately was at least 0.24 μm (myelinated) or

0.14 μm (unmyelinated) using inverse transform sampling. Although inverse transform sam-

pling is a stochastic sampling process, the resulting CNAPs were quite consistent across ran-

dom seeds (Fig 9C and S16 Text).

5.4.2 Fiber diameter distributions in literature. We evaluated the effect of fiber diameter

distribution by calculating CNAPs using two sources of rat cervical vagus nerve fiber diameter

measurements [47,79]. Soltanpour & Santer [79] reported a larger number of fibers and gener-

ally larger fiber diameters than Havton and colleagues [47], resulting in substantially larger

CNAPs with shorter latencies (Fig 10).

5.4.3 Effect of CV vs. Fiber diameter. The CV vs. fiber diameter relationship had a large

effect on CNAP shape, amplitude, and latency. Further, CV vs. fiber diameter measurements

from literature differed from those derived from biophysical models, resulting in notably dif-

ferent modeled CNAPs. The CV of modeled fibers was linearly related to fiber diameter in

myelinated fibers (i.e., CV = m*D + b; S17 Text) and linearly related to the square root of fiber

diameter in unmyelinated fibers (i.e., CV = m*sqrt(D) + b; S17 Text). Increasing the ‘slope’

coefficient, m, of these relationships resulted in larger CNAP amplitudes and shorter CNAP

latencies, and reducing the coefficient had the opposite effect (Fig 11). Hursh reported a linear

relationship between CV and myelinated fiber diameter in somatic and autonomic cat nerves

[70], and CV values were faster than those of modeled myelinated fibers (S18 Text). CNAPs

using the Hursh data had larger amplitude and shorter latency than the default model, compa-

rable to the CNAP produced with an increased ‘slope’ coefficient (Fig 11A). Hoffmeister and

colleagues reported a linear relationship between CV and unmyelinated fiber diameter in

somatic cat nerves [80], and CV values were comparable to those of modeled unmyelinated

fibers (S18 Text). CNAPs using the Hoffmeister data had comparable latency and shape to the

default model, but CNAP amplitude was lower (Fig 11B).

5.4.4 Effects of fiber shrinkage. Tissue fixation, dehydration, and other histological pro-

cessing can shrink the observed nerve fiber diameters by variable amounts, e.g., 10.1±0.16%

[70], 6–8% [81], 20% [82], and 25–50% [71]. CNAP peak-to-peak amplitude increased by 26%

(myelinated) or 23% (unmyelinated) per 10% increase in fiber diameter (Fig 12). CNAP

latency shortened by 11% (myelinated) or 5% (unmyelinated) per 10% increase in fiber

diameter.

Fig 10. Comparison of CNAPs from two published fiber diameter datasets of myelinated (A) and unmyelinated (B) fibers in rat cervical vagus nerve.

Individual fiber measurements from the (Havton et al., 2022) dataset [47] were from a left cervical vagus nerve (sex: female; age: 68 days; strain:

Sprague-Dawley; weight: 198 g); we corrected the measurements according to the shape-adjusted ellipse method [48]. Fiber diameter distributions from

(Soltanpour & Santer 1996) [79] were from a right cervical vagus nerve (sex: male; age: 4 months; strain: Wistar; weight: none listed); we used standard

inverse transform sampling to obtain individual fiber measurements.

https://doi.org/10.1371/journal.pcbi.1011833.g010
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5.4.5 Fiber XY location and Z jitter had a negligible effect on CNAPs. Fiber location

within the cross section of the monofascicular rat cervical vagus nerve had a negligible effect

on CNAP amplitude, shape, and latency (S1 Text). Randomly displacing the longitudinal posi-

tions (i.e., z-coordinate) of each myelinated nerve fiber individually by a factor of ±0.5 times

the fiber-specific internodal distance also had only a minor effect on signal shape and ampli-

tude but no effect on latency (S19 Text).

5.5 Comparison to In Vivo recording

In vivo CNAPs had markedly smaller amplitudes than modeled CNAPs in initial models using

conductivities from literature, a 0˚ cuff opening, and a surround conductivity of 0.16 S/m (i.e.,

epineurium) (Fig 1). Therefore, we tuned our models’ surround conductivity and cuff opening

—the parameters that are most likely to vary experimentally and that had the greatest effect

based on our sensitivity analysis (Fig 6)—to 0.50 S/m and 16˚, respectively, to match the

model amplitude to the in vivo myelinated fiber CNAP in Fig 1A. The resulting modeled mye-

linated fiber CNAPs had comparable amplitude to in vivo recordings across all conduction

distances, all recording channels, and both stimulation polarities, within a factor of 1.4 (Fig

13A and 13B). However, the unmyelinated fiber CNAPs were still 4–7 times smaller in vivo

compared to the model (Fig 13C and 13D). The modeled latency of the negative peak was lon-

ger than in vivo by 1.2–1.5x for myelinated fibers and by 1.8-2x for unmyelinated fibers. All

CNAPs except the in vivo unmyelinated CNAPs had a triphasic shape (Fig 13C and 13D).

We examined the effects of conduction distance and recording channel from a tripolar cuff.

Increasing conduction distance decreased CNAP amplitudes and lengthened CNAP latencies

by a larger amount in the model than in vivo (S20 Text). Changing the recording channel had

a similar qualitative effect in vivo and in models; CNAPs generally had lower amplitudes and

slower latencies for recording contacts further from the stimulation cuff.

Fig 11. Effect of CV-to-fiber diameter relationship on CNAPs from myelinated fibers (A) and unmyelinated fibers (B).

https://doi.org/10.1371/journal.pcbi.1011833.g011
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6 Discussion

6.1 Filtered interpolation method

Computational models have great potential to facilitate the design of electrodes that can extract

information selectively from the peripheral nervous system to guide next-generation, closed-

loop stimulation therapies and to enhance understanding of physiological systems. However,

there is a need for (1) rigorous computational models of nerve recording; (2) model validation;

(3) increased efficiency of simulations because calculating recordings for the tens of thousands

of fibers in a nerve is computationally prohibitive. Filtering action potential templates pro-

duced CNAPs that matched the brute force approach with negligible error in shape, amplitude,

and latencies across unmyelinated and myelinated fibers. Filtering action potentials achieved

these results in orders of magnitude less time than the brute force method of using transmem-

brane current matrices (30 seconds and 38 seconds compared to 286 and 15,860 CPU hours

for myelinated and unmyelinated fibers) for simulating the CNAPs of a rat cervical vagus

nerve. This computational efficiency is even more crucial for larger species and nerves, such as

Fig 12. Effect on CNAPs due to scaling fiber diameters. (A,D) CNAPs from myelinated (A) and unmyelinated (D) fibers with diameters scaled by

different scaling factors (legend). (B,E) Effects of diameter scaling factor on peak-to-peak CNAP amplitude. (C,F) Effects of diameter scaling factor on

latency of the CNAP negative peak. Linear fits (black solid lines) related Vpk-pk or latency (y) to fiber diameter scaling (x) with an adjusted R2 value

�0.98 for all fits: (B) y = -2.18 + 3.58*x; (C) y = 1.40–0.72*x; (E) y = -7.48 + 13.40*x; (F) y = 25.41–7.97*x.

https://doi.org/10.1371/journal.pcbi.1011833.g012
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human cervical vagus nerves that contain tens of thousands of myelinated fibers (mean: 19,770

[83]; mean: 16,552 [84]) and unmyelinated fibers (mean: 92,214 [83]). Thus, interpolating

action potential templates of transmembrane currents from a relatively small number of pre-

computed action potential templates makes CNAP modeling accessible for application in a

variety of clinical and research settings.

Filtering action potential templates enhanced the efficiency of SFAP and CNAP calculation

by exploiting action potential redundancies over space within a fiber and similarities across

different fiber diameters. This method is expected to be valid for large populations of fibers of

a given kind (e.g., A-fibers, B-fibers, and C-fibers separately) but is not valid when using tem-

plates of one kind of fiber for another kind of fiber (e.g., A-fiber templates for B-fiber or C-

fiber modeling) due to differences in action potential templates from those fibers at a given

diameter. Similarly, any two specific fibers may have slight differences in ultrastructure or ion

channel composition that could result in distinct action potential templates that are not

accounted for by filtering action potentials, but such differences are assumed to average over

the entire population. We interpolated transmembrane currents (linearly)—rather than SFAPs
(nonlinearly via stretching or contracting)—across fiber diameters because interpolating

SFAPs requires recalculating SFAPs for different volume conductors, fiber locations, and fiber

Fig 13. Comparison of CNAPs from in vivo data (solid lines) and models (dashed lines) from a rat cervical vagus nerve across conduction distances (A,

C) and recording channels within the tripolar cuff (B,D). Model surround conductivity and cuff opening were tuned to 0.50 S/m and 16˚, respectively,

to match the model amplitude to the in vivo myelinated fiber CNAP at 11 mm conduction distance from recording channel 1.

https://doi.org/10.1371/journal.pcbi.1011833.g013
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trajectories. Further, we used temporal action potential templates (i.e., i(n,K) from Eq. 4, where

n is all time point indices and K is a reference compartment) rather than spatial action poten-

tial templates (i.e., i(J,m), where J is a reference time point andm is all compartment indices);

interpolating spatial templates across fiber diameters (nonlinearly via stretching or contract-

ing) is challenging when there are multiple compartment types that differ in spacing across

fiber diameters (e.g., as in myelinated fibers).

6.2 Tissue conductivity and cuff opening effects

Our study extends previous literature by quantifying the influence of tissue conductivities on

CNAPs over a biologically feasible range of values. The observed effects on CNAP amplitude

were substantial, and these observations have implications for model-based signal prediction

and recording interface design. Our findings suggest that model-based predictions of CNAP

amplitudes are subject to uncertainty on the order of 2x-8x due to uncertainties of tissue con-

ductivities and cuff opening. The fact that surround conductivity and cuff seal were the most

influential parameters highlights a key opportunity: techniques that control or probe the cuff

seal and surrounding medium conductivity in situ would improve the predictive accuracy of

models by eliminating the primary sources of volume conductor uncertainty. The absence of

latency effects is expected because purely resistive volume conductors do not alter signal prop-

agation delay. Tissue conductivities and cuff seal had almost no effect on CNAP shape, even in

a model with perineurium removed (S23 Text). The implication for predictive models of extra-

neural recording is that efforts to account for temporal properties of CNAPs (e.g., shape,

latency) should focus on other parameters that influence these properties more heavily (e.g.,

conduction distance, fiber parameters).

The effects of surround conductivity and cuff seal on CNAP amplitude are consistent with

previous studies and first principles. The marked decrease in CNAP amplitude with increasing

conductivity of the surrounding medium follows from the application of Ohm’s law to a cur-

rent-controlled source such as transmembrane current (i.e., decreasing resistance, R, for a

fixed current, I, causes voltage, V, to decrease as well). Previous analyses formalized this con-

cept for point or ring electrodes in homogeneous isotropic media of conductivity σ, showing

that SFAP amplitude is proportional to 1/σ [21,74]. These concepts also explain the substantial

and well-established effect of cuff seal in maintaining a high amplitude by keeping a low effec-

tive tissue conductivity around the nerve [9,20].

The non-monotonic effects of perineurium conductivity in a fully sealed cuff indicate a

tradeoff that may be explained in terms of current leakage. The perineurium reduces the

amount of current exiting the nerve, thus decreasing the recorded signal amplitude within the

cuff. However, when the cuff is well-insulated (e.g., intermediate surround conductivity & fully

sealed cuff), the perineurium simultaneously prevents current from leaking into the space out-

side the cuff, thus increasing the recorded signal amplitude within the cuff. As the cuff’s insulat-

ing capabilities decrease (e.g., high surround conductivity & non-sealed cuff), current leakage

happens at the cuff itself and therefore decreasing the perineurium conductivity only reduces

the amount of current reaching the recording electrode, decreasing recorded signal amplitude.

These findings indicate that the effect of perineurium depends on the recording environment.

Indeed, previous analytical models of media with inhomogeneities showed that a material’s

effects depended on its conductivity relative to that of other materials [21]. The default perineu-

rium conductivity of 8.7e-4 S/m (resistivity of 1149 Ω-m) was measured from amphibian

somatic nerves [51, 85]. More recent measurements from canine vagus nerves identified an

average conductivity of 2.7e-4 S/m (resistivity of 3751 Ω-m) [86], which was ~3-fold lower than

the measurements from amphibian somatic nerves. We varied the default perineurium
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conductivity by factors of 1/16 to 16x, and the effects on CNAP amplitude and waveform were

still limited. Therefore, we expect that the perineurium conductivity within a biologically feasi-

ble range does not substantially impact recordings from rat cervical vagus nerve.

Endoneurial longitudinal conductivity in our models had the opposite effect to a study by

Wijesinghe and colleagues [25], although that study did not include a perineurium, so the

tradeoff of conductivity effects likely differed. Anisotropy had a negligible effect in our models

in contrast to Wijesinghe and colleagues [25]; however, it is unclear how that previous study

altered anisotropy (i.e., whether radial conductivity was changed while maintaining longitudi-

nal conductivity, or vice versa).

6.3 Nerve fiber effects

6.3.1 Fiber diameter distribution. Fiber diameter quantification and sampling methods

had a large influence on CNAP shape, amplitude, and latency. Fiber diameter data are tradi-

tionally quantified in the literature with histograms, and sampling the bin center of such histo-

grams can lead to large artifacts in CNAPs due to excessive constructive interference between

the fibers. On the other hand, stochastic sampling to obtain individual fiber diameters from

histograms (e.g., via inverse transform sampling) produced CNAPs that resembled CNAPs cal-

culated using the known individual nerve fiber diameters. Therefore, while measurements of

individual nerve fibers are limited in the literature, sufficiently fine histogram quantification

may still enable accurate CNAP reconstructions. Nevertheless, there are limited such data

available in the literature, and even fewer compare distributions across individuals. Indeed,

fiber diameter distributions from the only two literature sources of myelinated and unmyelin-

ated fiber diameter measurements from rat cervical vagus nerve [47,79] had a marked effect

on CNAP amplitude and shape. Inter-individual differences included fiber count (ntotal =

9,163 [47] vs. ntotal = 52,119 [79]), rat age and gender (60-day-old female [47] vs. 4-month-old

male [79]), analysis method (i.e., correction of Havton et al., 2022 data [47] with the shape-

adjusted ellipse method [48]), and mode fiber diameter (1.72 μm (myelinated), 0.53 μm

(unmyelinated) [47] vs. 2.45 μm (myelinated) & 0.74 μm (unmyelinated) [79]). Notably, the

prominent second peak in the myelinated CNAPs that used Soultanpour & Santer [79] data

resembled the CNAPs from the undersampled distributions in Fig 9C, suggesting a potential

undersampling of the histogram. The limited data on inter-individual nerve fiber histograms

prevents evaluating the role of inter-individual differences of fiber diameter distributions in

accounting for inter-individual differences in CNAPs, and this is an important limitation for

model validation. Our findings motivate the need for additional measurements of individual-

specific fiber diameter distributions and nerve anatomy to develop more accurate CNAP

predictions.

6.3.2 CV vs. Fiber diameter. The assumed relationship between CV and fiber diameter

can dictate the amplitude, shape, and latency of modeled CNAPs. While CV values in biophys-

ical models of nerve fibers emerged from the physical properties defined for the fibers (S17

Text), these CV values differed from in vivo measurements (S18 Text), and this discrepancy

led to quite distinct modeled CNAPs (Fig 11). While altering the CV-to-fiber diameter rela-

tionship involves overriding the values calculated by the biophysical models, our modeling

framework allows the exploration of such relationships. Interestingly, the linear fit of Hoffme-

ister [80] produced a smaller amplitude unmyelinated fiber signal but had only a limited effect

on latency, suggesting a role of CV-to-fiber diameter relationship (i.e., linear with fiber diame-

ter vs. linear with the square root of fiber diameter). We only used experimental measurements

from two studies as the source of CV measurements, and given the observed potential impor-

tance of appropriate CV values on CNAP signals, future use of more sources is warranted.
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6.3.3 Conduction distance. Our findings show that there is a tradeoff between shortening

conduction distances to increase CNAP amplitude and lengthening conduction distances to

decrease stimulation artifact overlap with CNAPs. The decrease in CNAP amplitude with

increasing conduction distance is caused by temporal dispersion of action potentials

[22,25,26,29,30,40]. We showed that this decrease approximately follows an inverse square

relationship within the feasible range of conduction distances in the rat cervical vagus nerve of

<20 mm. The implication of these findings for unmyelinated fibers, for which the stimulus

artifact is much shorter than the expected latencies, is that minimizing the conduction distance

can maximize the amplitude of CNAPs without overlapping with the stimulation artifact. On

the other hand, myelinated fiber signals are likely best recorded at intermediate conduction

distances that reduce attenuation due to dispersion (<10 mm) and are still far enough to avoid

overlap with the stimulus artifact.

At a conduction distance of 11 mm, CNAPs for unmyelinated fibers were ~3-5x larger than

for myelinated fibers because there were approximately 10x more unmyelinated fibers; this

larger fiber count offset their ~2-3x lower SFAP amplitude. Consistent with our CV vs. fiber

diameter analysis (Fig 11), temporal dispersion increases as the CV becomes slower and as the

standard deviation of CV increases [24]. However, unmyelinated fibers exhibited only slightly

stronger temporal dispersion than myelinated fibers (Fig 8) despite having much slower CVs.

This occurred because SFAP duration was much longer for unmyelinated fibers compared to

myelinated fibers (S6 Text); the longer SFAP duration compensated for the slower signals,

resulting in comparable degrees of dispersion in both fiber types (S20 Text). This finding is

consistent with our in vivo data, indicating a comparable degree of temporal dispersion

between myelinated and unmyelinated signal (Fig 13 and S20 Text).

6.3.4 Fiber XY Position and Z Jitter. Fiber location within the nerve cross section had a

limited effect on CNAP characteristics. Three factors likely account for this result: (1) the circu-

larly symmetric electrode geometry paired with a circularly symmetric monofascicular nerve

geometry can distinguish between signals from nerve fibers at different radial locations but not

angular locations; (2) CNAP signals are aggregates of a population of SFAPs such that differ-

ences due to location get averaged out; and (3) the presence of a resistive perineurium makes

potentials from each fiber in the fascicle appear more uniform. The effect of perineurium can be

understood by considering the reciprocal relationship between stimulation and recording: stim-

ulating nerve fibers within a fascicle requires higher amplitudes when perineurium is present,

and threshold amplitudes are nearly uniform for a given fiber diameter anywhere within the fas-

cicle [87,88]. Therefore, it follows from the electromagnetic reciprocity theorem that signals

originating from across the fascicle for a given fiber diameter will be detected as similar ampli-

tudes at the recording electrode. The limited effect of fiber location and longitudinal jitter chal-

lenge the goal of selective recording of specific fiber populations in the case of a monofascicular

nerve. However, the use of high density electrodes to obtain spatiotemporal profiles [42] may

provide sufficient information to decode spatial-specific information.

6.4 Model vs. In Vivo comparison

Our initial comparison of modeled vs. in vivo CNAPs showed a large discrepancy in ampli-

tudes (Fig 1), while tuning models within experimentally feasible parameter values based on

volume conductor sensitivity analysis generated amplitudes comparable to in vivo CNAPs for

myelinated fibers (Fig 13). Previous studies recording from large myelinated fibers reported a

strong correspondence between model predictions and in vivo recordings in terms of shape

and latency, although those studies most often did not consider signal amplitude, and they

used triangular SFAP shapes with CV tuning to achieve a strong match [22,25,27,30]. Two
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studies reported comparable amplitudes of biophysical model predictions to in vivo data for

myelinated and unmyelinated fibers (3x or less discrepancy) [39,41]. However, comparing

amplitude and shape for myelinated fibers was confounded by a strong stimulation artifact

overlapping with the fastest signal components due to the very short conduction distance (2.85

mm) [41]. As a result, neither the shape nor latency of the CNAPs resembled the modeled sig-

nals, and the amplitude discrepancy was larger depending on the in vivo trial. Meanwhile,

Lubba and colleagues recorded CNAPs at a very large conduction distance (80 mm) [39] such

that it was challenging to compare the shape and latency of the modeled CNAPs to the in vivo

data since very temporally dispersed CNAPs resembled noisy time series. In contrast to Eiber

and colleagues’ use of nerve-specific fiber diameters, it was unclear how Lubba and colleagues

selected the number and diameters of myelinated and unmyelinated fibers, and this selection

can impact amplitude substantially. Finally, Lubba and colleagues shifted the unmyelinated

fiber SFAPs in time, using CV [in meter/sec] = 1.4*sqrt(fiber diameter [in micrometers],

which in turn can also influence amplitudes. In our study, our use of intermediate conduction

distances in vivo (6–15 mm) enabled us to compare our modeled CNAPs to in vivo CNAPs in

terms of shape, latency, and amplitude and revealed the discrepancies and their potential

sources. We also extended previous comparisons by conducting measurements across conduc-

tion distances and channels. The modeled myelinated fiber CNAPs had comparable shapes to

in vivo CNAPs. Recording channel effects were qualitatively consistent between the model and

in vivo signals, showing a decrease in amplitude and increase in latency from channels 1 to 3.

Model amplitudes could be made comparable to in vivo amplitudes by adjusting tissue con-

ductivity and cuff fit on the nerve, but could not be made comparable to in vivo signals for

both myelinated and unmyelinated fibers simultaneously. Further, the latency of CNAPs in

the models was slower than in vivo. Several factors may contribute to these discrepancies. The

frequency content of unmyelinated fiber CNAPs overlaps substantially with the high pass filter

used to reject powerline noise (S21 and S22 Text files), which may contribute to the amplitude

discrepancies. Uncertainty in the conduction distance may partially account for the latency or

amplitude discrepancies between in vivo and model data. However, since the effects of con-

duction distance and volume conductor parameters are expected to affect myelinated and

unmyelinated fibers similarly, these factors alone do not account for in vivo vs. model discrep-

ancies of both fiber types. The two fiber types are based on two distinct fiber models and it is

not surprising that they differ in their ability to match the in vivo data. Available models of

unmyelinated fibers, including the model that we used [46], produce action potentials with CV

and strength-duration responses consistent with experimental measurements, but other char-

acteristics such as recovery cycle and action potential shape do not match well with experimen-

tal measurements [89]. There is a need for models of unmyelinated fibers that reproduce

experimental measurements, including in vivo CNAP recordings. Our framework for model-

ing CNAPs can readily incorporate updated biophysical models of unmyelinated fibers.

6.5 Limitations

The latency of each action potential template includes action potential initiation and action poten-

tial propagation, and the former varies with the type of stimulus pulse, the stimulus amplitude,

and the electrode geometry. Therefore, the action potential templates are most accurate for pre-

dicting CNAPs evoked by the specific stimulation model that produced them. Initiation delays

would result in subtle sub-millisecond changes to CNAPs, although these are expected to become

less relevant as the conduction distance increases. Action potential templates should thus be

accompanied by metadata that would enable evaluating subtle effects (e.g., stimulation electrode

geometry, stimulation pulse shape, location and time from which the template was taken, etc.).
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We maintained the recording cuff length at 3,650 μm across all simulations. Prior studies

showed that recorded signals increased with cuff length, to a plateau: SFAP peak-to-peak

amplitude plateaued after a certain cuff length in myelinated fibers [20,33,39] and was maxi-

mum at a certain cuff length in unmyelinated fibers [39]. Andreasen proposed a quantitative

relationship between the optimal cuff length and the conduction velocity, internodal distance,

and the action potential duration of a given fiber diameter [33] and later provided a theory of

active length that can guide the selection of cuff length [90]. Other parameters that remain to

be evaluated systematically for effects on CNAPs include temperature [26, 27], intracellular

conductivity [25], activity-dependent slowing in unmyelinated fibers [46], and ephaptic

coupling.

Our simplified rat cervical vagus nerve model included a range of parameters but did not

include scar tissue, shrinkage of the nerve (i.e., as opposed to shrinkage of the nerve fibers),

cuff rotation, and variation of perineurium thickness. Further, with larger nerves found in pigs

and humans, additional complexities emerge due to nerve geometry, additional conductivity

parameters, and inter-individual variability (e.g., size, number, and locations of fascicles).

Such parameters can be included in volume conductor models but were beyond the scope of

the present work. We also only conducted the study on monopolar recordings, which are ref-

erenced to a distant ground; bipolar or tripolar recordings use distinct references that could

alter the effects of tissue conductivities, conduction distance, and nerve fiber parameters on

recorded signals.

We evaluated models assuming that the axons were straight. However, the presence of non-

straight axons may have a large effect on the signal recorded from an axon [39]. Non-straight

axon trajectories only change the specific values of recording sensitivity function in Eq. 5,

which is obtained by sampling the volume conductor model at coordinates along the axon tra-

jectory; the transmembrane current matrix and the shift matrix in Eq. 5 remain unchanged.

We compared modeled CNAPs in response to activation of all fibers in the nerve to in vivo

CNAPs in response to a stimulation amplitude that evoked maximal CNAP responses. We did

not evaluate the accuracy of the modeled CNAPs when subsets of the nerve were active (e.g.,

graded activation), although representation of subpopulations of active axons can be readily

incorporated in the model.

6.6 Conclusion

In conclusion, we developed a method to model CNAPs efficiently in whole-nerve models, we

applied the method to quantify the sensitivity of CNAPs to tissue and recording parameters,

and we compared modeled CNAPs to in vivo data. The method calculated CNAPs with

27,000–1,900,000x speedup compared to brute force while maintaining accuracy for both mye-

linated and unmyelinated fibers. Tissue conductivity had a large effect on the amplitude of

CNAPs, whereas the distribution of fiber diameters and the CV-to-fiber diameter relationship

had a large effect on the shape and latency. The shape, latency, and amplitude of modeled

CNAPs corresponded well to in vivo recordings for myelinated fibers, while discrepancies in

amplitude indicated a need for unmyelinated fiber models that match experimental measure-

ments. Our framework for CNAP modeling is publicly available to facilitate physiological

insights and the design of neural recording interfaces for closed-loop therapies.
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