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Abstract

Some real life mathematical problems can be converted in the form of nonlinear equations.
Solving such problems by analytical approaches is difficult in many situations. Hence numerical
solution is the best way in this case. In this paper, a twelth-order iterative scheme for solving
nonlinear equations is presented and analyzed in terms of efficiency. The new scheme is derived
from the well-known King’s method with order of convergence eight. We extend eighth-order
King’s method to an iterative method with memory of order 12.16 by using famous Newton’s
interpolating polynomial of degree 6 to avoid the derivative used in King’s method. The new
derived method is a three-step and is totally derivative free with twelth order of convergence.
The method requires four functional evaluations at each iteration introducing high efficiency

index of (12.16)
1
4 = 1.8673. Convergence order of new method is also studied. It is achieved by

using matrix method of Herzburger. Numerical results are also provided to support theoretical
analysis. Comparison of the derived scheme with previously well-known iterative schemes of
the same order is also presented. As different schemes of same order has efficiency index of

(12)
1
6 = 1.5131 because they requires six functional evaluations at each iteration, hence the

proposed scheme is better than other schemes.
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1 Introduction

It is well known that a broad class of problems that appear in many fields of pure and applied
research may be explored in the general context of nonlinear equations. Due to their significance, a
number of numerical approaches for solving nonlinear equations have been proposed and examined
under certain circumstances. The construction of these numerical methods used a variety of
methodologies, including the Taylor series, the homotopy perturbation method and its variants,
the quadrature formula, the variational iteration method, and the decomposition method. Solving
nonlinear equation f(x) = 0 using iterative schemes is a classical problem in field of numerical
computation [1]-[6] and references therein. Iterative schemes also has a great importance in Nanotechn-
ology, in which solution of fractional differential-difference equations [7] is obtained using these
schemes. In [8], Nasir ali et al. proposed a new iterative scheme for solving important nonlinear
equations in field of fractional calculus.

Jarratt and Ostrowski presented somewell-known two-point techniques. King [9] presented one of
the most famous optimal 4thorder iterative method. But flaws of this scheme is that it requires first
derivative in each step. Many authors modified King’s method to get more accurate results such as
Chun [10] introduced King’s like methods of order four, but computing the first derivative within
the iteration is also needed.

Chun and Lee presented a new 4th order optimal root-finding method to solve non-linear equations
which describe the conjugacy classes and dynamics of the presented optimal method for complex
polynomials of degree two and three. They obtained Jarratt’s scheme of fourth order as a special
case. Behl [2]-[4] introduced a fourth-order derivative-free scheme which is a modification in King’s
method by using weight functions.

To achieve more accuracy with less computation many authors introduced Optimal methods of
eighth-order of convergence i.e Chun et al. [10] Cordero et al. [11]-[12], Behl et al.[2]-[4] and Geum
et al. [13]. Geum and Neta [13] developed a 16th order simple root finding optimal method with
general weight functions.

Our aim is to present a derivative-free iterative method with memory of twelth order using King’s
iterative schemes and steffensen approaches. The new scheme is derived from the well-known King’s
method with order of convergence eight. We extend eighth-order King’s method to an iterative
method with memory of order 12.16 by using famous Newton’s interpolating polynomial of degree
6 to avoid the derivative used in King’s method. The new derived method is a three-step and is
totally derivative free with twelth order of convergence. This paper is organized in the following
manner.

In the next section we establish our new method and gave convergence analysis. In section 3,
solution of some numerical examples with their comparison to other well-known iterative schemes
are presented. Section 4 is a smart conclusion.
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2 Establishment of new scheme of twelth-order

We start with king’s [9] technique that is one of important family for finding solution of nonlinear
problems.

ym = xm −
f (xm)

f ′ (xm)
,

xm+1 = ym −
f (ym)

f ′ (xm)
.

f (xm) + γf (ym)

f (xm) + (γ − 2) f (ym)
, (m = 0, 1......) , γ ∈ R,

Here x0 is a preliminary approximation of a simple zero α of f . First we derive an optimal derivative
free scheme of 2 point method having convergence order 4. We consider Steffensen’s scheme for the
1st & 2nd step approximation f ′ (xm)

f ′ (xn) ≈ f [ym, wm]

G (tm)
,

while wm = xm−βf (xm) , β 6= 0, f [ym, wm] = f(ym)−f(wm)
ym−wm

, tm = f(ym)
f(xm)

. Here G is actual function.
Hence, we obtain a fourth order scheme,{

ym = xm − βf(xm)2

f(xm)−f(wm)
,

xm+1 = ym − f(xm)+γf(ym)
f(xm)+(γ−2)f(ym)

. f(ym)
f [ym,wm]

G (tm) .
(1)

Now we derive eighth-order scheme by adding Newton step in scheme (1), we have
ym = xm − βf(xm)2

f(xm)−f(wm)
,

zm = ym − f(xm)+γf(ym)
f(xm)+(γ−2)f(ym)

. f(ym)
f [ym,wm]

G (tm) .

xm+1 = zm − f(zm)
f ′(zm)

.

(2)

It is observed that function is evaluated many times to make it derivative-free and optimal method.
We approximate f́ (zm) with Newton’s interpolation of degree 3 at the point xm, ym, and zm.

N3 (t; zm, ym, xm, wm) = f (zm) + f [zm, ym] (t− zm)

+ f [zm, ym, xm] (t− zm) (t− ym) + f [zm, ym, xm, wm]

(t− zm) (t− ym) (t− xm) .

It can be seen

N3 (zm) = f (zm) , and N ′3 (t) |t=zm= f ′ (zm) .

So,

N ′3 (zm) =

[
d

dt
N3 (t)

]
t=zm

= f [zm, ym] + f [zm, ym, xm] (zm − ym) + f [zm, ym, xm, wm]

(zm − ym) (zm − xm) .

hence we get


ym = xm − βf(xm)2

f(xm)−f(wm)
,

zm = ym − f(xm)+γf(ym)
f(xm)+(γ−2)f(ym)

. f(ym)
f [ym,wm]

G (tm) .

xm+1 = zm − f(zm)
f [zm,ym]+f [zm,ym,xm](zm−ym)+f [zm,ym,xm,wm](zm−ym)(zm−xm)

.

(3)
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which is iterative scheme with memory of order 8. Now we extend this method to achieve convergence
order 12.

This is done by using the speed acceleration parameters in scheme (3). If β 6= 1/f ′ (α) rate of
convergence of scheme (3) is 8. When β = 1/f ′ (α) rate of convergence of method (3) could be
twelve. Because the value of f ′ (α) is unavailable, we apply an approximation f ′ (α) ≈ f ′ (xm).
Our objective is to create a with memory method that includes parameter calculations β = βm as
iteration progresses by βm = 1/f ′ (α) for m = 1, 2, 3.... Initial value β0 should be selected before
begning of iteration process. Here we use some characters→, O and ∼ according to Traub’s iterative
sccheme.

If limm→∞ f (xm) = C, we write down f (xm) → C or f → C, where C is a non zero contants. If

m → C, we write f = O (g) or f ∼ C (g) .

By approximating f ′ (α) with N ′4 (xm) we get

βm =
1

N ′4 (xm)
,

Here N
´

4 (tm) := N4 (t;xm, zm−1, ym−1, wm−1, xm−1) is Newton’s interpolation polynomial of 4th

degree, place with 5 approximation (xm, zm−1, ym−1, wm−1, xm−1) .

N ′4 (xm) =

[
d

dt
N4 (t)

]
t=xm

= f [xm, zm−1] + f [xm, zm−1, ym−1] (xm − zm−1)

+ f [xm, zm−1, ym−1, wm−1] (xm − zm−1) (xm − ym−1)

+ f [xm, zm−1, ym−1, wm−1, xm−1] (xm, zm−1) (xm − ym−1)

(xm − wm−1) .

We approximate in (2) f ′ (zm) with Newton’s interpolation of degree 6 at the point zm, ym, wm,xm, zm−1

and ym−1.

N5 (t; zm, ym, wm,xm, zm−1, ym−1) = f (zm) + f [zm, ym] (t− zm) + f [zm, ym, wm]

(t− zm) (t− ym) + f [zm, ym, wm, xm] (t− zm)

(t− ym) (t− wm) + f [zm, ym, wm, xm, zm−1]

(t− zm) (t− ym) (t− wm) (t− xm) +

f [zm, ym, wm, xm, zm−1, , ym−1] (t− zm)

(t− ym) (t− wm) (t− xm) (t− zm−1) .

It is clear that,

N5 (zm) = f (zm) , and N ′5 (t) |t=zm= f ′ (zm) .

Then,

N ′5 (zm) =

[
d

dt
N5 (t)

]
t=zm

= f [zm, ym] + f [zm, ym, wm] (zm − ym) + f [zm, ym, wm, xm]

(zm − ym) (zm − wm) + f [zm, ym, wm, xm, zm−1] (zm − ym) (zm − wm) (zm − xm)

+ f [zm, ym, wm, xm, zm−1, ym−1] (zm − ym) (zm − wm) (zm − xm) (zm − zm−1) .

and hence we get,
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ym = xm − βmf(xm)2

f(xm)−f(wm)
,

zm = ym − f(xm)+γf(ym)
f(xm)+(γ−2)f(ym)

. f(ym)
f [ym,wm]

G (tm) ,

xm+1 = zm − f(zm)

f [zm,ym]+f [zm,ym,wm](zm−ym)+...+f[zm,ym,wm,xm,zm−1,ym−1](zm−ym)...(zm−wm−1)
.

(4)

We denote the above scheme with AM12 which is a with memory method of convergence order
12.16. Now, we will prove the convergence order by applying the matrix method of Herzberger.

Theorem 2.1. Let x0 be a starting value which is close enough to 0 of f(x) and the iterative scheme
AM12 has 2 parameters which are repeatedly computed by the outline, then the scheme AM12 has
12.164414 order of convergence.

Proof. By using Herzberger’s matrix method we will find R-order of convergence which states that
the spectral radius of matrix M (u) = (tp;q)(1 ≤ p; q ≤ u) related to a with-memory 1 step r-point
scheme xk = Φ (xk−1, xk−2, ..., xk−u) is the lower bound of its rate of convergence. The elements
of this method are as:

tp,q = no.of functional evaluations needed at point xk−q = 1, 2, ..., u

tp,q−1 = 1 for p = 2, 3, ..., u

tp,q = 0, otherwise.

Moreover, the spectral radius of product of the matrices B1, B2, ...Bm is the lower bound of order
of an m−step method Φ = Φ1,Φ2, ...,Φm where the matrices Bk correspond to the iteration step
Φk,1 ≤ K ≤ m. From the above equations we develop the associated matrices as follow:

Xk+1 = Φ1 (zm, ym, wm, xm, zm−1, ym−1) .

M1 =


1 1 1 1 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0


Zm = Φ2 (ym, wm, xm, zm−1, ym−1, wm−1) .

M2 =


1 1 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0


Ym = Φ3 (wm, xm, zm−1, ym−1, wm−1, xm−1) .

M3 =


1 1 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0


Wm = Φ4 (xm, zm−1, ym−1, wm−1, xm−1, zm−2) .
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M4 =


1 1 1 1 1 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0



M1 ·M2 =


2 2 2 0 0 0
1 1 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0



M1 ·M2 ·M3 =


4 4 0 0 0 0
2 2 0 0 0 0
1 1 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0


Hence we obtained,

M (4) = M1 ·M2 ·M3 ·M4

=


8 4 4 4 4 4
4 2 2 2 2 2
2 1 1 1 1 1
1 1 1 1 1 1
1 0 0 0 0 0
0 1 0 0 0 0


The eigen values of M (4) are

λ1 = 12.164414

λ2 = −0.164414003

λ3 = 2.0470017e−15 − 3.78075673e−81

λ4 = 2.75578744e−15 − 3.78075673e−81

λ5 = 1.22388505e−16 + 1.13323081e−16

Hence spectral radius of M (4)matrix is 12.164414 which is convergence order of the method.

3 Numerical Examples and comparison

3.1 Method 1

Consider G as weight function

G (tm) = 1− tm, (5)

where tm = f(ym)
f(xm)

. Hence we get the following scheme denoted by AM.1.
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ym = xm −
βmf (xm)2

f (xm)− f (wm)
, wm = xm − βmf (xm) , βm =

1

N ′5 (xm)
,

zm = ym −
f (xm) + γf (ym)

f (xm) + (γ − 2) f (ym)
.
f (xm)− f (ym)

f (xm)
.
f (ym)

f [ym, wm]

xm+1 = zm −

 f (zm)

f [zm, ym] + f [zm, ym, wm] (zm − ym) + ..
.+ f [zm, ym, wm, xm, zm−1, ym−1] (zm − ym) ... (zm − wm−1)


3.2 Method 2

Consider G as a weight function

G (tm) = 1− tm
1 + tm

,

where tm = f(ym)
f(xm)

.

ym = xm − βmf(xm)2

f(xm)−f(wm)
, wm = xm − βmf (xm) , βm = 1

N′5(xm)

zm = ym − f(xm)+γf(ym)
f(xm)+(γ−2)f(ym)

. f(xm)
f(xm)+f(ym)

. f(ym)
f [ym,wm]

,

xm+1 = zm − f(zm)

f [zm,ym]+f [zm,ym,wm](zm−ym)+...+f[zm,ym,wm,xm,zm−1,ym−1](zm−ym)...(zm−wm−1)
.

we call this method AM.2.

3.3 Method 3.

Choose weight function G

G (tm) =
1− 2tm
1− tm

,

where tm = f(ym)
f(xm)

ym = xm − βmf(xm)2

f(xm)−f(wm)
, wm = xm − βmf (xm) , βm = 1

Ń5(xm)

zm = ym − f(xm)+γf(ym)
f(xm)+(γ−2)f(ym)

. f(xm)−2f(ym)
f(xm)−f(ym)

. f(ym)
f [ym,wm]

,

xm+1 = zm − f(zm)

f [zm,ym]+f [zm,ym,wm](zm−ym)+...+f[zm,ym,wm,xm,zm−1,ym−1](zm−ym)...(zm−wm−1)
.

we call this scheme AM.3.

3.4 Method 4.

Consider G as weight function

G (tm) = (1− tm)
2tm+1
tm+1 ,

ym = xm − βmf(xm)2

f(xm)−f(wm)
, wm = xm − βmf (xm) , βm = 1

N′5(xm)

zm = ym − f(xm)+γf(ym)
f(xm)+(γ−2)f(ym)

.
(
f(xm)−f(ym)

f(xm)

) 2f(ym)+f(xm)
f(ym)+f(xm)

. f(ym)
f [ym,wm]

,

xm+1 = zm − f(zm)

f [zm,ym]+f [zm,ym,wm](zm−ym)+...+f[zm,ym,wm,xm,zm−1,ym−1](zm−ym)...(zm−wm−1)
.

this scheme is named as AM.4.
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3.5 Kung and Traub(KT)

The derivative free method by Kung and Traub[14],

ym = xm − f(xm)
f [xm,wm]

, wm = xm + βmf (xm) , βm = 1
N′(xm)

zm = ym − f(ym)f(wm)
(f(wm)−f(ym))f [xm,wm]

,

xm+1 = zm −
f(ym)f(wm)

(
ym−xm

f(xm)
f[xm,zm]

)
(f(ym)−f(zm))(f(wm)−f(zm))

+ f(ym)
f [ym,zm]

.

this method is named as KT.

3.6 Sharma et al.

The method by Sharma et al. [15]

ym = xm − f(xm)
ϕ(xm)

, ϕ (xm) = f(wm)−f(xm)
βmf(xm)

, wm = xm + βmf (xm) , βm = −1
N′(xm)

zm = ym −H (µmυm) f(ym)
ϕ(xm)

, H (µmυm) = 1+µm
1−υm , υm = f(ym)

f(wm)
, µm = f(ym)

f(xm)

xm+1 = zm − f(zm)
f [zm,ym]+f [zm,ym,xm](zm−ym)+f [zm,ym,xm,wm](zm−ym)(zm−xm)

.

3.7 Zheng et al.

The method by Zheng et al. [16]

ym = xm − f(xm)
f [xm,wm]

, wm = xm + βmf (xm) , βm = −1
N′(xm)

zm = ym − f(ym)
f [ym,xm]+f [ym,xm,wm](ym−xm)

,

xm+1 = zm − f(zm)
f [zm,ym]+f [zm,ym,xm](zm−ym)+f [zm,ym,xm,wm](zm−ym)(zm−xm)

.

In order to test our presented with-memory method, we select the following nonlinear functions
with initial approximation as x0 and exact solution α. The comparison is based on computational
order of convergence and error computation.

Table 1. Test functions, exact root α and initial approximation x0

Test Functions α x0

f1(x) = ln
(
x2 − 2x+ 2

)
+ ex

2−5x+4 sin (x− 1) 1 1.05

f2(x) = ex
2+x cos(x)−1 sin (πx) + x ln (x sin (x) + 1) 0 0.2

f3(x) =
(1−sin(x2))(1+x2)

1+x3 + x ln
(
x2 − π + 1

)
− 1+π

1+π3/2 1.77 1.74

f4(x) = ex
2−3x sin (x) + ln

(
x2 + 1

)
0 0.35

f5(x) =
(
4 + 3 sin (x)− 2x2

)4
1.854 1.86

Table 2. Errors and coc of AM12

fn |x1 − α| |x2 − α| |x3 − α| COC

f1 5.49× 10−8 1.65× 10−84 9.27× 10−1003 12.9997

f2 4.13× 10−6 9.44× 10−66 1.93× 10−781 12.9997

f3 9.97× 10−12 5.28× 10−134 2.72× 10−1601 12.9997

f4 3.42× 10−6 5.63× 10−63 2.24× 10−744 12.9997

f5 2.52× 10−3 9.61× 10−4 3.61× 10−4 12.9997

210



Hassan et al.; ARJOM, 18(11): 203-214, 2022; Article no.ARJOM.90742

x0 = 1.05

Table 3. Error and coc of methods at f1

Scheme AM.1 Scheme AM.2 Scheme AM.3 Scheme AM.4

| x1 − α | 0.314× 10−6 0.314× 10−5 0.543× 10−6 5.49× 10−8

| x2 − α | 0.110× 10−66 0.153× 10−61 0.715× 10−65 1.65× 10−84

| x3 − α | 0.178× 10−800 0.914× 10−739 0.100× 10−788 9.27× 10−1003

COC 12.1378 12.1056 12.1238 12.9997

x0 = 0.2

Table 4. Error and coc of methods f2

Scheme AM.1 Scheme AM.2 Scheme AM.3 Scheme AM.4

| x1 − α | 0.900× 10−4 0.585× 10−3 0.308× 10−4 4.13× 10−6

| x2 − α | 0.111× 10−44 0.713× 10−38 0.650× 10−49 9.44× 10−66

| x3 − α | 0.255× 10−536 0.126× 10−454 0.419× 10−587 1.93× 10−781

COC 12.0178 11.9363 12.0465 12.9997

x0 = 1.74

Table 5. Error and coc of methods at f3

Scheme AM.1 Scheme AM.2 Scheme AM.3 Scheme AM.4

| x1 − α | 0.836× 10−8 0.164× 10−7 0.605× 10−8 9.97× 10−12

| x2 − α | 0.102× 10−94 0.101× 10−96 0.624× 10−97 5.28× 10−134

| x3 − α | 0.134× 10−1138 0.118× 10−1090 0.341× 10−1165 2.72× 10−1601

COC 12.0110 12.0173 12.0048 12.9997

x0 = 0.35

Table 6. Error and coc of methods at f4

Scheme AM.1 Scheme AM.2 Scheme AM.3 Scheme AM.4

| x1 − α | 0.451× 10−6 0.290× 10−7 0.539× 10−8 3.42× 10−12

| x2 − α | 0.612× 10−63 0.716× 10−94 0.335× 10−96 5.63× 10−135

| x3 − α | 0.354× 10−744 0.612× 10−1090 0.148× 10−1138 2.24× 10−1475

COC 12.0110 12.0173 12.0048 12.9997

x0 = 1.86

Table 7. Error and coc of methods at f5

Scheme AM.1 Scheme AM.2 Scheme AM.3 Scheme AM.4

| x1 − α | 4.12×10−3 3.21×10−5 2.23×10−8 2.52× 10−14

| x2 − α | 0.542×10−94 0.453×10−96 0.342×10−45 9.61× 10−165

| x3 − α | 0.341×10−1138 0.614×10−1090 0.360×10−999 3.61× 10−1340

COC 12.0110 12.0173 12.0048 12.9997
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f1, x0 = 1.35

Table 8. Comparison of different methods

KT Sharma Zheng

|x1 − α| 0.845× 10−4 0.308× 10−6 0.148× 10−5

|x2 − α| 0.393× 10−45 0.179× 10−67 0.157× 10−61

|x3 − α| 0.100× 10−540 0.126× 10−812 0.481× 10−738

COC 11.9906 12.1688 12.0973

f2, x0 = 0.6

Table 9. Comparison of different methods

KT Sharma Zheng

|x1 − α| 0.798× 10−3 0.891× 10−4 0.214× 10−4

|x2 − α| 0.194× 10−40 0.541× 10−45 0.168× 10−53

|x3 − α| 0.976× 10−486 0.274× 10−543 0.386× 10−642

COC 11.8387 12.0827 11.9875

f3, x0 = 1.7

Table 10. Comparison of different methods

KT Sharma Zheng

|x1 − α| 0.241× 10−8 0.757× 10−8 0.221× 10−7

|x2 − α| 0.137× 10−99 0.267× 10−96 0.140× 10−90

|x3 − α| 0.283× 10−1196 0.561× 10−1158 0.546× 10−1089

COC 12.0190 12.0028 12.0001

f4, x0 = 0.35

Table 11. Comparison of different methods

KT Sharma Zheng

|x1 − α| 0.832× 10−5 0.412× 10−7 0.143× 10−6

|x2 − α| 0.514× 10−46 0.342× 10−68 0.156× 10−62

|x3 − α| 0.231× 10−542 0.135× 10−815 0.567× 10−740

COC 12.9997 12.9997 12.9997

f5, x0 = 1.86

Table 12. Comparison of different methods

KT Sharma Zheng

|x1 − α| 0.871× 10−9 0.898× 10−9 0.234× 10−8

|x2 − α| 0.542× 10−99 0.675× 10−98 0.156× 10−91

|x3 − α| 0.413× 10−1198 0.546× 10−1160 0.342× 10−1090

COC 12.9997 12.9997 12.9997
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In the above tables, error of 1st three iterations are placed along with computational order of
convergence of the new method and other methods of same order. It has observed that in 3rd
iteration of each method for each nonlinear function, our new method has minimum error as
compared to other techniques. The new method has an advantage that it requires less functional
evaluations as compared to other ones. Hence, computational cost is reduced and a remarkable
efficiency is achieved.

4 Conclusion

We have presented a high order numerical scheme with memory used to solve nonlinear equations.
The scheme has convergence order of 12.16 with a remarkable efficiency index 1.8673, requiring four
functional evaluations at each iteration. Convergence order of the scheme is proved using matrix
method of Herzburger. Our presented scheme is less time consuming with higher efficiency index
as compared to other iterative schemes [17]-[18]. The main advantage of this high order scheme
is that it is totally derivative free. Hence, it is concluded that our method is derivative free, with
higher convergence order and a remarkable efficiency index and is less time consuming.
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