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Abstract: Currently, the monetary value of cryptocurrencies is extremely high, leading to frequent
theft attempts. Cyberattacks targeting cryptocurrency wallets and the scale of these attacks are also
increasing annually. However, many studies focus on large-scale exchanges, leading to a lack of
research on cryptocurrency wallet security. Nevertheless, the threat to individual wallets is real
and can lead to severe consequences for individuals. In this paper, we analyze the security of
the open-source cryptocurrency wallets Sparrow, Etherwall, and Bither against brute-force attacks,
a fundamental threat in password-based systems. As cryptocurrency wallets use passwords to
manage users’ private keys, we analyzed the private key management mechanism and implemented
a password verification oracle. We used this oracle for brute-force attacks. We identified the private
key management mechanism by conducting a code-level investigation and evaluated the three
wallets’ security through practical experimentation. The experiment results revealed that the wallets’
security, which depends on passwords, could be diminished due to the password input space and
the configuration of password length settings. We propose a general methodology for analyzing
the security of desktop cryptocurrency wallets against brute-force attacks and provide practical
guidelines for designing secure wallets. By using the analysis methods suggested in this paper, one
can evaluate the security of wallets.

Keywords: cryptocurrency; cryptocurrency wallet; crypto wallet; Sparrow; Etherwall; Bither; security
analysis; brute-force; password

1. Introduction

Cryptocurrencies are digital assets that operate on cryptographically secure distributed
ledgers. The global cryptocurrency market cap exceeds USD 829.3 billion [1]. The cryp-
tocurrency market has consistently grown since Bitcoin emerged [2]. On 14 November 2023,
Bitcoin’s (BTC) market capitalization exceeded USD 71 billion [3]. Cryptocurrencies are no
longer confined to the virtual realm and are actively utilized in actual asset transactions.
Many investors collect cryptocurrencies, and countries like El Salvador now recognize
them as legal tender [4].

Cryptocurrency operates based on public key algorithms [5], using private keys to
prove ownership or conduct transactions. However, the length and randomness of private
keys make them hard to remember, leading to the emergence of cryptocurrency wallets to
facilitate the convenient use of digital assets. Cryptocurrency wallets protect and manage
sensitive data using a user-defined password, including mnemonic codes and the user’s
private key. Utilizing a cryptocurrency wallet enables convenient management of digital
assets and facilitates transactions.
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As the value of digital assets has increased, the threats to digital assets have also
grown [6,7]. According to Chainalysis, cryptocurrency thefts resulted in approximately
USD 3.8 billion in losses in 2022, significantly increasing thefts and hacking incidents [8].
Atomic Wallet, with over five million users, fell victim to a hack in June 2023. Many users
are suffering forced withdrawals of virtual assets from their accounts. Estimated losses
exceed USD 35 million [9]. In July 2023, a cryptocurrency theft occurred in the ETH, TRX,
and BTC hot wallets of the cryptocurrency payment platform Alphapo, resulting in losses
of at least USD 31 million. This incident is suspected to have been caused by a private key
leak [10].

The threat to cryptocurrency wallets is increasing. However, since cryptocurrency
is not legally recognized in most countries, cryptocurrency management applications are
not subject to the stringent regulations that apply to traditional financial applications.
This makes cryptocurrency wallets more vulnerable compared to traditional financial
applications [11]. Given that virtual assets are increasingly regarded as part of tangible
assets, cryptocurrency theft threatens individuals’ financial stability and undermines trust
in the digital economy.

Desktop cryptocurrency wallets are software applications downloaded and installed
on a user’s computer. These wallets store sensitive information such as private keys,
transaction history, and account information as local files on the device [12]. Since wallet-
related local files can be accessed at any time within the device, there is a risk of physical
theft if the device is compromised by malware. Attackers can access the desktop to obtain
local databases, logs, and key-related files. Insecure data storage is one of the common
threats to digital wallets [13]. Additionally, even if the data are encrypted, brute-force
attacks can occur because attackers can still access wallet-related files [14].

Passwords can be vulnerable to guessing attacks for various reasons. Typically, when
cryptographic keys and related materials are derived from or protected by passwords,
they become susceptible to these attacks [15]. For example, encryption tools like BitLocker
derive encryption keys from user passwords [16]. If data protected by these keys are stolen,
the strength of the password becomes critical to security. The same applies to desktop
cryptocurrency wallets. Although they use robust cryptographic algorithms, the private
keys are protected by encryption keys derived from passwords. Thus, weaknesses can arise
from password policies and the storage methods of sensitive data [11,13].

In this paper, we conducted a security analysis of desktop cryptocurrency wallets
against password brute-force attacks based on local data. We scrutinized the private
key management mechanism to construct a password verification oracle. Leveraging
this, we conducted practical brute-force attacks on three wallets: Sparrow, Etherwall,
and Bither. We then evaluated their security. Furthermore, since password brute-force
attacks are fundamentally possible on desktop cryptocurrency wallets, we propose a
generally applicable methodology for analyzing resistance to brute-force attacks based on
our findings. This universal analysis methodology is expected to help improve the overall
security of cryptocurrency wallets, a crucial area of concern in the digital age.

Our contributions are as follows:

• We performed a security analysis of three cryptocurrency wallets—Sparrow, Etherwall,
and Bither—for the first time.

• We propose a general approach for the cryptocurrency wallet security analysis of
brute-force attacks on passwords.

• Through experiments, we showed that the implementation design flaws can compro-
mise security and demonstrated the gap between theoretical and practical security.

In Section 2, we review the security analysis research on cryptocurrency wallets
through relevant studies. In Section 3, we establish a methodology for analyzing the security
against brute-force attacks on passwords. Section 4 analyzes the wallet’s implementation
flaws from a security perspective. Section 5 conducts brute-force attack experiments in
a practical perspective according to the methodology described in Section 3. We then
conclude the paper in Section 6.
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2. Related Work

Research on the security of local data in cryptocurrency wallets can be categorized
into studies focusing on mobile and desktop environments, as well as memory and disk
storage. On mobile wallets, Trevor Haigh et al. [17] analyzed seven Android cryptocur-
rency wallets and identified some vulnerabilities. Binance, Xapo, and Coinbase were
excluded as they do not store wallet-related data on physical devices. However, four of
the target wallets allowed the acquisition of sensitive data. Mycelium encrypts all wallet-
related data, but decryption was possible. In BitcoinWallet, all related data, including
private keys, were accessible in plaintext. Bitpay and Coinpayments stored wallet keys in
plaintext. Notably, Coinpayments also stored user passwords in plaintext, demonstrating
significant vulnerability.

Ashish Rajendra Sai et al. [11] evaluated the security of Android wallets based on
the OWASP top 10 risk factors. They divided 48 apps into three groups according to the
number of downloads and conducted an initial analysis using automated tools like Droid-
Safe. Subsequently, they manually analyzed the four most downloaded cryptocurrency
applications and four traditional banking applications in detail. The analysis revealed that
cryptocurrency applications had a higher frequency of security vulnerabilities compared
to banking applications. The primary issues identified were inadequate encryption and
insecure data-storage methods.

Md Shahab Uddin [18] developed a semi-automated security evaluation framework
for analyzing Android cryptocurrency wallets and used it to analyze 311 cryptocurrency
wallet apps. Additionally, he manually examined the top 18 apps from the Google Play
Store. The results revealed that 111 cryptocurrency wallets stored key-related information in
plaintext. Among the top 18 apps, three stored key-revealing information in plaintext, and
four encrypted key-related information using easily decipherable keys. Furthermore, many
apps were found to be vulnerable to dictionary attacks and exhibited both cryptographic
and generic vulnerabilities.

On desktop wallets, Wiebe Koerhuis et al. [19] investigated the data left in volatile
memory, network traffic, and hard disks by the privacy-focused cryptocurrencies Monero
and Verge. Using volatility to analyze memory, they obtained the wallet passphrase and
mnemonic seed from Monero and the wallet passphrase from Verge. Additionally, analysis
with the Bulk Extractor revealed that, when using Monero, it was possible to extract wallet
addresses, transaction IDs, and transaction amounts from the disk. When using Verge, they
could extract wallet addresses and public keys from the disk.

Tejaswi Volety et al. [20] conducted mnemonic seed cracking on the Multibit HD and
Electrum cryptocurrency wallets. They used memory scanning to extract valid mnemonic
candidates and created a dictionary. Then, they performed offline brute-force attacks to
recover 12-seed combination mnemonic codes. The experiments successfully recovered
mnemonic codes in some cases.

Purthani Praitheeshan et al. [21] analyzed the security of the keystore file, commonly
used in Ethereum wallets, and demonstrated its vulnerabilities through experiments. If an
attacker obtains the keystore file and password, he/she can access the associated Ethereum
account fully. Thus, the keystore file becomes the primary target of all attacks on Ethereum.
Ref. [21] used Hashcat to perform brute-force and dictionary attacks on the keystore file,
achieving partial password recovery. Additionally, they found a high success rate when
using brute-force attacks with masking techniques or passwords from a dictionary.

Stephan Zollner et al. [22] conducted live and postmortem forensic analyses on Bitcoin-
supporting wallets, including Armory, Multibit HD, Electrum, mSIGNA, Bitpay, Copay,
Bither, Bitcoin Core, and Bitcoin Knots. They successfully extracted wallet login information
and mnemonic code words through real-time memory analysis. They also effectively
located Bitcoin-related files on the system using file signatures and keyword searches.

The analysis results for mobile and desktop platforms, disk files, and memory are
summarized in Table 1. “Data Source” refers to the location from which the data used in the
analysis was obtained. This can be inferred from local disk and memory. “Data Acquisition



Electronics 2024, 13, 2433 4 of 15

Windows” indicates the periods when wallet-related data can be obtained. “Always” means
that data can be obtained regardless of the program’s runtime. In contrast, “Temporary”
means that data can only be acquired while the program is running or immediately after it
has been executed. “Private Key Acquisition” denotes whether the private key or mnemonic
code was obtained as a result of the analysis. “Attack Execution” refers to whether the
study performed simple analysis or conducted attack experiments to obtain the private key.

As previously noted, many studies attempt to extract sensitive data, such as mnemonic
codes, from memory in cryptocurrency wallets. However, due to the high volatility of mem-
ory data, the window for obtaining wallet-related information is very limited. Additionally,
for a comprehensive security analysis, it is essential to consider the feasibility of simple
extraction and the resistance to attacks such as brute-force. For mobile cryptocurrency
wallets, pre-rooting and physical access using tools like Android Debug Bridge (ADB) are
essential for analysis. Therefore, security analysis research based on local files of desktop
cryptocurrency wallets is needed, as data extraction is relatively easier. In this paper,
we verified whether desktop cryptocurrency wallets securely store data and conducted a
security analysis against brute-force attacks.

Table 1. Research trends on the security of cryptocurrency wallets based on local data.

Environment Target
Application

Data
Source

Data
Acquisition

Window

Private Key
Acquisition

Attack
Execution Refer

Mobile
(Android)

Mycelium
BitcoinWallet

Bitpay
Coinpayments

Local
Disk Always Success X 5 [17]

48 Apps Both 1 Varies 2 Partial
Success 3 O 6 [11]

311 Apps Both Varies Partial
Success O [18]

Desktop
(Windows)

Monero Verge Both Varies Memory
Only X [19]

Multibit HD
Electrum Memory Temporary Depends on

Conditions 4 O [20]

Ethereum’s
Keystore File

Local
Disk Always Depends on

Conditions O [21]

9 Apps Both Varies Memory
Only X [22]

1 “Both” means that the analysis was performed using data obtained from both memory and the local disk. 2 “Varies”
means that memory data are temporarily available, while local data are always accessible. 3 “Partial Success”
means that the attack was carried out on multiple applications, but only some were successful. 4 “Depends on
Conditions” refers to a study in which brute-force attacks were performed to obtain private keys or mnemonic
codes. The success rates varied depending on the attack methods used. 5 “X” indicates that only the storage
method, such as whether sensitive data is encrypted, was analyzed. 6 “O” signifies that attack experiments, such
as dictionary attacks, were conducted to obtain sensitive data

3. Methodology for Security Analysis against Brute-Force Attacks on Password

In this section, we establish a methodology for analyzing the security of desktop
cryptocurrency wallets against attacks utilizing local data storage:

• Phase 1: analysis of implementation flaws in wallets from a security perspective
• Phase 2: analysis of the wallets’ resistance to brute-force attacks

3.1. Analysis of Implementation Flaws in Wallets from a Security Perspective

Desktop cryptocurrency wallets have to encrypt keys and data on user devices to
prevent information leakage and subsequent wallet hacking [23]. Therefore, it is necessary
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to inspect the implementation flaws in the wallets from a security perspective. Phases 1—(1),
(2), and (3) in Figure 1 each show the following essential inspection points:

• Are wallet-related data stored securely?
• Is an appropriate password management policy used?
• Are sufficiently secure encryption algorithms used to protect the data storage?

Figure 1. General methodology for analyzing the security of desktop cryptocurrency wallets against
password brute-force attacks. The blue box represents the stage where answers to the questions
necessary for analysis in each phase are derived.

First, locate the wallet’s package path, and determine whether the data stored there
are encrypted. The package path is where data related to application execution are stored
and varies for each application. It is commonly located in the user’s “AppData” directory
or in the “Program Files” directory. After finding the package path, identify the types and
forms of wallet-related data present and whether these data are encrypted. Wallet-related
data can exist in various forms, such as databases or log files.

Next, inspect the target wallet’s password policy. First, determine the minimum and
maximum lengths of passwords that can be used. Then, analyze the size of the input
space based on the password input method and encoding scheme. The encoding scheme
commonly used for processing user input data is UTF-16. In this case, the input space
for a single character in the password is 1,111,934 characters, approximately 220.1, which
excludes 2178 control characters [24]. Password input methods can be divided based on
whether copy–paste is allowed. If copy–paste is not allowed, only 94 characters can be
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entered via the keyboard (excluding the space). In this case, the input space for a single
character in the password is approximately 26.55.

Finally, analyze whether the wallet uses sufficiently secure algorithms to protect data
storage. We need to identify the wallet’s data encryption mechanism to perform this.
Source code examination, storage data analysis, and reverse engineering can be performed.

3.2. Analysis of Wallet Resistance to Brute-Force Attacks

Desktop cryptocurrency wallets use a user-defined password for security. This section
proposes a methodology to analyze resistance to brute-force attacks targeting passwords.
The methodology is shown in Phase 2 in Figure 1.

First, a password verification oracle must be established to verify passwords. The
password verification mechanism is derived from the data encryption mechanism analyzed
in Section 3.1. In Phase 1—(1), we identify data within the wallet-related data that can be
used as password validation values. If this value can be used to verify the password-based
private key management mechanism derived in Phase 1—(3), the verification process is
the password verification mechanism. Detailed examples of mechanism derivation can be
found in Section 5. Additionally, variables and constants must be identified to implement
an oracle that performs repetitive verification. For example, in the password verification
process, IV and Salt are constants, the password is a variable, and HMAC is influenced by
the variable.

Next, calculate the computational effort required for brute-forcing passwords. This
involves identifying the input space of the internal variables of the oracle, utilizing the
password input space analyzed in Phase 1—(2). Once the internal variables and their
respective input spaces are identified, the computational effort required for a password
brute-force attack can be calculated.

The computational effort can be compared with the intended security level of the
cryptographic algorithm used to protect the data storage. If the calculated security is lower
than the intended security, it is necessary to analyze which elements of each mechanism or
variable have weakened the security.

The computational effort required for password brute-forcing can be represented
using the input space size α, password length x, and time β taken for a cracking attempt.
Since the computation for exhaustive search grows exponentially, computing cost C can be
expressed as a (1)

C = eαx ∗ eβ (1)

4. Analysis of Cryptocurrency Wallet Implementation from a Security Perspective

In this section, we analyze the methods used by cryptocurrency wallets for data storage
and the security policies they employ. The focus is particularly on password and private
key management, which directly impact the security of digital assets. We targeted Sparrow,
Etherwall, and Bither, which manage Bitcoin and Etherwall, the cryptocurrencies with the
highest market share [25]. These three wallets have yet to be the subject of prior studies
and are also not supported by well-known password-cracking tools like Hashcat [26], John
the Ripper [27], Elcomsoft [28], and Passware [29]. The analysis results are limited to
a Windows 10 64-bit Desktop environment, and we performed the analysis using data
obtainable from local storage only. The detailed analysis environment is described in
Table 2.

The package paths of the three wallets identified according to the step described
in Section 3 are listed in Table 3. The package paths for each wallet will be denoted as
[Sparrow], [Etherwall], and [Bither] below.
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Table 2. Specification of analysis target and environment.

Environment Windows10 64-bit

Target
Sparrow 1.7.9.3
Etherwall 3.0.3

Bither 1.4.8

Tool
H2DB 2.1.214
Python 3.9.10

Visual Studio 2019

Table 3. Cryptocurrency wallets’ package directory.

Cryptocurrency Wallet Package Directory

Sparrow %AppData%\Roaming\Sparrow\
Etherwall %AppData%\Ethereum\

Bither %AppData%\Roaming\Bither\

4.1. Sparrow

Sparrow [30] is a Bitcoin wallet that supports Windows, Linux, and Mac. Sparrow
uses a Hierarchical Deterministic (HD) structure [31] and employs a mnemonic code for
generating the master seed. Sparrow uses UTF-16 encoding and allows copy–paste input.
Therefore, the input space for a single character in the password is approximately 220.1.
Sparrow does not impose a minimum length limit on password input, so the minimum
password length that can be set is one character. The computational effort based on
password length is shown in Table 4.

Table 4. Computational cost according to password length (exponent values with a base of 2; value n
in the table represents the exponent in 2n).

Password Length Sparrow Etherwall Bither

1 20.1 20.1 -
2 40.2 40.2 -
3 60.3 60.3 -
4 80.4 80.4 -
5 100.5 100.5 -
6 120.6 120.6 39.3
7 140.7 140.7 45.85
8 160.8 160.8 52.4

Sparrow’s package path is “[Sparrow]\wallets”. Sparrow stores wallet-related data
in the “walletName.mv.db” database. The “.mv.db” extension belongs to the open-source
database management system H2DB. If no password is set, the database is stored in
plaintext, and all the data are accessible within the database. If the wallet password is set,
the database itself is encrypted, and it is necessary to input the password to access the
wallet. The database is encrypted based on the user’s password. The process of encrypting
the database containing sensitive data is shown in Figure 2a. The encryption algorithm
used for H2DB encryption is AES-128-CBC, aiming for 128-bit security.

The NIST-recommended minimum password length is eight characters [32], and
Sparrow achieves a security level of 160.8-bit against brute-force attacks at this length.
However, the computational complexity of passwords with six characters or less is much
lower than 128-bit. Therefore, depending on the user’s password configuration, Sparrow’s
data protection mechanism can be less secure than intended.

The DB key is derived from the user password. Sparrow uses the Argon2id [33]
algorithm to derive the AES key, and the specific parameters used in the calculations are
fixed values, as shown in Table 5. These parameters are hardcoded in Sparrow’s source code.
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The salt is a 16-byte value extracted from the H2DB header, specifically from offset = 23 to
offset = 39. The subsequent steps after DB key generation are also derived from the DB key.
Ultimately, all encryption keys are derived from the user’s password.

Table 5. Detailed parameters of the Argon2id algorithm used for deriving the database encryption
key in Sparrow wallet.

Parameter Value Note

Hash length 32 hardcoded
Salt length 16 hardcoded

Salt - parsing
Iteration 10 hardcoded
Memory 256 × 1024 hardcoded

Parallelism 4 hardcoded

Figure 2. Private key encryption mechanisms of Sparrow, Etherwall, and Bither wallets.

4.2. Etherwall

Etherwall [34] is a wallet for Ethereum and supports Windows, macOS, and Linux.
Etherwall is a non-HD [31] wallet, meaning a new password must be set each time an
account is created. Each piece of account-related information, including the private key and
transaction logs, is stored locally in a keystore file. Etherwall, like Sparrow, uses UTF-16
encoding, does not impose any constraints on the length of the password, and allows
copy–paste.

Etherwall’s keystore files are stored in the “[Etherwall]\keystore” directory. The file
name follows the format of “[Account Creation UTC Time Data]-[0x[a-fA-F0-9]40]”. [0x[a-
fA-F0-9]40] is the account’s address. Keystore files store the encrypted private key, the
encryption algorithm used, the key derivation algorithm, and its parameters in plaintext.
Etherwall utilizes AES and scrypt; the scrypt uses 262,144, 1, and 8 as N, P, and R, respec-
tively. The nonce value, known as “salt”, can also be found within the keystore file. Out of
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the 32 bytes of output derived from scrypt, only the MSB 128 bits are used as the actual
AES encryption key. The 16-byte Initialization Vector (IV) used in this process is also in
the keystore file. The mechanism for encrypting the private key in Etherwall’s keystore
files is shown in Figure 2b. The encryption algorithm used to encrypt the private key
is AES-128-CTR, intending 128-bit security. However, Etherwall’s security is lower than
intended when the password is six characters or less.

4.3. Bither

Bither [35] supports Bitcoin and is compatible with Windows, Linux, and macOS. All
Bither addresses are disposable; users can manually create addresses as needed. Bither
supports HD and non-HD wallets, requiring users to set a password. The mnemonic code
used in HD wallets complies with the BIP39 standard [36], and non-HD wallets use entropy
generated through random mouse movements to create private keys. Bither uses UTF-16
encoding for its password input, but copy–paste is prohibited. In this case, the password
input space size is 94, approximately 26.55. Bither limits the minimum length of a password
to six characters. The results of calculating the required computational effort based on
password length are shown in Table 4.

Information related to the Bither wallet is stored in the “address” directory located
at the “[Bither]” path. The data are stored in an SQLite format database without a file
extension. The wallet’s sensitive data are stored in the “addresses” table of the “address.db”.
In the “encrypted_private_key” field of the addresses table, the encrypted private key, the
IV, and the salt value are stored with “/” as a separator. The private key encryption
mechanism is depicted in Figure 2c. Bither uses the scrypt [33] algorithm to derive the AES
key. Scrypt’s parameters N, P, and R are fixed in the source code, and each value is 16,384,
1, and 8, respectively. The algorithm employed for private key encryption is AES-256-CBC,
which aims for 256-bit security. However, even when the password length exceeds eight
characters [32], it does not meet the 256-bit security standard. Due to the small size of the
input space, it does not even satisfy 128-bit security.

5. Security Analysis against Brute-Force Attack on Password

In this section, we analyze the security of each wallet against password brute-force
attacks from a practical perspective. After constructing a password verification oracle
for each wallet, experiments were conducted to deduce the brute-forcing cost based on
password length.

5.1. Wallet Password Verification Oracle

Sparrow encrypts H2DB, which stores wallet-related data, and uses Argon2id for DB
key derivation. Using the ODBC API [37], one can check the success of decryption through
the returned value. All the necessary input values to derive the DB key and decrypt the
encrypted DB are obtainable. We can implement an oracle for password verification using
the API. The password verification oracle is depicted in Figure 3a.

Etherwall’s private key is encrypted and stored in a keystore file. Etherwall indepen-
dently verifies the password using the MAC value. Since the MAC value is also stored
in plaintext, it can be used to verify the success of private key decryption. A MAC oracle
can be implemented as all the necessary input values for MAC verification are obtainable
through the keystore. The password verification mechanism is shown in Figure 3b. The
MSB’s 16 bytes of the derived key are concatenated with the 32 bytes of ciphertext to create
the Hash Input value. Keccak-256 is then applied to the Hash Input, and the resulting
digest is compared to the parsed MAC value to verify the password.

Bither’s private key is encrypted and stored in a database, allowing retrieval of the
encrypted private key. Internally, Bither uses key pair verification between the decrypted
private key and the public key for password verification. However, we exploited Bither’s
PKCS#7 padding [38] in private key encryption to verify the password by examining the
padding block. Through address.db, all the necessary input values for padding verification
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are obtainable. We can implement the padding oracle, as shown in Figure 3c. Therefore,
we can verify the password by confirming that the decrypted padding block matches the
PKCS#7 format.

Figure 3. Password verification oracle of Sparrow, Etherwall, and Bither wallets.

5.2. Experimental Analysis from a Practical Perspective

We estimate the practical computing cost required to crack each cryptocurrency wal-
let through repeated experiments. The password input space is assumed to consist of
94 characters, which includes 62 alphanumeric characters (26 uppercase, 26 lowercase, and
10 digits) and 32 special characters, as shown in Table 6.

Table 6. Password input space.

Type Characters The Number

Alphabet a–zA–Z 52
Number 0–9 10

Special Characters ‘!~@#$%&̂*(){}[];:’"
<>,.?/=+−_

32

5.2.1. Password Sampling

The password-guessing method significantly affects cracking performance as the
password length increases. To mitigate the performance differences due to sampling, we
performed random sampling 1000 times for each password length and calculated the aver-
age cracking cost for each sample. We considered conducting more than 1000 repetitions
adequate to ensure statistical significance. However, when the password length is one, the
total number of samples is less than 1000, so we used the average cracking performance for
620 passwords. As the sample size is insufficient for lengths greater than or equal to 10, we
considered password lengths from 1 to 9. The dictionaries used for password sampling
were bt4-password [39], darkc0de [40], openwall.net-all [41], alleged-gmail-passwords [42],
md5decryptor.uk [43], and rockyou [44]. The number of password samples extracted from
these dictionaries by length is shown in Table 7.
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Table 7. Number of samples according to the length of the password.

Password Length Samples

1 620
2 9251
3 96,975
4 276,439
5 807,060
6 3,506,648
7 4,144,754
8 5,809,598
9 3,908,405
10 44

5.2.2. Experiment

The time required for a single cracking attempt measured after conducting repetitive
cracking one million times for each wallet is presented in Table 8. We used the CPU clock
as the measurement unit to ensure consistent performance regardless of the experimental
environment. The method for calculating the average cracking cost is shown in Figure 4.
Calculate the average cracking cost for 1000 random samplings, and repeat this process
1000 times to obtain the final average cost. For comparison, we also calculated the intended
maximum security of the algorithms used in the wallet design. The average cracking cost
for each algorithm represents the clock required to execute the algorithm once in the same
environment. We used the OpenSSL [45] library for cryptographic operations, and all
cracking costs may vary depending on the library and computing environment used. We
used Intel i7-13700k [46].

Figure 4. Method for calculating the average cracking cost.

Table 8. Average cracking cost.

Target Average Cracking Cost (CPU Clock)

Sparrow 691.461
Etherwall 412.93

Bither 25.07
AES-128-CBC 0.000699
AES-128-CTR 0.000483
AES-256-CBC 0.000501

The experimental process is as follows:

1. Measure the average number of repetitions needed for a brute-force attack based on
repetitive password sampling. Brute-forcing is performed sequentially from ASCII 33
to ASCII 126, and the number of repetitions for cracking is determined accordingly.

2. Calculate the average computing cost by multiplying the number of repetitions by the
average cracking cost per clock.

3. For comparison with the intended security, calculate the ideal computing cost by
multiplying the maximum number of cases required for a complete survey for each
algorithm by the cracking cost.
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5.2.3. Experiment Result

The estimated average computing cost obtained through steps 1 and 2 is presented
in Table 9. By practically limiting the input space to keyboard inputs, the input space α
is fixed at 1.97. The time for one cracking attempt β increases in the order of Sparrow,
Etherwall, and Bither. According to (1), the regression equations derived based on the data
for passwords of lengths 1 to 9 are as follows:

CSparrow = e1.97x ∗ e2.66 (2)

CEtherwall = e1.97x ∗ e2.43 (3)

CBither = e1.97x ∗ e1.21 (4)

Table 9. Average computing cost according to the length of the password.

Password Length Sparrow Etherwall Bither

1 41,915 25,144 1519
2 4,041,900 2,419,944 144,520
3 3.98 × 108 2.38 × 108 1.43 × 107

4 3.61 × 1010 2.16 × 1010 1.33 × 109

5 3.36 × 1012 2.00 × 1012 1.21 × 1011

6 2.96 × 1014 1.77 × 1014 1.04 × 1013

7 2.84 × 1016 1.70 × 1016 1.02 × 1015

8 2.74 × 1018 1.64 × 1018 1.00 × 1017

9 2.66 × 1020 1.58 × 1020 9.53 × 1018

Figure 5 shows the cost required to crack the passwords of the three wallets on a
logarithmic scale. This graph is based on the data from Table 9. While the actual data
increase exponentially, the growth rate is so large that we transformed the data to a
base-10 logarithmic scale for effective comparison. The red dotted line at the top of the
graph indicates the cost required to achieve 128-bit security cracking, which is generally
considered ideal security from brute-force attacks.

Etherwall and Bither both use scrypt [33] for key derivation. However, Etherwall
uses an N parameter that is 16-times larger, resulting in a higher required cost than Bither.
Sparrow employs Argon2id [33] for key derivation, which requires significantly more
time than scrypt. This makes Sparrow’s cracking cost the highest among the three wal-
lets. Nonetheless, there remains a considerable gap between Sparrow’s cost and the cost
associated with 128-bit security. A critical observation in the experiment is that the cost
required for brute-force attacks increases exponentially with the password length. All the
data in Tables 4 and 9 and Figure 5 demonstrate the substantial rise in cost as the password
length increases.

In this experiment, we limited the input space to keyboard inputs for a realistic
comparison. This may result in a lower cost than the actual. For example, according to
Table 4, Sparrow can achieve 128-bit security with a password length of seven or more.
However, in our experiment, as per (2), a password length of 17 is required for 128-bit
security. For Bither, since the input space is limited to keyboard inputs, a password length
of 37 or more is needed to achieve 128-bit security as per (4). This shows that both password
length and input space size are crucial.

Therefore, password management policies should allow copying–pasting for password
input to ensure a large enough input space. A minimum password length of at least eight
characters should also be enforced. The experimental code for each cryptocurrency wallet’s
password verification and iterative testing can be referenced in [47].
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Figure 5. Average computing cost graph per password length.

6. Conclusions

As interest in cryptocurrencies grows and their value increases, the security of cryp-
tocurrency wallets becomes even more critical. Password brute-force attacks can funda-
mentally occur on any cryptocurrency wallet that uses passwords. Therefore, wallet design
must consider this threat and implement secure methods for storing sensitive data and
managing passwords. In this paper, we examined the security of Sparrow, Etherwall,
and Bither’s resistance to password brute-force attacks based on local data and proposed
practical guidelines for securely designing desktop cryptocurrency wallets. Our study is
more practical than related research focused on memory analysis because it utilizes local
data, making data acquisition easier.

Our investigation uncovered that all three wallets publicly retain sensitive parameters
and nonce values used for private key encryption and need more password management
policies. As a result, it is possible to implement a password verification oracle, making
the security of the cryptocurrency wallets reliant on user passwords. Therefore, all wallets
should enforce the NIST-recommended minimum password length of eight characters and
allow copying–pasting of passwords to increase input space. Additionally, for Etherwall, it
is recommended that keystore files containing all sensitive data be encrypted.

Our findings are particularly significant for open-source wallets with publicly available
source code. Before deploying or selecting a desktop cryptocurrency wallet, the proposed
analysis methodology in this paper can be used to evaluate the wallet’s security. We expect
our work to improve the overall security of cryptocurrency wallets. Additionally, the
research findings can be utilized in investigations from a digital forensics perspective.

The research findings only cover desktop cryptocurrency wallets. Future research
should expand the scope to analyze more cryptocurrency wallets across various operating
systems, including mobile platforms. Additionally, it is necessary to perform security
analysis from the memory perspective during program execution. The research can also
include artifact analysis of wallet usage from a digital forensics perspective.
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