

33(1): 8-38, 2022; Article no.EJMP.80434 ISSN: 2231-0894, NLM ID: 101583475

Medicinal Plants Used for Management of Asthma in FCT, Abuja and Its Environs

Obi Peter Adigwe^a, Jemilat Aliyu Ibrahim^{a*}, Ibrahim Babatunde Gegele^a, Bulus Adzu^a and Christiana Yetunde Isimi^a

^a National Institute for Pharmaceutical Research and Development (NIPRD), Abuja, Nigeria.

Authors' contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/EJMP/2022/v33i130443

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/80434

Original Research Article

Received 03 November 2021 Accepted 06 January 2022 Published 07 January 2022

ABSTRACT

Aim: Asthma is a condition that affects the airways in human lungs. It causes its (lungs) inflammation and hyper-responsiveness. Conventional therapies used in its management are expensive and have been found to come with undesirable side effects. The use of herbal remedies in treating the disease is widespread especially in local communities with little or no access to primary health care. This indigenous knowledge on the cure of asthma is gradually being lost among the populace. This study is aimed at documenting local remedies used in the management of asthma.

Methodology: Ethnobotanical survey was carried out in Federal Capital Territory (FCT)- Abuja and surrounding communities, among Traditional Medicine Practitioners (TMPs), Herb's sellers and elderly in the community using semi-structured questionnaire and interview methods. Data were analysed using descriptive statistics and ethnobotany index.

Results: 80 respondents were interviewed, 58 of them laid claims to knowledge about medicinal plants used in asthma management. Majority of the respondents are Traditional Medicine Practitioners (48%). 59 plants species belonging to 38 plant families was documented with most belonging to the Moraceae plant family (10%). The recipes mentioned were mostly prepared as decoctions which are taken orally with a case of two being by smoking and inhalation.

Conclusion: This study has shown that the Federal Capital Territory and settlements within its

environ are blessed with medicinal plants used in the management of asthma which serve as a cheap and alternative source of remedy for the local populace and as well, being a repository for scientific inquest that may lead to yet another drug discovery from plant origin used in the management of asthma.

Keywords: Asthma; ethnobotanical survey; medicinal plants; federal capital territory.

1. INTRODUCTION

Asthma is a chronic inflammatory noncommunicable disease affecting adults and children. It affects the airways in the lungs making the airways inflamed and consequently causing obstruction of airways and hyperresponsiveness. Symptoms include; shortness of breath, cough and wheezing [1]. Asthma is a heterogeneous medical condition caused by predisposition. genetic allergic conditions. disease conditions e.g. obesity among other factors [2]. Symptoms of asthma can be exacerbated by certain triggers such as; cold/dry air. Chemical fumes/gases or dust, airborne substances such as pollen, mold spores etc. implicates asthmatic susceptibility with urbanization exploits, hence, these various triggers are to be avoided [3]. Asthma can be attributed to atopy [4] and as well could be nonatopic [5]. Atopic asthma affects children and adolescent and are often associated with family history of allergic diseases [6]. Non- atopic asthma affects adult often as a result of viral infections, and are independent of the antibodies that promotes inflammatory response [7].

According to Ozoh et al. [8], there are about 13 million persons with clinical asthma and allergic rhinitis in Nigeria with a prevalence that has variabilities across regions and age groups. The WHO estimate of people affected by asthma is about 262 million individuals with 461,000 deaths in the year 2019 alone (WHO, 2020). The Global burden of asthma witnessed a 12% upsurge between the year 2005 and 2015 mostly in developing countries and this has been linked to the urbanization and the economic exploits of these countries / region [9-11].With all the successes achieved with the current therapies in the management of asthma, they come with undesirable side effects ranging from oral candidiasis (thrush), decreased bone density in adults, anxiety, tremors, weight gain, glaucoma, nervousness amongst others [12-14].

Plant natural products/drugs developed from plants have played a vital role in the development of therapies and in the management asthma. For of example. cromoglycate and theophylline are derived plant products that have been widely used in the therapy of asthma [15]. Many others have been documented for the management of asthma [16,17]. Ephedrine which is a plant product is as well the earliest known antiasthmatic agent [15]. Some plant asthmatics have been documented to elicit different pharmacological activities which makes them better suited as an asthmatic. Greenberger [18] posited that medicinal plants used in the treatment of asthma should have anti-inflammatory, immunomodulatory. antihistaminic. smooth-muscle relaxants and allergic activities.

The Federal Capital Territory (FCT) is endowed with flora utilized by the locals in the treatment and management of various conditions and illnesses [19-22]. It was however observed in the works of Fatokun et al., [23] and Ozoh and Bandele [24] that plants used in the management of asthma seem to be well documented in the southern part of Nigeria compared to the scarce report in the northern region. Literature report of antiasthmatic plants is in fact non-existent in FCT, hence this study is an inaugural documentation of plants used in the FCT and environs for management of asthma. Also, in light of the different undesirable side effects that come with current asthma therapies, lack of documentation of antiasthmatic plant(s) in the study area and the past exploits/development of asthmatics from plant origin, this study aims to and preserve document the indiaenous knowledge of the people on the antiasthmatic medicinal plant remedies used around FCT -Abuja and environs, as well as creating a repository for scientific inquest into some herbal remedies that can serve as template for drug discovery and development.

2. MATERIALS AND METHODS

2.1 Location and Study Area

FCT - Abuja is located in 8°50'N 7°10'E north of the Niger River and Benue River. It is bordered by Niger, Kaduna, Nasarawa and Kogi states. The FCT has a land mass of approximately 7,315 km² situated within the savannah region with moderate climatic conditions. Hausa is the widely spoken language even though there are natives speaking their languages too. Majority of the locals are of Gbagyi, Gwandara and Koro ethnic origins and are predominantly Muslims. The study area also included nearby settlements in Niger (Madala, Suleja, Sabon-wuse, Diko) and Nasarawa (Keffi) states with cultural and geographical similarities.

2.2 Informed Consent

This inquest aimed towards documenting the local remedies used in the management of asthma started with a survey that was carried out between March – June 2021 around FCT- Abuja and neighbouring settlements of Madalla, Diko, Sabon-Wuse, Suleija in Niger State and Keffi in Nasarawa State, Nigeria. The purpose of the work was clearly explained to the respondents and informed consent was obtained before questionnaire was administered.

2.3. Data Collection

Ethnobotanical survey was carried out to obtain information about medicinal plants used for the treatment / management of asthma. The information gathered was based on a semistructured questionnaire and oral interview as described by [25,26]. Plant information like local/vernacular names, part used, method of preparation, the most used amongst the plant species in recipe mentioned, other uses in ethnomedicine, methods of administration. dosage, additive in recipe and side effects (if any) were documented. Consent of respondents was taken and were made to append their signature before the commencement of interview. Respondents were interviewed in their local languages (Yoruba, Hausa, Igbo, Pidgin English) and English language for clarity and better understanding of the information needed from them. The demographic information of respondents such as sex, age, duration of practice and educational level etc. were as well documented. Questions regarding their knowledge about asthma was also asked before they gave the local remedies/ recipes they use in the management/ treatment of asthma by stating the local names of different plants and some animal materials.

2.4 Plant Identification

The plants mentioned were identified and their names were translated to scientific names by the taxonomists at the NIPRD herbarium. National Institute for Pharmaceutical Research and Development. Idu, Abuja using the type specimens available at the herbarium and using online the plant list resource (www.theplantlist.org) and the world flora online (www.worldfloraonline.org)

2.5 Data Analysis

Statistical tools were employed in the presentation of data gathered; descriptive statistics as well as quantitative ethnobotanical indices were used in the analysis of data. Use value index (UVI) was the ethnobotanical index used in the calculation and determination of validity and extent of use of plant species mentioned.

2.5.1 Use Value Index

The Use Value Index (UVI) is defined as the ratio of mention of a plant species **(n)** to the number **(N)** of respondents that took part in the survey,

UVI = n / N as described by [27].

3. RESULTS

3.1 Ethnopharmacological Data

Data gathered includes list of plants used, the plant families, habits of the plants and part used, mode of preparation and administration, as well as the UVIs of the various plants mentioned.

Fifty-nine (59) plants species belonging to thirtyeight (38) families were mentioned in the survey. Table 1 below shows the list of the different plants as mentioned by respondents with their local names, families, habit and UVIs. The pharmacological activities and chemical compounds previously isolated from these plants is also documented as seen in Table 1. Also, Newbouldia laevis and Anogeisus leiocarpus had the highest UVI of 0.10, followed by Ficus thonningii (0.08), Allium sativum and Khaya senegalensis with 0.06. Others are Euphorbia hirta, F. platyphylla and F. sycomorus with 0.05 UVIs.

Fig. 1. Map showing the Study areas (sampling site) within FCT and Neighbouring towns

The Moraceae plant family had the highest mention of 10% followed by Fabaceae. Bignoniaceae and Amaryllidaceae with 9%, 8% and 8% respectively. Combretaceae and Meliaceae families each have а 6% representation (Fig. 2). Also, Anacardiaceae and Zingiberaceae plant families each have a 4% representation and other plant families represents 45% of the total plant mentioned.

As represented in Fig. 4 majority of the plants mentioned were trees with a few others being shrubs, herbs and climbers. Leaves were the most used of the various plant parts used in the formulation of recipes. This is followed by the stem bark, root and whole plant, with the root sap being the least used as represented in Fig. 3.

Plants recipe were prepared as decoction, powder, maceration, juice, infusion and paste forms, with decoction and infusion forms having the most representation as seen in Fig. 5. Herbal preparations were majorly taken orally with a case of one being smoked.

The plant recipes, method of preparation, mode of administration and dosage as well as the most used plant of the different recipes mentioned and their other ethnomedicinal uses were documented as seen in Table 2.

3.2 Socio-Demographic Characteristics of Respondents

The survey afforded a number of plants belonging to different plant families which shows that the study areas are blessed with flora used in the management of asthma. Eighty (80) respondents (59 males – 21 females) were engaged with only 58 of them laying claims to knowledge of medicinal plants and as well are willing to share their knowledge about antiasthmatic medicinal plants.

Table 3 below shows the demography of the respondents. Most of the respondents are male, TMPs. Majority of the respondents had Primary education (36.25%) followed by 32.50% with secondary education. Those with other forms (Islamic) of education represents 31. 25% with a few of them having tertiary education (6.25%). Majority of them are aged between 41-59 years.

4. DISCUSSION

The survey areas within the FCT and environs afforded us a rich and diverse plant species as

we set an insight into the activities of the people as far as asthma and its management using medicinal plants is concerned. Medicinal plants are said to account for about 80% of the primary healthcare needs of the people living in the developing world [28], and this is evident due to their abundance and diversity in those regions of the world, Nigeria inclusive. Asthma remains one of the respiratory disorders with a high prevalence in Africa with no cure [29]. Different plant species have been used by the indigenous people of Nigeria in the management of asthma [23,30-32]. Medicinal plants have been utilized in other parts of the world for management of asthma. Over 200 species of medicinal plants were documented for use as asthmatics in Russia [33], several others were documented among various tribal communities in India as well as Cameroon, South Africa among many others [34-36].

In a study conducted among the Yoruba (southwestern) people of Nigeria, plants belonging to different families ranging from Moraceae, Zingiberaceae, Bignoniaceae, Meliaceae. Anacardiaceae, Combretaceae among others have been implicated and documented in the work of [17,30] as therapy for asthma. The utilization of plants from the Moraceae plant family with the highest mention in this study was alluded to by the wide use in other parts of Africa [37]. Some of the medicinal plants mostly utilized in our study area; Aframomum melegueta, Allium ascalonicum, Allium sativum, Zingiber officinale, Crinum glaucum, Euphorbia hirta, Anogeisus leiocarpus and Newbouldia laevis have been documented as therapy for asthma treatment/management [30,38,39]. Plants like Psidium guajava have been reported as pharmacological treatment for bronchitis [40] which can be a potential bronchodilator in asthma management. Abrus precatorius, a plant mentioned in this survey have also been previously reported for treatment of asthma by [41]. Medicinal plants like Zingiber officinale, Ageratum conyzoides, Aframomum melegueta have been reported for their antiasthmatic, anti-inflammatory, antispasmodic and immunomodulatory activities [17,42,43] which is consistent with the report of [15] that drugs used in the treatment/management of asthma possess anti-inflammatory and muscle relaxant abilities. [44] also reported that asthma management depends largely on therapeutic agents that can act as a bronchodilators and steroidal anti- inflammatory agents. M. oleifera and A. conyzoides as mentioned in this work

S/N	Family	Scientific Name	Local Name	Habit	UVI	Ethnomedicinal use/ Pharmacological uses	Some chemical constituent/isolated compound(s)	References
1	Amaryllidaceae	Crinum glaucum A.Chev	Isumeri (Y), Albasar Kwa'adi (H)	Herb	0.02	Used in treatment of infectious diseases including cough and sexually transmitted infections /Antimicrobial	Lycorine, β -sitosterol, ambelline	[68]
2	Amaryllidaceae	<i>Crinum jagus</i> (J. Thomps.) Dandy	Ogede odo (Y), Albasa (H)	Herb	0.03	Used in treatment of tuberculosis /Anti- tuberculosis	Gigantellinine, gigancrine	[69,70]
3	Amaryllidaceae	Allium ascalonicum L.	Àlubosa elewe (Y), Ramuza (H)	Herb	0.03	Used in treatment of gastroduodenal disorder/Antimicrobial	Ascalonisoide A and B	[71,72,73]
4	Amaryllidaceae	Allium cepa L.	Alubosa funfun (Y), Albasa (H)	Herb	0.02	Used to relieve stomach upset, congestion /Anti- inflammatory	Cysteine, Methionine	[74,75]
5	Amaryllidaceae	Allium sativum L.	Alubosa ayuu (Y), Tafarnuwa (H)	Herb	0.06	Used to cure systemic fungal infections/Antimicrobial	alliin, allicin, ajoenes, vinyldithiins	[76,77,78]
6	Anacardiaceae	Mangifera indica L.	Mangoro (H, Y)	Tree	0.02	Used in treatment of dysentery, ophthalmia, constipation /Antidiabetic, Antidiarrheal	Galic acid, Mangiferin, Kampferol, Quercetin, Ascorbic acid	[79,80]
7	Anarcardiaceae	<i>Sclerocarya birrea</i> (A.Rich.)Hochst	Daniya (H)	Tree	0.02	Used in treatment of diarrhea /Antidiarrheal, Antihypertensive, anti- inflammatory	Auronol,Davidigenin, naringenin, hesperetin	[81-83]

Table 1. List of Plants Used in Treatment and Management Asthma in FCT and its Environs

8	Annonaceae	Annona senegalensis	Abo (Y), Gwadan	Shrub	0.02	Used in treatment of epilepsy/ Anticonvulsant,	N-cerotoyltryptamine, lacceroic acid,	[84,85]
9	Asphodelaceae	Pers. <i>Aloe vera</i> (L.) Burm.F.	daaji (H) Eti erin (Y), Kathala (H)	Shrub	0.02	anti-inflammatory Used in treatment of constipation, skin diseases, worm infection/ Antimicrobial	stigmasterol glycoside Veracylglucan A, aloenin aglycone, 7-hydroxy-5- (hydroxymethyl)-2- methylchromone	[86,87]
10	Asteraceae	Acanthospermu m hispidum DC.	Danguro gogoro (Y), Kashi yawo (H)	Herb	0.03	Used in treatment of jaundice, malaria, convulsion/ Antiviral, Antimicrobial	Flavanone, Stigmasterol, Quercetin	[88,89]
11	Bignoniaceae	<i>Newbouldia laevis</i> (P. Beauv.) Seem. ex Bureau	Ákoko (Y), Aduruku (H)	Tree	0.10	Used in treatment of diabetes mellitus/ Antihyperglycemic	Apigenin, Ursolic acid, Stigmasterol, Canthic acid	[90-92]
12	Burseraceae	Boswellia dalzielii Hutch.	Ewe epa (Y), Hano / Harrabi (H)	Tree	0.02	Used in treatment of convulsion/ Anticonvulsant	Incensole, incensole acetate	[93,94]
13	Caricaceae	Carica papaya L.	lbepe (Y), Gwanda (H)	Tree	0.03	Used in treatment of urogenital disorders/ Antimicrobial. Antifungal	Ferulic acid, Choline, Quercetin, p – coumaric acid, papain	[95,96]
14	Chrysobalanaceae	<i>Parinari spp.</i> Aubl.	Abere (Y), Gwandangi da (H)	Tree	0.02	Used in treatment of oral diseases/ Antimicrobial	Betulinic acid, Oleanolic acid	[97,98]
15	Combretaceae	Anogeissus leocarpus DC.	Ayin (Y), Marke (H)	Tree	0.10	Used as an antifungal/ Antifungal	Chebulic acid, gallic acid, elaagic acid, castalagin	[99,100]
16	Combretaceae	<i>Terminalia avicennioides</i> Guill. & Perr.	ldi (Y), Baushe (H)	Tree	0.03	Used in treatment of tuberculosis/ Anti- tuberculosis	Arjunolic acid, α-amyrin, olean-12-ene	[101,102]
17	Combretaceae	Combretum micranthum G.Don	Ogan bule (Y), Geeza (H)	Shrub	0.02	Used in management of hypertension/ Anti - hypertension	β-sitosterol, picatechin	[103,104]

18	Combretaceae	Guiera senegalensis	Olofun (Y),	Shrub	0.02	Used as an Antifungal/ Antifungal	Quercetin, myricetin – 3- 0 – rhamnoside	[105,106]
19	Combretaceae	J.F.Gmel <i>Terminalia</i> catappa L.	Sabara (H) Ebelebo (Y), Dalziel (H)	Tree	0.02	Used in treatment of diabetes mellitus/	arjunoglucoside II, 3- betulinic acid, arjunolic acid	[107,108]
20	Cucurbitaceae	Momordica charantia L.	(H) Ejirin wewe (Y), Garahuni (H)	Climber	0.02	Used in treatment of peptic ulcer, use in diabetes/ antidiabetic, antimalarial	Charantal, charantoside XI	[109,110]
21	Cyperaceae	<i>Cyperus tonkinensis</i> C.B.Clarke	Kajiji (H)	Herb	0.02	Used to cure Headache/ Antimicrobial	-	[111,112]
22	Euphorbiaceae	Euphorbia hirta L.	Emi-ile (Y), Nonon Karciya (H)	Herb	0.05	Used to treats respiratory ailments, dysentery, digestive problem/ Antibacterial, Antimalarial, Anti-inflammatory	Myricitrin, quercetin, sitosterol, cycloartenol	[113,114]
23	Fabaceae	Cassia singueana Delile	Runfu (H)	Shrub	0.02	Used in pain management /Antioxidant, Antimicrobial	Lupeol, Eugenol, octadecadienoic acid methyl ester.	[115,116]
24	Fabaceae	Abrus precatorius L.	Ojuologbo (Y), Idar zakara (H)	Herb	0.03	Used to treat tetanus, prevent rabies, treat jaundice/Antioxidant, Anti- conversant	abruquinones	[117,118]
25	Fabaceae	<i>Isoberlinia doka</i> Craib & Stapf	Takalmin zoombo (H)	Tree	0.02	Used in treatment of tuberculosis/Anti- tuberculosis	Alkaloids, Saponins, Flavonoids, Tanins & Phenols	[119,120]
26	Fabaceae	Prosopis africana (Guill & Perr.) Taub.	Ayan (Y), Kirya (H)	Tree	0.03	Used in wound healing /Anti-tyrosine	hexacosano, quercetin, β-sitosterol 3-O-β-D- glucopyranoside	[121-123]
27	Fabaceae	Piliostigma reticulatum (DC.) Hochst.	Abafe (Y) Kargo (H)	Tree	0.02	Used for the treatment of diarrhea/ Antidiarrheal	Piliostigmol, 3,7,3 – trimethyl ether, 6,8 – Di – C- methylkaempferol	[124,125,12 6]

28	Fabaceae	Bauhinia rufescens Lam	Tsatsagi (H)	Shrub	0.02	Used in treatment of diarrhea, dysentery/Antidiabetic, Antioxidant	7-, 4' dihydroxyl-5- methoxyl -5' acetyl, menisdaurin	[127,128- 130]
29	Fabaceae	<i>Abrus canescens</i> Welw. ex Baker.	Omisinmisi n (Y), Bambami (H)	Climber	0.02	Used in treatment of inflammation, ulcers, wounds, throat sore/Anti- inflammatory, Antifungal, Antidiabetic	Anthocyanidin 3- galactosides	[131,132]
30	Hypericaceae	<i>Harungana madagascarien sis</i> Lam. ex Poir.	Epo amuje (Y), Alillibar raafii (H)	Tree	0.02	Used in treatment of bacterial and fungal infection/Anti- inflammatory, Antioxidant, Antimicrobial	Chrysophanol, madagascin, harunganin, β-sitostero	[133,134], [134]
31	Leguminosae	<i>Tetrapleura tetraptera</i> (Schumach. And Thonn)	Aidan (Y) Uhio (I), Dawo (H)	Tree	0.03	Used in wound healing, diabetes, epilepsy, inflammation, leprosy/Antioxidant	7-Hydroxy-6-methoxy coumarin, echinocystic acid-3-O sodium sulphate, Stigmasterol glycoside	[135,136, 137]
32	Lecythidaceae	Waltheria indica L.	Kafafi (H)	Herb	0.02	Used against pain, inflammation, dysentery, diarrhea, convulsions/Anti- inflammation, Antimalarial	Waltherione, Vitexicarpin,Betulinic acid, Flindulatin	[138,139]
33.	Loranthaceae	<i>Tapinanthus globiferus</i> (A Rich.) Van Tiegh	Afomo (Y), Kauchi (H)	Shrub	0.02	Used in treatment of epilepsy, hypertension, ulcer, diabetic/ Anti- inflammation	Lupeol acetate	[140,141, 142]
34	Malvaceae	<i>Cola nitida</i> Schott & Endl.	Orogbo (Y), Goro (H)	Tree	0.02	Used in management of type-2-diabetes /Antibacterial	Caffeine, hexadecanoic acid	[143,144, 145]

35	Malvaceae	Adansonia digitata L.	Bishiyan kuka (H)	Tree	0.02	Used in treatment of diarrhea, fever, inflammation /Antiviral, Anti-inflammation, Antioxidant	ß-sitosterol, stigmasterol, tocopherol, isopropyl myristate	[146,147]
36	Meliaceae	Azadirachta indica A.Juss.	Dogoyaro (Y), Dogon varo (H)	Tree	0.02	Used for skin and blood purifying/Antiviral, Antifungal, Antibacterial	Salannin, 3- deacetylsalannin, Azadirachtin	[148,149]
37	Meliaceae	Khaya senegalensis (Desr.) A.Juss.	Oganho (Y), Madachi (H)	Tree	0.06	Used in treatment of microbial infections/Antimicrobial, Anticancer	Khayandirobilide, rutin, catechin, quercetin rhamnoside	[150-152]
38	Menispermaceae	Chasmanthera dependens Hochst.	Atoo (Y), Damar zaya (H)	Climber	0.02	Used in treatment of fractures/Antifungal, Antibacterial, Antiviral, Anti-inflammatory	Pallidine, govanine, coreximine	[153,154]
39	Moraceae	<i>Ficus platyphylla</i> Delile	Epo obo (Y), Gamji (H)	Tree	0.05	Used in treatment or management tuberculosis/Anti- tuberculosis	Charantagenins D (1) and E	[119,155]
40	Moraceae	Ficus sycomorus L.	Baure (H)	Tree	0.05	Used in treatment of diarrheal/ anticancer	Lupeol acetate, quercetin, gallic acid, β- Sitosterol-3-O- β-D- glucopyraposide	[156-159]
41	Moraceae	Ficus thonningii Blune	Odan (Y), Chediya (H)	Tree	0.08	Used in treatment of diabetes/anti-fungal	Naringenin, p- hydroxybenzoic acid, luteolin, thonningiiflavanonol A and B, methylparaben, shuterin	[160,161]
42	Moringaceae	<i>Moringa oleifera</i> Lam.	Ewe igbale (Y), Zogale (H)	Tree	0.02	Used in treatment of ear infections/anti- inflammatory activities	Phenylmethanoid, Moringa A. adenosine, glucomoringin, 4- hydroxybenzaldehyde rhamnoside	[162,163,16 4]

43	Myristicaceae	<i>Pycnanthus angolensis</i> (Welw.) Warb.	Egbo akomu (Y), Damarzaya / Idon zakara (H)	Tree	0.02	Used for management of diabetes/anti inflammatory	Palmitic acid, Myristoleic acid, pycnantolol, pycnanthulignene A – D, 2' - hydroxyformononetin	[165,166]
44	Myrtaceae	Psidium guajava L.	Goroba (Y), Goobaa (H)	Tree	0.02	Used for treatment of diarrheal/anti bacteria	Gallocatechin, caryophyllene oxide, beta-carotene, 2α- hydroxyursolic acid, betulinic acid, Lupeol	[167,168]
45	Ochnaceae	<i>Lophira lanceolata</i> Tiegh. ex Keay	Namijin kande (H)	Tree	0.02	Used in treatment of abdominal pain/treating arterial blood pressure	α'-chlorolophirone E, 5'- chlorolophirone D, Lophirone E,	[169,170]
46	Olacaceae	Ximenia americana L.	Tsada (H)	Tree	0.03	Used for treating constipation/ anti- microbial activity	Sambunigrin, β- glucogalline, quercetin, avicularin, gallic acid	[171,169,17 2]
47	Oleaceae	Olea europaea L.	Zaitun (H)	Tree	0.02	Used in treatment of diarrhea/anti-viral activities	Tyrosol, Linoleic acid, Oleic acid, Oleocanthal,Oleuropein	[173,174]
48	Poaceae	<i>Urelytrum</i> giganteum Pilg.	Jema (H)	Herb	0.02	Used in treatment of headache/ -		[175]
49	Poaceae	Eleusine indica (L.) Gaertn.	Ese kannakann a (Y), Tuji (H)	Shrub	0.02	Used in treatment of dysentery/ anti- inflammatory activities	Schaftoside, Vitexine, Heptacosane, Isoschaftoside	[176,177]
50	Rhamnaceae	Ziziphus mauritiana Lam.	Magarya (H)	Shrub	0.03	Used to stop nausea and vomiting/anticancer activity	Sativanine, Sanjoinine, Lotusine, Paliurine, Xylopyrine, Nummularine, Abyssenine	[178,179]
51	Rubiaceae	<i>Pavetta crassipes</i> k. Schum.	ldagbon (Y), Gadu (H)	Shrub	0.02	Used as cough remedy/	Ixoside,5- o- caffeoylquinic acid methyl ester, rutin	[180-182]

52	Rubiaceae	Crossopteryx febrifuga	Ayeye (Y), Kashir	Tree	0.02	Used to treat stomach disorders/	palmitic acid, β- sitosterol, 3β-D-	[183,184]
		(Afzel.ex G.Don) Benth	awaki / Kasfiya ko (H)				glucopyranosylurs- 12,20(30)-diene-27,28- dioic acid	
53	Rutaceae	<i>Citrus limon</i> (L.) Osbeck	Lemon (Y), Lemu tsaye (H)	Tree	0.02	Used as toothpowder/anti-oxidant	Sabinene, myrcene, limonene, β – cymene, terpinien – 4- ol	[185,186]
54	Sapotaceae	<i>Butyrospermum paradoxa</i> C.F.Gaertn.	Òrí (Y), Kadai (H)	Tree	0.02	Used in Wound healing, treatment of small pox, measles and hair loss / anti-bacterial, anti- diabetic, anti- inflammatory	tieghemelin A, arginine, sotachioside, gallic acid, para- doxoside A	[187-189]
55	Solanaceae	Datura metel L.	Gegemu (Y), Zakami (H)	Shrub	0.02	Used for treatment of epilepsy/ used for anesthetic	pregnane A, daturafoliside X, daturafoliside Y	[190,191]
56	Solanaceae	Nicotiana tabacum L.	Èwe taba (Y), Taba (H)	Herb	0.03	Used to treat ringworm/antimicrobial activity	Gramisterol, Campesterol, Ketorolac, Stigmastero	[192,193]
57	Verbenaceae	Vitex doniana L.	Oori nla (Y), Ucha koro (I), Dinya (H)	Tree	0.02	Used to treat gonorrhea/anti-bacteria, anti- HIV	Alkaloids, Saponins, Tannins, Anthraquinones, Terpenoids, Flavonoids	[194-196]
58	Zingiberaceae	<i>Aframomum melegueta</i> K.Schum.	Ataare (Ý), Chitta (H)	Herb	0.03	Used to treat diarrhea/ anticancer	6-shogaol, 6-Gingerol, oleanolic acid, 6-paradol	[197,198]
59	Zingiberaceae	Zingiber officinale Roscoe	Atale (Y), Chitta mai Yatsa (H)	Herb	0.02	Used for treating indigestion/ antibacterial	methyl 6- gingerol, 6- shogaol, 6-poradol, isovanillin, p- hydroxybenzaldehyde	[199-201]

Key: H = Hausa, I = Igbo, Y = Yoruba, UVI = Use Value Index

Fig. 2. Showing Plant Families of the different plants mentioned in the Ethnobotanical Survey

S/N	Recipe and Plant part used Method of Prepara		Dosage/Mode of Administration	Most used plant and other
		-	-	uses
1.	Vitax doniana L. (SB) + Tapinanthus	Decoction of powdered SB	3TD for 2 weeks/ taken orally	<i>T. bangwensis</i> (Engl. & K.
	bangwensis (Engl. & K. Krause) Danser (L)	and Leaves of both plant		Krause), Diabetes
2.	Euphorbia hirta L. (L & S)	Powder leaves to make stew	3TD for 2 weeks/ taken orally	
3.	Abrus canescens Welw. ex Baker. (WP)	Powder leaves with Honey and allium	2TD / taken orally	A. canescens Welw., cough
4.	Ficus thonningii Blune (R)	Decoction of Powder roots + Potash and Shea butter	3TD for 2-3 weeks / taken orally	-
5.	Chasmathera dependens Hochst (R)	Decoction of root of plant + Honey	2 cups 2TD for 3-4 weeks / taken orally	-
6.	<i>Crinum jagus</i> (J. Thomps.) Dandy (Bulb) / <i>Crinum glaucum</i> A.Chev (Bulb) + <i>Tetrapleura tetraptera</i> (Schumach. And Thonn) (F)	Cut the plant recipe Macerate, pound and filter. Add Honey to be taken orally	2TD / taken orally	-
7.	Allium ascalonicum L. (Bulb) + Garlic	Powder the recipe and cook with shea butter	2TD / taken orally	<i>A. ascalonicum</i> L., convulsion
8.	Crinum jagus (J. Thomps.) (Bulb) + Allium ascalonicum L. (Bulb) + Tetrapleura tetraptera (Schumach. And Thonn) (F)	Maceration of powdered recipe and filter + Honey	2TD / taken orally	
9.	Pycnanthus angolensis (Welw.) Warb. (R & B) + Harungana madagascariensis Lam. ex Poir. (B)	Infusion of the recipe in pap water	2TD for 3 days / taken orally	<i>P. angolensi</i> s (Welw.), high blood pressure
10.	Nicotiana tabacum L. (L)	Juice of leaves + Honey	2TD / taken orally	<i>N. tabacum</i> L., cough
11.	Aframomum melegueta K.Schum. (Seed) + Frog	Burn to powder + Palm oil	2TD / taken orally	<i>A. melegueta</i> K.Schum., Heart diseases, Relieve chest burn
12.	Parinari spp. Aubl. (Seed) + Citrus limon (L.) Osbeck (F)	Juice of citrus and Powdered seed of P. <i>spp.</i> + palm wine	2TD / taken orally	P. spp. Aubl., fever
13.	<i>Allium cepa</i> L. (Bulb) + <i>Ficus platyphylla</i> Delile (WP)	Juice of onion + the juice of the other plant + Honey	2TD / taken orally	A. cepa L., cough
14.	Anogeissus leocarpus DC. (S) + Prosopis africana (Guill & Perr.) Taub. (B)	to be powdered and infused in water	2TD for 2 weeks / taken orally	-

Table 2. Method of Preparation and Administration of Plant recipe for management of Asthma in FCT and Its Environs

15.	Guiera senegalensis J.F.Gmel (SB) + Khaya senegaliensis (Desr.) A.Juss. (SB)	Macerate in water + Potash	2TD / taken orally	-
16.	Ficus sycomorus L. (RS)	Juice	2TD / taken orally	-
17.	Mangifera indica L. (L)	Maceration + Potash	2TD for a week / taken orally	<i>M. indica</i> L., fever, nose blockage
18.	Isoberlinia doka Craib & Stapf (SB & R)	infuse in water	2TD for 2 to 3 weeks / taken orally	-
19.	Ziziphus mauritania Lam. (L) + Newbouldia laevis (P. Beauv.) Seem. ex Bureau (SB)	Decoction	2TD / taken orally	-
20.	<i>Newbouldia laevis</i> (P. Beauv.) Seem. ex Bureau(L) + <i>Ficus thonningii</i> Blune (R)	Decoction + Potash	2TD / taken orally	-
21.	<i>Newbouldia laevi</i> s (P. Beauv.) Seem. ex Bureau (L & S)	Decoction + Potash	2TD for 2 weeks / taken orally	-
22.	Terminalia catapa L. (L)	Decoction	2TD for a week or 2 / taken orally	<i>T. catapa</i> L., anemia
23.	Carica papaya L. (S) + Waltheria indica L. (R) all powdered	Decoction + Potash	2TD / taken orally	W. indica L., Cough
24.	Anogeissus leocarpus DC. (SB) + Cola nitida Schott & Endl. (F)	Powder recipe and Infusion + Potash	2TD / taken orally	<i>C. nitida</i> Schott & Endl., Cough
25.	Lophira lanceolate Tiegh. ex Keay (SB / L)	powdered recipe + pap water, Infuse	1D / taken orally	-
26.	Honey	Oral	1D / taken orally	-
27.	Khaya senegaliensis (Desr.) A.Juss. (SB) + Mangifera indica L. (L) (SB) + Psidium guaiava L. (L)	Decoction	3TD / taken orally	
28.	Newbouldia laevis (P. Beauv.) Seem. ex Bureau (L) + Ficus thonningii Blune (R) + Ziziphus mauritania Lam.	Decoction + Potash	2TD / taken orally	-
29.	, Khaya senegaliensis (Desr.) A.Juss. (SB)	Decoction + Potash	2TD / taken orally	-
30.	Khaya senegaliensis (Desr.) A.Juss. (SB) + Carica papaya L.	Decoction + Potash	2TD / taken orally	<i>C. papaya</i> L., Cough
31.	<i>Xymenia americana</i> L. (L & SB)	Powder and infuse in pap water	1D / taken orally	-
32.	Boswellia dalzielii Hutch. (SB)	powder + local sugar	Taken orally	-
33.	<i>Terminalia avicennioides</i> Guill. & Perr. (L) powdered + Tamarindus indica extaract	Infusion	3TD / taken orally	-
34.	Sclerocarya birrea (A.Rich.)Hochst.(SB)	Maceration	3/4 TD / taken orally	-

35.	Datura metel L. (R)	Decoction + Red Potash	2TD / taken orally	<i>D. metel</i> L., treat mental illness
36.	Mormordica charantia L. (WP)	Infusion of powdered plant	2TD for 1- 2 weeks / taken orally	-
37.	<i>Newboldia laevi</i> s (P. Beauv.) Seem. ex Bureau (L & SB)	Decoction	2TD / taken orally	-
38.	Euphorbia hirta L. (WP)	Decoction	2TD / taken orally	-
39.	Piliostigma reticulatum (DC.) Hochst. (L) + Butyrosperum paradoxa C.F. Gaertn. (L) + Moringa oleifera Lam. (L)	Decoction + potash / Oral & Steam Inhalation	2TD / taken orally	<i>P. reticulatum</i> (DC.) Hochst. (L), ulcer
40.	Acanthospermum hispidum DC. (WP)	Decoction + Potash + Shea butter	3TD / taken orally	-
41.	Anogeissus leocarpus DC. (SB) + Urelytrum giganteum Pilg. (R) + Annona senegalensis Pers (R) + Ficus sycomorus L. (SB) + Ficus platyphylla Delile	Powder + Honey	1D / taken orally	<i>F. platyphylla</i> Delile, cough, convulsion
42.	Anogeissus leocarpus DC. (SB)	Infuse powder + potash in water	3 – 4TD / taken orally	<i>A. leocarpus</i> DC., Cough, Heart complications, Relieves breathing.
43.	Combretum micranttum G.Don (L) + Cassia singueana Delile (L)	Decoction of powdered sample + Honey	Until relief is felt / taken orally	<i>C. micranttum</i> G.Don, Anaemia + <i>C. singueana</i> Delile ,Jaundice, Gonorrhea
44.	Adansonia digitate L. (Seed) + Allium sativum L. (Bulb) + Aframomum melegueta K.Schum. (L)	Infusion + Honey	Taken orally	-
45.	Eleusine indica (L.) Gaertn. (WP)	Decoction + potash	2TD / taken orally	<i>E. indica,</i> chest pain
46.	Terminalia avicennioides Guill. & Perr. (L)	Chew fresh leaves	Taken orally	<i>T. avicennioides</i> Guill. & Perr., Diabetes, fever, malaria
47.	Abrus precatorius L. (WP)	Decoction	3TD for 3 weeks / taken orally	A. precatorius L., treats cough in children
48.	Allium sativum L. (Bulb)	Paste + Honey	3TD / taken orally	-
49.	Olea europaea L.	Oil + Honey	3TD / taken orally	<i>O. europaea</i> L., Ulcer, hotness of the stomach(infection), cosmetics for hair

Acanthospermum hispidum DC (WP)		2101012 - 4 weeks / taken 01ally	-
Azadirachta indica A.Juss. (L & B) + Moringa oleifera Lam. (L) + Allium sativum	Maceration	3TD / taken orally	<i>M. oleifera</i> Lam. Ulcer + <i>A. indica</i> A.Juss., pile, malaria
Pavetta crasspes k. Schum, (L)	Decoction + Shea butter	2TD / taken orally	-
Anogeissus leocarpus DC. (SB) + Xymenia americana L. (R) + Ficus sycomorus L. (RS)	Infusion	2TD / taken orally	-
Nicotiana tabacum L. (L)	Powder	2TD / Smoke	-
Ficus thonningii Blune (R)	Decoction + potash	2TD / taken orally	<i>F. thonningii</i> Blune, fever
Anogeissus leocarpus DC. (L) + Cyperus tonkinensis C.B.Clarke + Allium sativum L. (Bulb)	Decoction	8TD / taken orally	
Crossopteryx febrifuga (Afzel.ex G.Don) Benth (F & L)	Powder + Honey / Oral	3 – 4 TD / taken orally	-
Euphorbia hirta L. (WP)	Infuse powdered recipe + potash	2TD / taken orally	-
	Azadirachta indica A.Juss. (L & B) + Moringa oleifera Lam. (L) + Allium sativum L. (Bulb) Pavetta crasspes k. Schum. (L) Anogeissus leocarpus DC. (SB) + Xymenia americana L. (R) + Ficus sycomorus L. (RS) Nicotiana tabacum L. (L) Ficus thonningii Blune (R) Anogeissus leocarpus DC. (L) + Cyperus tonkinensis C.B.Clarke + Allium sativum L. (Bulb) Crossopteryx febrifuga (Afzel.ex G.Don) Benth (F & L) Euphorbia hirta L. (WP)	Azadirachta indica A.Juss. (L & B) + Maceration Moringa oleifera Lam. (L) + Allium sativum Maceration L. (Bulb) Pavetta crasspes k. Schum. (L) Decoction + Shea butter Anogeissus leocarpus DC. (SB) + Xymenia Infusion americana L. (R) + Ficus sycomorus L. (RS) Powder Nicotiana tabacum L. (L) Powder Ficus thonningii Blune (R) Decoction + potash Anogeissus leocarpus DC. (L) + Cyperus Decoction tonkinensis C.B.Clarke + Allium sativum L. Decoction (Bulb) Crossopteryx febrifuga (Afzel.ex G.Don) Benth (F & L) Infuse powdered recipe + Euphorbia hirta L. (WP) Infuse powdered recipe +	Azadirachta indica A.Juss. (L & B) + Maceration 3TD / taken orally Moringa oleifera Lam. (L) + Allium sativum Decoction + Shea butter 2TD / taken orally L. (Bulb) Pavetta crasspes k. Schum. (L) Decoction + Shea butter 2TD / taken orally Anogeissus leocarpus DC. (SB) + Xymenia Infusion 2TD / taken orally americana L. (R) + Ficus sycomorus L. (RS) Powder 2TD / smoke Nicotiana tabacum L. (L) Powder 2TD / taken orally Ficus thonningii Blune (R) Decoction + potash 2TD / taken orally Anogeissus leocarpus DC. (L) + Cyperus Decoction + potash 2TD / taken orally Anogeissus leocarpus DC. (L) + Cyperus Decoction + potash 2TD / taken orally Kowinensis C.B.Clarke + Allium sativum L. Decoction 8TD / taken orally Benth (F & L) Powder + Honey / Oral 3 – 4 TD / taken orally Euphorbia hirta L. (WP) Infuse powdered recipe + potash 2TD / taken orally More = Leaves B = Bark S = Stem Bark E = Eruits B = Stem San WP = Whole Plant TI

Fig. 3. Showing the frequency of the various Plants Part Used in the recipe formulation mentioned in the survey

Fig. 4. Showing the frequency of the Habits of the plants mentioned in the ethnobotanical survey

Table 3	Demography of	Respondents
---------	---------------	-------------

Parameters	Specification	Number of respondents	%
Sex	Male	59	73.75
	Female	21	26.25
Age distribution	15- 20	0	0.00
	21- 30	3	3.75
	31- 40	24	30.00
	41- 59	44	55.00
	60 and above	9	11.25
Educational level	Primary	29	36.25
	Secondary	26	32.50
	Tertiary	5	6.25
	Others	25	31.25
Occupation /	Herb Seller	23	28.75
Practice	Traditional medical practitioner	38	47.50
	Herbalist	1	1.25
	Bone setter	3	3.75
	Traditional Birth attendant	8	10.00
	Farmer	7	8.75
Tribe	Hausa	40	50.00
	Igbo	7	8.75
	Yoruba	17	21.25
	Others	16	20.00
Association	Yes	50	62.5
membership			
-	NO	30	37.5

Fig. 5. Showing frequency of the different Modes of preparation of plant recipes mentioned in the ethnobotanical survey

were found to be previously reported as bronchodilators used in the management of asthma by [45] who also reported that plants used in the treatment of respiratory diseases/disorders are as well used in the treatment/management of asthma. M. indica, Aloe vera, C. procera, G. kola among others were some of the plants reported for use in the management of respiratory disorders and are used as asthmatics due to their therapeutic ability as an anti-inflammatory, anti-anaphylactic, anti- spasmodic and immunomodulatory agents giving credence to their mention as asthmatics in this work according to the reports of [18, 44]. A Ficus spp. belonging to the Moraceae plant

family have also been previously reported by [46,47] as an antiasthmatic therapy, hence species from the plant family may be potential anti-asthmatics. Most the documented medicinal plants have been previously reported to contain different phytoconstituents and elicit bio-activities that have been pharmacologically validated and linked to amelioration of asthmatic condition which justifies their indigenous use as asthmatics[17,24,48-50].

The different recipes mentioned are polyherbal. This is typical of herbal remedies which are usually polyherbal formulations inform of decoction, powder, maceration etc [51] this suggests that the different medicinal plant components of these formulations may be working in synergism in a manner that helps to quickly alleviate disease conditions as also described by [52]. Generally, decoctions and infusions are the most popular methods of preparing herbal formulations [53-55] probably due to the simplicity of the process[56]. Leaves were found to be the most frequently used plant part owning to their importance being an integral part of herbal preparation ingredients for various well ailments and as containing more pharmacological bioactive constituents than other plant part as also reported by [57,58]. Several other ethnobotanical studies have shown leaves to be the most utilized plant part in the treatment of different illnesses [54,59-61]. The plant parts that are mostly used after leaves are the stem bark, roots and whole plants which do not regenerate easily unlike the leaves. This can be a problem as far as conservation and sustainable plant exploitation is concerned, a situation highlighted in the work of [62]. Majority of plants used for medicinal purposes are still being collected from the wild as reported by [63-65] and other researchers, a situation which do not help in the quest for plant sustainability and conservation. The plant habit of most of the medicinal plants mentioned are trees and this may be due to their all-year round availability [66]. It has also been shown in other studies on medicinal plants used in the management of asthma or medicinal plants used in the treatment of respiratory disorders that trees represent the major life forms of the plant species mentioned [56, 67].

The majority of respondents are male TMPs who are poorly educated and may not practice or know the importance of proper documentation. However, most of them are aged between 41-59 and can still get some form of enlightenment on proper documentation and standardization of their products and procedures. Some of the respondents have knowledge of medicinal plants but do not know about that of asthma, claiming it is an urban disease (Urbanization is a contributory factor to high prevalence of asthma) and it is not really known to them and perhaps just treat it as mere cough. Others refused to share their information with us because they feel some form of distrust due to past experience(s) (personal or related) of intellectual theft of their medicinal plant recipes. Hence the need to partner more with them to build trust and relationship, else, important information on medicinal plants and their uses that could be of great benefit to man and researchers alike will be lost.

5. CONCLUSION

This study has helped to identify and document medicinal plants used in the treatment/management of asthma in FCT and environs and will serve as a repository for researches that would be looking into drug development from alternative/ natural source.

CONSENT

In line with standard practice, the scope of the work was clearly explained to the respondents, consent forms were handed to willing participants which were duly signed and kept.

ETHICAL APPROVAL

It is not applicable.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCE

- 1. Zampogna E, Zappa M, Spanevello A, Visca D. Pulmonary rehabilitation and asthma. Frontiers in Pharmacology. 2020; 11:542.
- 2. Trueb B, Zhuang L, Villiger PM. A novel mutation in the il6r gene identified in a family with asthma patients. Genetic Testing Molecular Biomarkers. 2020; 24(10):658-664.
- 3. Gautier C, Charpin D. Environmental triggers and avoidance in the management of asthma. Journal of asthma allergy 2017;10:47.
- 4. Turner S. Gene–environment interactions— what can these tell us about the relationship between asthma and allergy? Frontiers in pediatrics. 2017;5: 118.
- 5. Anderson HR, Prevalence of asthma, British Medical Journal Publishing Group; 2005.
- Jiang Y, Gruzieva O, Wang T, Forno E, Boutaoui N, Sun T, Merid SK, Acosta-Pérez E, Kull I, Canino G. Transcriptomics of atopy and atopic asthma in white blood cells from children and adolescents.

European Respiratory Journal. 2019; 53(5).

- 7. Ward JP, Ward J, Leach RM, The respiratory system at a glance, John Wiley & Sons; 2010.
- Ozoh OB, Aderibigbe SA, Ayuk AC, Desalu OO, Oridota OE, Olufemi O, Egbagbe E, Babashani M, Shopeyin A, Ukwaja K. The prevalence of asthma and allergic rhinitis in nigeria: A nationwide survey among children, adolescents and adults. PLoS One. 2019;14(9):e0222281.
- Asher MI, Montefort S, Björkstén B, Lai CK, Strachan DP, Weiland SK, Williams H. Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: Isaac phases one and three repeat multicountry cross-sectional surveys. The Lancet 2006; 368(9537): 733-743.
- Stewart AW, Mitchell EA, Pearce N, Strachan DP, Weiland SK. The relationship of per capita gross national product to the prevalence of symptoms of asthma and other atopic diseases in children (isaac). International journal of epidemiology 2001; 30(1):173-179.
- 11. Brauer M, Hoek G, Van Vliet P, Meliefste K, Fischer PH, Wijga A, Koopman LP, Neijens HJ, Gerritsen J, Kerkhof M. Air pollution from traffic and the development of respiratory infections and asthmatic and allergic symptoms in children. American journal of respiratory critical care medicine 2002;166(8):1092-1098.
- Heffler E, Madeira LNG, Ferrando M, Puggioni F, Racca F, Malvezzi L, Passalacqua G, Canonica GW. Inhaled corticosteroids safety and adverse effects in patients with asthma. The Journal of Allergy Clinical Immunology: In Practice. 2018;6(3):776-781.
- 13. Billington CK, Penn RB, Hall IP, B 2 agonists, Pharmacology Therapeutics of Asthma COPD. 2016;23-40.
- 14. Broadbent C, Pfeffer P, Steed L, Walker S, Patient-reported side effects of oral corticosteroids, Eur Respiratory Soc; 2018.
- 15. Barnes PJ. Drugs for asthma. British Journal of Pharmacology. 2006;147(S1): S297-S303.
- 16. Hansel TT, Barnes PJ. Tiotropium bromide: A novel once-daily anticholinergic bronchodilator for the treatment of copd. Drugs Today 2002;38(9):585-600.
- 17. Taur DJ, Patil RY. Some medicinal plants with antiasthmatic potential: A current

status. Asian Pacific Journal of Tropical Biomedicine 2011;1(5):413-418.

- Greenberger PA, Therapy in the management of the rhinitis/asthma complex, Allergy & Asthma Proceedings; 2003.
- Ajagbonna O, Adeniran L, Lawal R. Ethnobotanical assessment of plants used to aid parturition in abuja, nigeria. Journal of Veterinary Sciences 2019;17(1):1-9.
- 20. Gabriel MG, Chukwudi OJ. Rapid marker assessment of two medicinal plants and their herbal products used in the management of diabetes in nasarawa state and the fct. Nutri. Food Sci. Int. J 2018; 6 001-0010.
- 21. Ibrahim JA, Muazzam I, Jegede I, Kunle O, Okogun J. Ethno-medicinal plants and methods used by gwandara tribe of sabo wuse in niger state, nigeria, to treat mental illness. African Journal of Traditional, Complementary Alternative Medicines 2007; 4(2): 211-218.
- 22. Alli L, Nnodu O. Anti-sickling efficacy of methanolic extract of medicinal plants from gwagwalada, nigeria. West African Journal of Medicine 2020; 37(7): 790-795.
- 23. Fatokun OT, Wojuola TE, Esievo KB, Kunle OF. Medicinal plants used in the management of asthma: A review. EJPMR 2016; 3(7): 82-92.
- 24. Ozoh O, Bandele E. A synopsis of asthma research in nigeria between 1970 and 2010. J African Journal of Respiratory Medicine. 2012;7(2).
- 25. Huntington HP. Using traditional ecological knowledge in science: Methods and applications. J Ecological Applications. 2000;10(5):1270-1274.
- Klotoé JR, Dougnon TV, Koudouvo K, Atègbo J, Loko F, Akoègninou A, Aklikokou K, Dramane K, Gbeassor M. Ethnopharmacological survey on antihemorrhagic medicinal plants in south of benin. European Journal of Medicinal Plants. 2013; 3(1): 40.
- Tardío J, Pardo-de-Santayana M. Cultural importance indices: A comparative analysis based on the useful wild plants of southern cantabria (northern spain). Economic Botany. 2008;62(1):24-39.
- 28. Oguntibeju OO. Medicinal plants and their effects on diabetic wound healing. Veterinary world. 2019;12(5):653.
- Kwizera R, Musaazi J, Meya DB, Worodria W, Bwanga F, Kajumbula H, Fowler SJ, Kirenga BJ, Gore R, Denning DW. Burden

of fungal asthma in africa: A systematic review and meta-analysis. PloS one 2019; 14(5):e0216568.

- Sonibare M, Gbile Z. Ethnobotanical survey of anti-asthmatic plants in south western nigeria. African Journal of Traditional, Complementary Alternative Medicines. 2008;5(4):340-345.
- 31. Makinde S, Ojekale A, Oshinaike T, Awusinu T. An ethnomedical and ethnobotanical survey of plants herbal therapy used for obesity, asthma, diabetes and fertility by the badagry people of lagos state, nigeria. Med Plants Studies 2015; 3(5): 01-06.
- 32. Ademoye MA, Lajide L, Owolabi BJ, Onubogu CC. Evaluation of antimycobacterium tuberculosis activity of fractions from selected medicinal plants used traditionally for treating cough and respiratory disorders in south west of nigeria. Journal of Medicinal Plants Research 2018;12(23):346-352.
- 33. Mamedov N, Craker LE. Medicinal plants used for the treatment of bronchial asthma in russia and central asia. Journal of herbs, spices medicinal plants 2001;8(2-3):91-117.
- 34. Semenya SS, Maroyi A. Plants used by bapedi traditional healers to treat asthma and related symptoms in limpopo province, south africa. Evidence-Based Complementary Alternative Medicine. 2018;2018.
- 35. Noumi E. Treating asthma with medicinal plants. An ethnomedicinal case study from baré-bakem, nkongsamba region, cameroon. Syllabus Review 2009;1:10-15.
- Dogra KS, Chauhan S, Jalal JS. Assessment of indian medicinal plants for the treatment of asthma. Journal of Medicinal Plants Research 2015;9(32): 851-862.
- Assi L. Use of various species of ficus (moraceae) in traditional african medicine in the côte d'ivoire. Mitteilungen aus dem Institut für Allgemeine Botanik Hamburg 1990;1039-1046.
- Ariyo O, Usman M, Olorukooba M, Ariyo M, Suleiman R, Aasa O, Adetunji A, Oni O. Ethnobotanical survey of medicinal plants used in the treatment of cough in akinyele local government area, oyo state, nigeria. European Journal of Medicinal Plants 2020; 101-113.
- 39. Raina H, Soni G, Jauhari N, Sharma N, Bharadvaja N. Phytochemical importance

of medicinal plants as potential sources of anticancer agents. Turkish Journal of Botany. 2014;38(6):1027-1035.

- 40. Ishtiaq M, Mahmood A, Maqbool M. Indigenous knowledge of medicinal plants from sudhanoti district (ajk), pakistan. Journal of ethnopharmacology 2015;168: 201-207.
- 41. Taur DJ, Patil RN, Patil RY. Antiasthmatic related properties of abrus precatorius leaves on various models. Journal of traditional complementary medicine 2017; 7(4):428-432.
- 42. Yadav N, Ganie SA, Singh B, Chhillar AK, Yadav SS. Phytochemical constituents and ethnopharmacological properties of ageratum conyzoides I. Phytotherapy Research 2019; 33(9):2163-2178.
- Ahmad B, Rehman MU, Amin I, Arif A, Rasool S, Bhat SA, Afzal I, Hussain I, Bilal S. A review on pharmacological properties of zingerone (4-(4-hydroxy-3methoxyphenyl)-2-butanone). The Scientific World Journal. 2015;2015.
- 44. Mali RG, Dhake AS. A review on herbal antiasthmatics. J Oriental pharmacy experimental medicine 2011; 11(2): 77-90.
- 45. Adesina SK, Johnny II, Olayiwola G. Plants in respiratory disorders i-anti-asthmatics, a review. Journal of Pharmaceutical Research International 2017; 1-22.
- 46. Taur D, Patil R. Effect of bio-fractions isolated from ficus bengalensis bark on clonidine induced catalepsy. Journal of Pharmacy Research 2009; 2(11): 1676-1677.
- 47. Taur D, Nirmal S, Patil R. Effect of various extracts of ficus bengalensis bark on clonidine and haloperidol-induced catalepsy in mice. Pharmacologyonline 2007; 3 470-477.
- 48. Shakeri F, Boskabady MH. A review of the relaxant effect of various medicinal plants on tracheal smooth muscle, their possible mechanism (s) and potency. Journal of ethnopharmacology 2015; 175 528-548.
- 49. Chen S. Natural products triggering biological targets-a review of the antiinflammatory phytochemicals targeting the arachidonic acid pathway in allergy asthma and rheumatoid arthritis. Current drug targets 2011;12(3):288-301.
- 50. Vashisth A, Singh R, Kakar S. Asthma and medicinal plants: A review. International Journal of Recent Advances in Science Technology. 2017; 4(4): 1-7.

- 51. Kumadoh D, Ofori-Kwakye K. Dosage forms of herbal medicinal products and their stability considerations-an overview. J Crit Rev 2017; 4(4): 1-8.
- 52. Famewo EB, Clarke AM, Afolayan AJ. Ethno-medicinal documentation of polyherbal medicines used for the treatment of tuberculosis in amathole district municipality of the eastern cape province, south africa. J Pharmaceutical biology 2017; 55(1): 696-700.
- Fotakis C, Tsigrimani D, Tsiaka T, Lantzouraki DZ, Strati IF, Makris C, Tagkouli D, Proestos C, Sinanoglou VJ, Zoumpoulakis P. Metabolic and antioxidant profiles of herbal infusions and decoctions. Food Chemistry 2016; 211 963-971.
- 54. Boadu AA, Asase A. Documentation of herbal medicines used for the treatment and management of human diseases by some communities in southern ghana. Evidence-Based Complementary Alternative Medicine 2017; 2017.
- 55. Tabuti JR, Lye KA, Dhillion S. Traditional herbal drugs of bulamogi, uganda: Plants, use and administration. Journal of ethnopharmacology 2003; 88(1): 19-44.
- Lawal IO, Olufade II, Rafiu BO, Aremu AO. Ethnobotanical survey of plants used for treating cough associated with respiratory conditions in ede south local government area of osun state, nigeria. J Plants 2020; 9(5): 647.
- 57. Adekunle M. Indigenous uses of plant leaves to treat malaria fever at omo forest reserve (ofr) ogun state, nigeria. Ethiopian Journal of Environmental Studies Management 2008; 1(1): 31-35.
- 58. Bharti R, Chopra BS, Raut S, Khatri N. Pueraria tuberosa: A review on traditional uses, pharmacology, and phytochemistry. Frontiers in pharmacology 2021; 11 2104.
- 59. Suroowan S, Mahomoodally MF. A comparative ethnopharmacological analysis of traditional medicine used against respiratory tract diseases in mauritius. Journal of Ethnopharmacology. 2016; 177 61-80.
- York T, De Wet H, Van Vuuren S. Plants used for treating respiratory infections in rural maputaland, kwazulu-natal, south africa. Journal of Ethnopharmacology. 2011;135(3): 696-710.
- 61. Kankara SS, Ibrahim MH, Mustafa M, Go R. Ethnobotanical survey of medicinal plants used for traditional maternal healthcare in katsina state, nigeria. South

African journal of botany 2015;97:165-175.

- Jena AK, Karan M, Vasisht K. Plant parts substitution based approach as a viable conservation strategy for medicinal plants: A case study of premna latifolia roxb. Journal of Ayurveda Integrative Medicine. 2017;8(2):68-72.
- 63. Araya S, Abera B, Giday M. Study of plants traditionally used in public and animal health management in seharti samre district, southern tigray, ethiopia. Journal of Ethnobiology Ethnomedicine. 2015; 11(1): 1-25.
- 64. Menale B, De Castro O, Cascone C, Muoio R. Ethnobotanical investigation on medicinal plants in the vesuvio national park (campania, southern italy). Journal of ethnopharmacology 2016; 192 320-349.
- 65. Cerqueira TMG, de Carvalho Correia AC, Dos Santos RV, Lemos RPL, da Silva SAS, Barreto E. The use of medicinal plants in maceió, northeastern brazil: An ethnobotanical survey. Medicines. 2020; 7(2):7.
- 66. De Albuquerque UP. Re-examining hypotheses concerning the use and knowledge of medicinal plants: A study in the caatinga vegetation of ne brazil. Journal of Ethnobiology Ethnomedicine. 2006;2(1):1-10.
- 67. Chukwuma DM, Chukwuma EC, Adekola OO. An ethnobotanical survey of malariatreating plants in ado-ekiti local government area, ekiti state, nigeria. Ethnobotany Research Applications 2019; 18:1-10.
- Kianfé B, Kühlborn J, Tchuenguem R, Tchegnitegni B, Ponou B, Groß J, Teponno R, Dzoyem J, Opatz T, Tapondjou L. Antimicrobial secondary metabolites from the medicinal plant crinum glaucum a. Chev.(amaryllidaceae). South African Journal of Botany. 2020; 133: 161-166.
- 69. Akintola A, Kehinde A, Adebiyi O, Ademowo O. Anti-tuberculosis activities of the crude methanolic extract and purified fractions of the bulb of crinum jagus. Nigerian Journal of Physiological Sciences. 2013;28(2):135–140-135–140.
- 70. Ka S, Masi M, Merindol N, Di Lecce R, Plourde MB, Seck M, Górecki M, Pescitelli G, Desgagne-Penix I, Evidente A. Gigantelline, gigantellinine and gigancrinine, cherylline-and crinine-type alkaloids isolated from crinum jagus with

anti-acetylcholinesterase activity. Phytochemistry. 2020;175:112390.

- 71. Adenivi BA. Anviam FM. In vitro anti-helicobacter pylori potential of methanol extract of allium ascalonicum linn.(liliaceae) leaf: Susceptibility and effect on urease activity. Phytotherapy Research: An International Journal Devoted to Pharmacological Toxicological Evaluation of Natural Product Derivatives. 2004: 18(5): 358-361.
- 72. Amin M, Kapadnis B. Heat stable antimicrobial activity of allium ascalonicum against bacteria and fungi; 2005.
- Fattorusso E, Iorizzi M, Lanzotti V, Taglialatela-Scafati O. Chemical composition of shallot (allium ascalonicum hort.). Journal of agricultural food chemistry 2002; 50(20): 5686-5690.
- 74. Kumar KS, Debjit B, Pankaj T. Allium cepa: A traditional medicinal herb and its health benefits. Journal of Chemical Pharmaceutical Research. 2010;2(1): 283-291.
- Bora K, Sharma A. Phytoconstituents and therapeutic potential of allium cepa linn.-a review. Pharmacognosy Reviews. 2009; 3(5): 170.
- Londhe V, Gavasane A, Nipate S, Bandawane D, Chaudhari P. Role of garlic (allium sativum) in various diseases: An overview. angiogenesis 2011; 12 13.
- 77. Harris J, Cottrell S, Plummer S, Lloyd D. Antimicrobial properties of allium sativum (garlic). Applied Microbiology Biotechnology. 2001;57(3): 282-286.
- 78. El-Saber Batiha G, Magdy Beshbishy A, G Wasef L, Elewa YH, A Al-Sagan A, El-Hack A, Mohamed E, Taha AE, M Abd-Elhakim Y, Prasad Devkota H. Chemical constituents and pharmacological activities of garlic (allium sativum I.): A review. Nutrients. 2020;12(3):872.
- 79. Parvez GM. Pharmacological activities of mango (mangifera indica): A review. Journal of Pharmacognosy Phytochemistry. 2016;5(3):1.
- 80. Ediriweera MK, Tennekoon KH, Samarakoon SR. А review on ethnopharmacological applications, pharmacological activities, and bioactive compounds of mangifera indica (mango). Evidence-Based Complementary Alternative Medicine. 2017;2017.
- 81. Ojewole JA, Mawoza T, Chiwororo WD, Owira PM. Sclerocarya birrea (a. Rich) hochst.['marula'](anacardiaceae): A review

of its phytochemistry, pharmacology and toxicology and its ethnomedicinal uses. Phytotherapy Research 2010;24(5): 633-639.

- Fotio AL, Dimo T, Nguelefack TB, Dzeufiet PD, Lemba EN, Temdie RJ, Ngueguim F, Olleros ML, Vesin D, Dongo E. Acute and chronic anti-inflammatory properties of the stem bark aqueous and methanol extracts of sclerocarya birrea (anacardiaceae). Inflammopharmacology 2009;17(4):229-237.
- Chen H-J, Chung C-P, Chiang W, Lin Y-L. Anti-inflammatory effects and chemical study of a flavonoid-enriched fraction from adlay bran. Food Chemistry 2011;126(4):1741-1748.
- 84. Okhale SE, Akpan E, Fatokun OT, Esievo KB, Kunle OF. Annona senegalensis persoon (annonaceae): A review of its ethnomedicinal uses, biological activities and phytocompounds. Journal of Pharmacognosy and Phytochemistry. 2016;5(2):211.
- Tamfu AN, Tagatsing Fotsing M, Talla E, Jabeen A, Mbafor Tanyi J, Shaheen F. Bioactive constituents from seeds of annona senegalensis persoon (annonaceae). Natural Product Research. 2021;35(10):1746-1751.
- Pandey A, Singh S. Aloe vera: A systematic review of its industrial and ethno-medicinal efficacy. International Journal of Pharmaceutical Research Allied Sciences. 2016; 5(1).
- 87. Sun YN, Li W, Yang SY, Kang JS, Ma JY, Kim YHJJoFF. Isolation and identification of chromone and pyrone constituents from aloe and their anti-inflammatory activities. Journal of Functional Foods. 2016;21:232-239.
- Chakraborty AK, Gaikwad AV, Singh KB. Phytopharmacological review on acanthospermum hispidum. Journal of Applied Pharmaceutical Science. 2012; 2(1):144-148.
- 89. Houngbèmè AG, Ganfon HM, Medegan S, Yèhouénou B, Bambola B, Gandonou C, Gbaguidi FA. Antimicrobial activity of compounds from acanthospermum hispidum dc and caesalpinia bonduc (I.) roxb: Beninese plants used by healers against hiv-associated microbial infections. Journal of Applied Pharmaceutical Science 2015;5(08):073-081.
- 90. Osigwe CC, Akah PA, Nworu CS, Okoye TC, Tchimene MK. Antihyperglycemic

studies on the leaf extract and active fractions of newbouldia laevis (bignoniaceae). Pharmacology and Pharmacy. 2015;6(11):518.

- 91. Osigwe CC, Akah PA, Nworu CS, Okoye FB. Apigenin: A methanol fraction component of newbouldia laevis leaf, as a potential antidiabetic agent. Phytopharmacol. 2017;6:38-44.
- 92. Dermane A, Kpegba K, Eloh K, Osei-Safo D, Amewu RK, Caboni P. Differential constituents in roots, stems and leaves of newbouldia laevis thunb. Screened by Ic/esi-q-tof-ms. Results in Chemistry. 2020; 2 100052.
- Nazifi AB, Danjuma NM, Olurishe TO, Ya'u J. Anticonvulsant activity of methanol stem bark extract of boswellia dalzielii hutch.(burseraceae) in mice and chicks. African Journal of Pharmacology Therapeutics. 2017;6(2).
- 94. Al-Harrasi A, Csuk R, Khan A, Hussain J. Distribution of the anti-inflammatory and anti-depressant compounds: Incensole and incensole acetate in genus boswellia. Phytochemistry. 2019;161 28-40.
- 95. Krishna K, Paridhavi M, Patel JA. Review on nutritional, medicinal and pharmacological properties of papaya (carica papaya linn.). 2008.
- 96. Pandey S, Cabot PJ, Shaw PN, Hewavitharana AK. Anti-inflammatory and immunomodulatory properties of carica papaya. Journal of Immunotoxicology. 2016;13(4): 590-602.
- More G, Tshikalange TE, Lall N, Botha F, Meyer JJM. Antimicrobial activity of medicinal plants against oral microorganisms. Journal of Ethnopharmacology. 2008;119(3):473-477.
- 98. Halilu EM, October N, Ugwah-Oguejiofor CJ, Jega AY, Nefai MS. Anti-snake venom and analgesic activities of extracts and betulinic and oleanolic acids isolated from parinari curatellifolia. Journal of Medicinal Plants for Economic Development 2020; 4(1):1-8.
- 99. Mann A, Banso A, Clifford L. An antifungal property of crude plant extracts from anogeissus leiocarpus and terminalia avicennioides. Tanzania Journal of Health Research 2008;10(1):34-38.
- 100. Arbab AH. Review on anogeissus leiocarpus a potent african traditional drug. Int. J. Res. Pharm. Chem. 2014;4(3):496-500.

- 101. Mann A, Ibrahim K, Oyewale AO, Amupitan JO, Fatope MO, Okogun JI. Antimycobacterial friedelane-terpenoid from the root bark of terminalia avicennioides. American Journal of Chemistry. 2011;1(2):52-55.
- 102. Mann A, Ibrahim K, Oyewale AO, Amupitan JO, Fatope MO, Okogun JI. Isolation and elucidation of three triterpenoids and its antimycobacterial activity of terminalia avicennioides. Am J Org Chem. 2012;2(2):14-20.
- 103. Seck SM, Doupa D, Dia DG, Diop EA, Ardiet D-L, Nogueira RC, Graz B, Diouf B. Clinical efficacy of african traditional medicines in hypertension: A randomized controlled trial with combretum micranthum and hibiscus sabdariffa. Journal of human hypertension 2018; 32(1): 75-81.
- Umar H, Abdurahman E, Ilyas N, Agunu A. Phytochemical constituents of the root of combretum micranthum g. Don (family: Combretaceae). Planta Medica. 2011; 77(12):PG8.
- 105. Al Shafei NK, Elshafie AE, Nour A. Antitoxic, antifungal and phytochemical analysis of medicinal compounds of guiera senegalensis leaves in sudan. Plant Biochem Physiol 2016; 4(166): 2.
- 106. Parvez MK, Al-Dosari MS, Arbab AH, Al-Rehaily AJ, Abdelwahid MA. Bioassayguided isolation of anti-hepatitis b virus flavonoid myricetin-3-o-rhamnoside along with quercetin from guiera senegalensis leaves. Saudi Pharmaceutical Journal. 2020;28(5):550-559.
- 107. Anand A, Divya N, Kotti P. An updated review of terminalia catappa. Pharmacognosy reviews 2015;9(18):93.
- 108. Pertuit D, Mitaine-Offer A-C, Miyamoto T, Tanaka C, Delemasure S, Dutartre P, Lacaille-Dubois M-A. A new aromatic compound from the stem bark of terminalia catappa. Natural Product Communications. 2015;10(6):1934578X1501000652.
- 109. Grover J, Yadav S. Pharmacological actions and potential uses of momordica charantia: A review. Journal of Ethnopharmacology. 2004;93(1):123-132.
- 110. Shivanagoudra SR, Perera WH, Perez JL, Athrey G, Sun Y, Jayaprakasha G, Patil BS. Cucurbitane-type compounds from momordica charantia: Isolation, in vitro antidiabetic, anti-inflammatory activities and in silico modeling approaches. Bioorganic Chemistry. 2019;87:31-42.

- 111. Adamu HM, Abayeh O, Agho M, Abdullahi A, Uba A, Dukku H, Wufem B. An ethnobotanical survey of bauchi state herbal plants and their antimicrobial activity. Journal of Ethnopharmacology. 2005;99(1): 1-4.
- 112. Mekem Sonwa M, Isolation and structure elucidation of essential oil constituents: Comparative study of the oils of cyperus alopecuroides, cyperus papyrus, and cyperus rotundus, Staats-und Universitätsbibliothek Hamburg Carl von Ossietzky; 2000.
- 113. Kumar S, Malhotra R, Kumar D. Euphorbia hirta: Its chemistry, traditional and medicinal uses, and pharmacological activities. Pharmacognosy Reviews. 2010; 4(7): 58.
- Ekpo O, Pretorius E. Asthma, euphorbia hirta and its anti-inflammatory properties: News & views. South African Journal of Science. 2007; 103(5): 201-203.
- 115. Uko MS, Usman A, Toma I, Okhale SE, Magili ST, Adzu B. Evaluation of active phytochemical constituents linked to the analgesic and anti-inflammatory property of cassia singueana del. Root bark. Journal of Medicinal Plants Research. 2019; 13(12): 288-295.
- 116. Adedoyin BA, Adeniran OI, Muhammed AB, Dangoggo SM, Nahar L, Sharples GP, Sarker SD. Isolation and characterization of propitious bioactive compounds from cassia singueana I. Advancement in Medicinal Plant Research 2020; 8(4): 89-100.
- 117. Bhatia M, Siddiqui N, Gupta S. Abrus precatorius (I.): An evaluation of traditional herb. Pharm Res 2013; 3 3296-315.
- 118. Okoro EE, Maharjan R, Jabeen A, Ahmad MS, Azhar M, Shehla N, Zaman W, Shams S, Osoniyi OR, Onajobi FD. Isoflavanquinones from abrus precatorius roots with their antiproliferative and antiinflammatory effects. Phytochemistry. 2021; 187 112743.
- 119. Hassan MS, Kubmarawa D, Oladosu P, Osemeahon SA. Evaluation of some medicinal plants for anti-tuberculosis activity from adamawa state, nigeria. Trends in Phytochemical Research. 2017; 1(2): 69-76.
- 120. HA A, Halilu M, Mathias S, Lawal M. Phytochemical analysis and free radical scavenging activity of isoberlinia doka leaves. 2018.

- 121. Atawodi SE, Ogunbusola F. Evaluation of anti-trypanosomal properties of four extracts of leaves, stem and root barks of prosopis africana in laboratory animals. Biokemistri. 2009;21(2).
- 122. Ezike A, Akah P, Okoli C, Udegbunam S, Okwume N, Okeke C, Iloani O. Medicinal plants used in wound care: A study of prosopis africana (fabaceae) stem bark. Indian Journal of Pharmaceutical Sciences. 2010;72(3):334.
- 123. Oscar NDY, Desire S, Olivier NE, MTG MO, Barthelemy N. Fatty alcohols isolated from prosopis africana and evaluation of antibacterial and antituberculosis activities. Journal of Diseases Medicinal Plants. 2018;4(5):128-132.
- 124. N'Guessan BB, Dosso K, Gnangoran BN, Amoateng P, Asiedu-Gyekye IJ, Yapo AP. Antibacterial and antispasmodic activities of a dichloromethane fraction of an ethanol extract of stem bark of piliostigma reticulatum. Journal of Pharmacy Bioallied Sciences. 2015; 7(2): 128.
- 125. Salawu S, Tijani A, Obidike I, Chindo B. Evaluation of anti-diarrhoeal properties of methanolic root extract of piliostigma reticulatum in rats. Journal of Phytomedicine Therapeutics. 2007; 12 44-50.
- 126. Abimbola DO, Omotola BO, Okalekan BJ. Bioactivity guided isolation of a novel antiinflammatory and antibacterial flavonol and oxychromone from the plant *pilostigma reticulatum* (schum). 2008.
- 127. Usman H, Abdulrahman F, Kaita IA, Khan I. Phytochemical and in-vitro antibacterial effects of the partitioned portions of bauhinia rufescens lam stem bark extract. African Journal of Biomedical Research 2009;12(3): 210-218.
- 128. Osman W, Mohammed MS, Khalid HS, Muddathir A, Shantier SW, Osman B, Abdoon I. Hptlc fingerprint profile and identification of antidiabetic and antioxidant leads from bauhinia rufescens I. Advances in Pharmacological Pharmaceutical Sciences. 2020; 2020.
- 129. Hamed NK, Gadir SA. Phytochemical screening, characterization and antimicrobial activity of a flavonoid from sudanese bauhinia rufescens (kulkul)(caesalpiniaceae) roots. European Journal of Medicinal Plants. 2018; 1-8.
- 130. Muhammad A, Sirat HM. Cox-2 inhibitors from stem bark of bauhinia rufescens

lam.(fabaceae). EXCLI journal 2013; 12 824.

- Solanki A, Zaveri M. Pharmacognosy, phytochemistry and pharmacology of abrus precatorius leaf: A review. International journal of pharmaceutical sciences review 2012; 13(2): 71-76.
- 132. Byamukama R, Ogweng G, Jordheim M, Kiremire BT. Anthocyanidin 3-galactosides from flowers of abrus canescens bak. African Journal of Pure Applied Chemistry 2011; 5(10): 356-360.
- Iwalewa EO, Suleiman MM, Mdee LK, Eloff JN. Antifungal and antibacterial activities of different extracts of harungana madagascariensis stem bark. Pharmaceutical Biology 2009; 47(9): 878-885.
- 134. Happi GM, Tiani GLM, Gbetnkom BYM, Hussain H, Green IR, Ngadjui BT, Kouam SF. Phytochemistry and pharmacology of harungana madagascariensis: Mini review. Phytochemistry Letters 2020; 35 103-112.
- 135. Adesina SK, Iwalewa EO, Johnny II. Tetrapleura tetraptera taubethnopharmacology, chemistry, medicinal and nutritional values-a review. Journal of Pharmaceutical Research International 2016; 1-22.
- 136. Famobuwa O, Lajide L, Owolabi B, Osho I, Amuho U. Antioxidant activity of the fruit and stem bark of tetrapleura tetraptera taub (mimosaceae). Journal of Pharmaceutical Research International 2016;1-4.
- 137. Olawumi OO, Koma OS. Stigmasterol and stigmasterol glycoside: Isolated compounds from tetrapleura tetraptera extracts. Journal of Biochemistry International 2019; 21-48.
- 138. Zongo F, Ribuot C, Boumendjel A, Guissou I. Botany, traditional uses, pharmacology phytochemistry and of Waltheria waltheria indica I.(syn. americana): review. А Journal of Ethnopharmacology 2013; 148(1): 14-26.
- Monteillier A, Cretton S, Ciclet O, Marcourt L, Ebrahimi SN, Christen P, Cuendet M. Cancer chemopreventive activity of compounds isolated from waltheria indica. Journal of Ethnopharmacology. 2017;203 214-225.
- 140. Bassey M. Phytochemical investigations of tapinanthus globiferus. Pharmaceutical Research 2012; 3(2): 174-177.
- 141. Jeremiah C, Katsayal UA, Nuhu A, Anafi SB, Ibrahim MA, Nuhu HD. Phytochemical

screening and anti-inflammatory studies of tapinanthus globiferus (a. Rich) teigh. Leaves three extracts. Pharmaceutical Sciences 2019; 25(2): 124-131.

- 142. Emaikwu V, Ndukwe I, Mohammed R, Iyun O, Anyam J. Isolation and characterization of lupeol from the stem of tapinanthus globiferus (a rich.) and its antimicrobial assay. Journal of Applied Sciences Environmental Management. 2020;24(6):1015-1020.
- 143. Oboh G, Nwokocha KE, Akinyemi AJ, Ademiluyi AO. Inhibitory effect of polyphenolic–rich extract from cola nitida (kolanut) seed on key enzyme linked to type 2 diabetes and fe2+ induced lipid peroxidation in rat pancreas in vitro. Asian Pacific Journal of Tropical Biomedicine 2014; 4 S405-S412.
- 144. Indabawa I, Arzai A. Antibacterial activity of garcinia kola and cola nitida seed extracts. Bayero Journal of Pure Applied scienCes. 2011; 4(1): 52-55.
- 145. Adesanwo JK, Ogundele SB, Akinpelu DA, McDonald AG. Chemical analyses, antimicrobial and antioxidant activities of extracts from cola nitida seed. Journal of Exploratory Research In Pharmacology. 2017; 2(3): 67-77.
- 146. Rahul J, Jain MK, Singh SP, Kamal RK, Naz A, Gupta AK, Mrityunjay SK. Adansonia digitata I.(baobab): A review of traditional information and taxonomic description. Asian Pacific Journal of Tropical Biomedicine. 2015; 5(1): 79-84.
- 147. Sundarambal M, Muthusamy P, Radha R. A review on adansonia digitata linn. Journal of Pharmacognosy Phytochemistry. 2015; 4(4): 12.
- 148. Bhowmik D, Chiranjib YJ, Tripathi K, Kumar KS. Herbal remedies of azadirachta indica and its medicinal application. Chem Pharm Res. 2010; 2(1): 62-72.
- 149. Akihisa T, Takahashi A, Kikuchi T, Takagi M, Watanabe K, Fukatsu M, Fujita Y, Banno N, Tokuda H, Yasukawa K. The melanogenesis-inhibitory, antiinflammatory, and chemopreventive effects of limonoids in n-hexane extract of azadirachta indica a. Juss.(neem) seeds. Journal of Oleo Science. 2011;60(2):53-59.
- 150. Rabadeaux C, Vallette L, Sirdaarta J, Davis C, Cock IE. An examination of the antimicrobial and anticancer properties of khaya senegalensis (desr.) a. Juss. Bark

extracts. Pharmacognosy Journal. 2017; 9(4).

- 151. Zhou M-M, Zhang W-Y, Li R-J, Guo C, Wei S-S, Tian X-M, Luo J, Kong L-Y. Antiinflammatory activity of khayandirobilide a from khaya senegalensis via nf-κb, ap-1 and p38 mapk/nrf2/ho-1 signaling pathways in lipopolysaccharide-stimulated raw 264.7 and bv-2 cells. Phytomedicine 2018; 42 152-163.
- 152. Atawodi S, Atawodi J, Pala Y, Idakwo P. Assessment of the polyphenol profile and antioxidant properties of leaves, stem and root barks of khaya senegalensis(desv.) a. Juss. Electronic Journal of Biology 2009; 5(4): 80-84.
- 153. Ebomoyi EW. Biodiversity in west african biomes and the involvement of traditional healers in bio-processing and therapeutic drug development. 2011.
- 154. Ogunlesi M, Wesley O, Ademoye M, Osibote EA. Analysis of essential oil from the stem of chasmathera dependens. 2010.
- 155. Amos S, Binda L, Chindo B, Akah P, Abdurahman M, Danmallam H, Wambebe C, Gamaniel K. Evaluation of methanolic extract of ficus platyphylla on gastrointestinal activity. 2001.
- 156. EI-Beltagi HS, Mohamed HI, Abdelazeem AS, Youssef R, Safwat G. Gc-ms analysis, antioxidant, antimicrobial and anticancer activities of extracts from ficus sycomorus fruits and leaves. 2019.
- 157. Ahmadua A, Zezi A, Yaro A. Anti-diarrheal activity of the leaf extracts of daniellia oliveri hutch and dalz (fabaceae) and ficus sycomorus miq (moraceae). African Journal of Traditional, Complementary Alternative Medicines 2007; 4(4): 524-528.
- 158. El-Sayed MM, Mahmoud MA-A, El-Nahas HA-K, El-Toumy SA-H, El-Wakil EA, Ghareeb MA. Bio-guided isolation and structure elucidation of antioxidant compounds from the leaves of ficus sycomorus. Pharmacologyonline 2010; 3(3): 317-32.
- 159. Muktar B, Bello I, Sallau M. Isolation, characterization and antimicrobial study of lupeol acetate from the root bark of figmulberry sycamore (ficus sycomorus linn). Journal of Applied Sciences Environmental Management 2018; 22(7): 1129-1133.
- 160. Dangarembizi R, Erlwanger KH, Moyo D, Chivandi E. Phytochemistry, pharmacology and ethnomedicinal uses of ficus thonningii (blume moraceae): A review. African

Journal of Traditional, Complementary Alternative Medicines 2013; 10(2): 203-212.

- 161. Ango PY, Kapche DW, Fotso GW, Fozing CD, Yeboah EM, Mapitse R, Demirtas I, Ngadjui Yeboah BT. SO. Thonningiiflavanonol and а thonningiiflavanonol b, two novel flavonoids, and other constituents of ficus thonningii blume (moraceae). Zeitschrift für Naturforschung C 2016: 71(3-4): 65-71.
- 162. Stevens G, Baiyeri K, Akinnagbe O. Ethno-medicinal and culinary uses of moringa oleifera lam. In nigeria. Journal of medicinal plants research 2013; 7(13): 799-804.
- 163. Biswas SK, Chowdhury A, Das J, Roy A, Hosen SZ. Pharmacological potentials of moringa oleifera lam.: A review. International Journal of Pharmaceutical Sciences Research 2012; 3(2): 305.
- 164. Xiong Y, Riaz Rajoka MS, Zhang M, He Z. Isolation and identification of two new compounds from the seeds of moringa oleifera and their antiviral and antiinflammatory activities. Natural Product Research 2020; 1-9.
- 165. Achel DG, Alcaraz M, Adabo K, Nyarko AK, Gomda Y. A review of the medicinal properties and applications of pycnanthus angolensis (welw) warb. 2012.
- 166. Gustafson K, Wu Q-L, Asante-Dartey J, Simon JE, Pycnanthus angolensis: Bioactive compounds and medicinal applications, African natural plant products volume ii: Discoveries and challenges in chemistry, health, and nutrition, ACS Publications2013, pp. 63-78.
- 167. Kamath J, Rahul N, Kumar CA, Lakshmi SM. Psidium guajava I: A review. International Journal of Green Pharmacy 2008; 2(1).
- 168. Anand V, Kumar V, Kumar S, Hedina A. Phytopharmacological overview of psidium guajava linn. Pharmacognosy Journal 2016; 8(4).
- 169. Léandre KK, Mathieu BN, Jean-Baptiste ONG, André KB, Augustin AK, Claude AKJ, Paul YA, Etienne EE. Effects of leaf decoction from lophira lanceolata tiegh. Ex keay (ochnaceae) on arterial blood pressure and electrocardiogram in anesthetized rabbits. The Pharma Innovation 2013; 2(9, Part A): 66.
- 170. Lopatriello A, Sore H, Habluetzel A, Parapini S, D'Alessandro S, Taramelli D, Taglialatela-Scafati O. Identification of a

potent and selective gametocytocidal antimalarial agent from the stem barks of lophira lanceolata. Bioorganic chemistry. 2019;93:103321.

- 171. Sinan KI, Martinović LS, Peršurić Ž, Pavelić SK, Grbčić P, Matulja D, Etienne OK, Mahomoodally MF, Lobine D, Behl T. Metabolite characterization, antioxidant, anti-proliferative and enzyme inhibitory activities of lophira lanceolata tiegh. Ex keay extracts. ndustrial Crops Products 2020; 158 112982.
- 172. Le NHT, Malterud KE, Diallo D, Paulsen BS, Nergård CS, Wangensteen H. Bioactive polyphenols in ximenia americana and the traditional use among malian healers. Journal of ethnopharmacology 2012; 139(3): 858-862.
- 173. Khan Y, Panchal S, Vyas N, Butani A, Kumar V. Olea europaea: A phytopharmacological review. Pharmacognosy Reviews 2007; 1(1): 114-118.
- 174. Bonvino NP, Liang J, McCord ED, Zafiris E, Benetti N, Ray NB, Hung A, Boskou D, Karagiannis TC. Olivenet™: A comprehensive library of compounds from olea europaea. Database 2018; 2018.
- 175. Abubakar U, Yusuf K, Abdu G, Saidu S, Jamila G, Fatima A. Ethnopharmacological survey of medicinal plants used for the management of pediatric ailments in kano state, nigeria. Research journal of pharmacognosy 2017; 4(3): 29-39.
- 176. Ettebong EO, Ubulom PM, Obot D. A systematic review on eleucine indica (l.) gaertn.): From ethnomedicinal uses to pharmacological activities. Journal of Medicinal Plants 2020; 8(4): 262-274.
- 177. Adoho ACC, Zinsou FT, Abiodoun P, Olounlade EVBA, Hounzangbe-Adote MS, Gbangboche AB. Review of the literature of eleusine indica: Phytochemical, toxicity, pharmacological and zootechnical studies. Journal of Pharmacognosy and Phytochemistry. 2021;10(3):29-33.
- 178. Goyal M, Nagori BP, Sasmal D. Review on ethnomedicinal uses, pharmacological activity and phytochemical constituents of ziziphus mauritiana (z. Jujuba lam., non mill). Spatula DD. 2012; 2(2): 107-16.
- 179. Kaleem WA, Muhammad N, Khan H, Rauf A. Pharmacological and phytochemical studies of genus zizyphus. Middle-East J Sci Res. 2014; 21(8): 1243-1263.
- 180. Bello IA, Ndukwe GI, Audu OT, Habila JD. A bioactive flavonoid from pavetta

crassipes k. Schum. Organic medicinal chemistry letters. 2011; 1(1): 1-5.

- 181. Ibekwe N, Adesomoju A, Igoli J, Barry C, Okogun J. An iridoid glucoside from the leaves of pavetta crassipes. Journal of Chemical Society of Nigeria. 2019;44(4).
- 182. Odumosu P, Lough J, Yakubu D, Thomas K, Williamson G, Haroune N. Antimycobacterial assessment and characterization of 5-o-caffeoylquinic acid methyl ester and rutin from pavetta crassipes. Journal of Applied Pharmaceutical Science. 2016;6(10):001-007.
- 183. Amusa TO, Jimoh SO. Ethnobotany and conservation of plant resources of kainji lake national park, nigeria. Ethnobotany Research Applications. 2010;8:181-194.
- 184. Chouna JR, Nkeng-Efouet-Alango P, Lenta BN, Sewald N. Antimicrobial triterpenes from the stem bark of crossopteryx febrifuga. Zeitschrift für Naturforschung C. 2015; 70(7-8): 169-173.
- 185. Chaudhari SY, Ruknuddin G, Prajapati P. Ethno medicinal values of citrus genus: A review. Medical Journal of Dr. DY Patil University. 2016;9(5):560.
- 186. Amorim JL, Simas DLR, Pinheiro MMG, Moreno DSA, Alviano CS, da Silva AJR, Dias Fernandes P. Anti-inflammatory properties and chemical characterization of the essential oils of four citrus species. PloS one. 2016;11(4):e0153643.
- Ugwu-Dike P, Nambudiri VE. A review of ethnomedicinal uses of shea butter for dermatoses in sub-saharan africa. Dermatologic Therapy. 2021; e14786.
- 188. Ojo O, Kengne MH, Fotsing MC, Mmutlane EM, Ndinteh DT. Traditional uses, phytochemistry, pharmacology and other potential applications of vitellaria paradoxa gaertn.(sapotaceae): A review. Arabian Journal of Chemistry. 2021;103213.
- 189. Zhang J, Kurita M, Shinozaki T, Ukiya M, Yasukawa K, Shimizu N, Tokuda H, Masters ET, Akihisa M, Akihisa T. Triterpene glycosides and other polar constituents of shea (vitellaria paradoxa) kernels and their bioactivities. Phytochemistry. 2014;108 157-170.
- 190. Monira KM, Munan SM. Review on datura metel: A potential medicinal plant. Global Journal of Research on Medicinal Plants Indigenous Medicine 2012; 1(4): 123.
- 191. Liu Y, Guan W, Yang C-I, Luo Y-m, Liu Y, Zhou Y-y, Liu L-n, Yang B-y, Kuang H-x. Steroids with potential anti-inflammatory

activity from the roots of datura metel I. Canadian Journal of Chemistry. 2020; 98(2): 74-78.

- 192. Malik R, Bokhari TZ, Siddiqui MF, Younis U, Hussain MI, Khan IA. Antimicrobial activity of nerium oleander I. And nicotiana tabacum I.: A comparative study. Pak. J. Bot. 2015;47(4):1587-1592.
- 193. Akinloye OA, Akinloye DI, Onigbinde SB, Metibemu DS. Phytosterols demonstrate selective inhibition of cox-2: In-vivo and insilico studies of nicotiana tabacum. Bioorganic Chemistry. 2020;102:104037.
- 194. Tietjen I, Gatonye T, Ngwenya BN, Namushe A, Simonambanga S, Muzila M, Mwimanzi P, Xiao J, Fedida D, Brumme ZL. Croton megalobotrys müll arg. And vitex doniana (sweet): Traditional medicinal plants in a three-step treatment regimen that inhibit in vitro replication of hiv-1. Journal of ethnopharmacology 2016;191:331-340.
- 195. Kilani A. Antibacterial assessment of whole stem bark of vitex doniana against some enterobactriaceae. African Journal of Biotechnology. 2006; 5(10).
- 196. Agbafor K, Nwachukwu N. Phytochemical analysis and antioxidant property of leaf

extracts of vitex doniana and mucuna pruriens. Biochemistry Research International. 2011; 2011.

- 197. Yu Sheng Toh E, Lim CL, Pick Kiong Ling A, Chye SM, Koh RY. Overview of the pharmacological activities of aframomum melegueta. Pertanika Journal of Tropical Agricultural Science. 2019;42(1).
- 198. Mohammed A, Gbonjubola VA, Koorbanally NA, Islam MS. Inhibition of key enzymes linked to type 2 diabetes by compounds isolated from aframomum melegueta fruit. Pharmaceutical Biology. 2017;55(1):1010-1016.
- 199. Kumar Gupta S, Sharma A. Medicinal properties of zingiber officinale roscoe-a review. Pharm. Biol. Sci 2014; 9 124-129.
- 200. Ezzat SM, Ezzat MI, Okba MM, Menze ET, Abdel-Naim AB. The hidden mechanism beyond ginger (zingiber officinale rosc.) potent in vivo and in vitro anti-inflammatory activity. Journal of Ethnopharmacology. 2018;214:113-123.
- 201. Kumar G, Karthik L, Rao KB. A review on pharmacological and phytochemical properties of zingiber officinale roscoe (zingiberaceae). Journal of Pharmacy Research. 2011;4(9):2963-2966.

© 2022 Adigwea et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history: The peer review history for this paper can be accessed here: https://www.sdiarticle5.com/review-history/80434