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Feedback is an essential part of all communication, and agents communicating with

humans must be able to both give and receive feedback in order to ensure mutual

understanding. In this paper, we analyse multimodal feedback given by humans towards

a robot that is presenting a piece of art in a shared environment, similar to a museum

setting. The data analysed contains both video and audio recordings of 28 participants,

and the data has been richly annotated both in terms of multimodal cues (speech, gaze,

head gestures, facial expressions, and body pose), as well as the polarity of any feedback

(negative, positive, or neutral). We train statistical and machine learning models on the

dataset, and find that random forest models and multinomial regression models perform

well on predicting the polarity of the participants’ reactions. An analysis of the different

modalities shows that most information is found in the participants’ speech and head

gestures, while much less information is found in their facial expressions, body pose and

gaze. An analysis of the timing of the feedback shows that most feedback is given when

the robot makes pauses (and thereby invites feedback), but that the more exact timing

of the feedback does not affect its meaning.

Keywords: feedback, presentation, agent, robot, grounding, polarity, backchannel, multimodal

1. INTRODUCTION

Agents communicating with humans must be able to both give and receive communicative
feedback in order to ensure mutual understanding (Clark, 1996). While there has been a lot of
work on how conversational agents should be able to provide feedback at appropriate places (Ward
and Tsukahara, 2000; Poppe et al., 2010; Gravano and Hirschberg, 2011), less work has been done
on how to pick up and interpret feedback coming from the user. To investigate this, we have in
previous work explored the scenario of a robot presenting a piece of art in a shared environment,
similar to a museum setting (Axelsson and Skantze, 2019, 2020). In such settings, the presenter
can be expected to have the turn the majority of the time, while the listener (the audience) provides
positive and negative feedback to the presenter. In our previous work, we have shown how the agent
can use such feedback to adapt the presentation in real time, using behaviour trees and knowledge
graphs to model the grounding status of the information presented (Axelsson and Skantze, 2020),
and that an agent that adapts its presentation according to the feedback it receives is preferred by
users (Axelsson and Skantze, 2019). However, since we have so far only evaluated the system using
either a Wizard of Oz setup (Axelsson and Skantze, 2019) or with simulated users (Axelsson and
Skantze, 2020), we have not yet addressed the question of how feedback in this setting could be
automatically identified and classified. Identifying feedback is an important first step in creating
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an intelligent virtual agent for presentation. If a listener-aware
system can identify and classify signals used by its audience as
positive or negative, it opens up the possibility of using that
classified feedback to create a highly adaptive, engaging agent.

A face-to-face setting, such as the one explored here,
provides a wide range of different ways of expressing feedback
across different modalities, including speech, head nods, facial
expressions, gaze and body pose. Some of these modalities are
harder to pick up and process by the agent than others, and some
modalities might be complementary or redundant in terms of
which information they carry. This calls for a more thorough
analysis of how feedback is actually expressed in a robot-human
presentation scenario, and what modalities are most important
to process. In this article, we analyse a dataset of human-robot
interactions recorded using a Wizard of Oz setup, to find out
how humans spontaneously produce feedback toward a robot
in these different modalities. Whereas much research on social
signal processing is based on automatic analysis of the audio
and video signals, we base this analysis on manually annotated
features in the recorded data. This way, we can make sure that
the findings are not dependent on the accuracy of any automatic
detection of feedback signals.

Throughout this paper, we will look for answers to
these questions:

1. What modalities are most commonly used to convey negative
and positive feedback?

2. Are any modalities redundant or complimentary when it
comes to expressing positive and negative feedback?

3. Does the interpretation of feedback as positive or negative
change based on its relative timing to other feedback and the
statement being reacted to?

4. Are there individual differences in the use of modalities to
communicate different polarities of feedback?

This article is structured as follows. In section 2, we describe
recent and basic work in the field of human-to-agent feedback,
and feedback between humans in general. In section 3, we
describe how we collected and annotated the data set used in
this paper, and introduce the statistical models we use. Section 4
describes statistical patterns we found in the data as well as work
on statistical models for approximating positivity and negativity
based on multimodal signals. Section 5 is a discussion where
we try to answer the questions listed above, and in section 6
we conclude and summarise the findings. The data we used for
our study and analysis have been published; see section Data
Availability Statement at the end of this paper.

2. RELATED WORK

2.1. Presentation Agents
Presentation agents (i.e., agents that present information to
humans) can be seen as a sub-domain of conversational agents.
However, whereas the initiative in general conversation can be
mixed, the agent doing the presentation is expected to have
the initiative most of the time, while paying attention to the
listener’s level of understanding or engagement. Kuno et al.
(2007) found that mutual gaze and co-occurring nods were

important indicators of an audience’s engagement with a robot’s
presentation in a museum scenario. Recently, Velentza et al.
(2020) found that a pair of presenting robots were more engaging
than a single robot, but the embodiment of their robots—an
Android tablet on top of a tripod—may make their results hard
to apply to other, more embodied, scenarios. Iio et al. (2020) have
shown that it is technologically feasible to have a robot walking
around an enclosed exhibition at a museum. They present a
robot that can identify individual visitors and use this identity
information to adapt what the robot says, but the system is not
interested in feedback from the users, beyond letting the users
walk away if they are not interested in the presentation.

Another space where embodied presentation agents are used
is the field of robot teachers. An argument in favour of
robot teachers, proposed by Werfel (2014), is that they can be
adaptive to the individual student while being as appealing as
a human teacher to interact with. A typical teaching agent is
the RoboThespian robot by Verner et al. (2016), which purely
adapts to student responses in terms of which answer they
choose on multi-choice questions; this is not an adaptive social
agent, but rather a type of branching dialogue management.
Tozadore and Romero (2020) presented a framework for how
a virtual teaching agent can choose which questions to ask of
a student depending on multimodal features—on a high level,
the same types of right-or-wrong evaluations as Verner et al.
(2016), but also more low-level features like facial features and
attention estimated from gaze direction. Multimodal approaches
for sensing student feedback in a school scenario do exist,
even if they are not directly connected to a teaching robot;
Goldberg et al. (2021) have presented proposals for multimodal
machine-learning approaches for estimating individual students’
engagement in classroom scenarios, but the approach may not
extend beyond the specific setting.

A large body of work in connection to presentation agents
relates to their ability to position themselves relatively to their
audience in an actual museum scenario. While this is an
important part of implementing an actual agent in the field, this
track of research does not address the grounding of presented
content toward the audience (Nourbakhsh et al., 2003; Kuzuoka
et al., 2010; Yamaoka et al., 2010; Yousuf et al., 2012).

2.2. Feedback and Backchanneling in
Communication
In the view of Yngve (1970), communication happens over a
main channel, which carries the main message, as well as a
back channel. Signals on the back channel—which have come to
be called simply backchannels themselves—constitute feedback
from the listener to the speaker. Feedback can be considered to be
positive or negative (Rajan et al., 2001). This can be referred to
as the polarity of the feedback (Allwood et al., 1992; Buschmeier
and Kopp, 2018). On a wider scope, the polarity of entire
utterances or statements is often referred to as sentiment (Wilson
et al., 2009). Peters et al. (2005) gave the following example of
multimodal feedback with a distinctly negative polarity:

“For instance, to show you don’t trust what is being said, a
negative backchannel of believability, you can incline your head
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while staring obliquely and frowning to the Sender: two gaze
signals combined with a head signal.” (Peters et al., 2005)

A complementary view to that of Yngve (1970) was presented
by Clark (1996), who instead split communication into track 1
and track 2. The first track contains main contributions into the
discourse, and the second track contains comments on content
on the first track. Notably, this is not connected to turn-taking,
unlike Yngve’s main and back channel model: if the listener takes
the turn and says “Wasn’t his father dead by then?”, then they
have taken the turn, so the utterance is not part of the back
channel, but the utterance is purely a comment on a previous
utterance, so it is part of track 2.

Bavelas et al. (2000) proposed the difference between specific
backchannels and generic backchannels. In this view, specific
backchannels are direct comments on the context (e.g., frowning,
“wow!”) and generic backchannels are less specific signals whose
main function is indicating that the listener is paying attention
to the speaker’s speech. Bavelas et al. (2002) also showed that
gaze cues were an important signal from the speaker to invite
backchannel activity from the listener. The view of backchannels
as a tool by which the listener can shape the story of the speaker
has been supported by a corpus study by Tolins and Fox Tree
(2014). Their study showed that generic backchannels were likely
to lead to the speaker continuing their story, while specific
backchannels would lead to an elaboration or repair.

Clark (1996) described communication as a joint project,
where both the speaker and listener give and receive feedback
on several levels to fulfil the task of making the message come
across. Clark and Krych (2004) showed that participants in an
experiment were able to build a LEGOmodel more quickly when
coordinating the building activity with an instructor, through
speech and other modalities. This illustrates the parallel between
a cooperative task and the communication used to facilitate the
cooperative task. In the view of Clark (1994), communication is
coordinated on four levels:

1. Vocalisation and attention
2. Presentation and identification
3. Meaning and understanding
4. Proposal and uptake

Each of these four levels forms a pair of actions on behalf of
the speaker and the listener. Both actions must be performed
at the same time for either one to be meaningful. The goal
of an interaction is to reach mutual acceptance, where both
participants believe that proposal and uptake have been achieved
(Clark, 1996). Allwood et al. (1992) presented a similar model,
where feedback serves primarily the four functions of indicating
contact, perception, understanding and attitudinal reactions. In
the model by Clark (1996), attitudinal reactions implicitly
fall under acceptance, to the extent that they are covered by
this model.

Feedback ladders like those presented by Clark (1996) create
a system where polarised feedback on one level can imply
feedback of the same or another polarity on another level. Clark
(1996) defines two rules for how this process functions with
the four levels mentioned above. Upward completion means that

negative feedback on a low level of feedback implies negative
feedback on all higher levels—negative attention implies negative
identification, understanding and uptake since one can not
identify what one is not paying attention to, can not understand
what one has not identified, and can’t accept what one has
not understood (Clark, 1996). The inverse rule of downward
evidence instead states that any feedback on a level—positively
or negatively polarised—implies positive feedback on all lower
levels. If one provides evidence of positive understanding, then
this implies that the listener must also have identified and
attended to the message (Clark, 1996). Notably, these two rules
mean that positive feedback on a level says nothing about
the levels above it—when the listener provides evidence of
having positively understood an utterance, this neither says
that they have accepted, nor that they have not accepted, that
same utterance.

The grounding criterion is the level of feedback, among
the four listed above, upon which feedback must be given for
both the speaker and the listener to believe that communication
works at any given point in time (Paek and Horvitz, 2000). For
example, sometimes it might be enough that the listener shows
continued attention, but sometimes the speaker might want to
make sure that the listener has actually understood what has
been said. If the speaker does not get enough feedback from
the listener, the speaker might elicit feedback. The grounding
criterion can change over the course of a conversation, or over
the course of an individual utterance, as the speaker signals
appropriate points in time for the listener to deploy backchannel
signals, or elicits feedback on a higher level. Clark and Brennan
(1991) also argued that the grounding criterion depends on the
channels of communication being used for the discourse, with
more limitedmethods of communication (phone,mail) requiring
more explicit positive feedback than more multimodal methods
of communication (face-to-face).

In the context of a presentation agent, the model of joint
projects, joint problems and joint remedies presented by Clark
(1996) can be a useful model for disambiguation between
different types of feedback to the system, and a way to choose
what strategies to use to repair problems in communication
(Baker et al., 1999; Buschmeier and Kopp, 2013; Axelsson and
Skantze, 2020). Buschmeier and Kopp (2011) argued that a
Bayesian model, taking into account the previously estimated
state of the user as well as the feedback as it is delivered,
interpreted incrementally, is an appropriate method for a
conversational agent to estimate the polarity and grounding level
of the user’s feedback at any given point in time. The advantage
of such a model is that an absence of feedback can be represented
as the user not having provided evidence of any polarity, which
opens up for elicitation strategies.

If a presentation agent can identify and classify feedback given
by the user, there are several ways in which the agent can use
it to adapt the presentation. In Axelsson and Skantze (2020),
we used a knowledge graph to keep track of the grounding
status of specific facts presented to the user, creating a direct
link between grounding and what statements are possible to
present, as well as how the robot can refer to entities in the
presentation. An alternative approach to this method is the
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approach presented by Pichl et al. (2020), where edges were
inserted in a knowledge graph, containing information about the
user’s attitude and understanding of concepts. Alternative ways
to adapt to identified and classified feedback have been presented
by Buschmeier and Kopp (2011).

2.3. Feedback in Different Modalities
Feedback from the listener toward the speaker can be expressed
in different modalities. Vocal feedback uses the auditory channel,
and has both a verbal/linguistic component (the words being
spoken), as well as non-verbal components, such as prosody
(Stocksmeier et al., 2007; Malisz et al., 2012; Romero-Trillo,
2019). Non-vocal, non-verbal feedback is expressed in the visual
channel (Jokinen, 2009; Nakatsukasa and Loewen, 2020), and can
take the forms of gestures (Krauss et al., 1996), gaze (Kleinke,
1986; Thepsoonthorn et al., 2016), facial expressions (Buck, 1980;
Krauss et al., 1996) and pose (Edinger and Patterson, 1983).
In this section, we will provide a more thorough discussion on
previous research related to feedback in those modalities.

2.3.1. Speech
A common form of vocal feedback are backchannels, like “uh-
huh” (Yngve, 1970). There is also a span of vocal feedback that
takes place somewhere between the main channel and the back
channel. A specific form of such feedback is the clarification

request, defined by Purver (2004) as a “dialogue device allowing
a user to ask about some feature (e.g., the meaning or form)
of an utterance, or part thereof.” A similar notion is that of
echoic responses (e.g., “tomorrow?”), where the listener repeats
part of the speaker’s utterance as a backchannel. These may
serve as either an acknowledgement that the listener has heard
that specific part of the speaker’s utterance, or a repair request,
where the original speaker must make an effort to clarify the
previous utterance. Whether these should be considered negative
or positive depends on whether they are interpreted as questions
(i.e., a request for clarification) or not, and this difference can (to
some extent) be signalled through prosody. The most commonly
described tonal characteristic for questions is high final pitch
and overall higher pitch (Hirst and Di Cristo, 1998), and this is
especially true when the word order cannot signal the difference
on its own. Several studies of fragmentary clarification requests
(i.e., which signal negative feedback) have shown that they are
associated with a rising final pitch, in both Swedish (Edlund et al.,
2005) and German (Rodríguez and Schlangen, 2004).

The distinction between positive and negative feedback is
also similar to the notion of go on and go back signals in
dialogue, as proposed by Krahmer et al. (2002). In an analysis
of a human-machine dialogue corpus, they found that go back
signals were longer, lacked new information and often contained
corrections or repetitions. They also found that there is a strong
connection between the prosody and timing of the listener’s
response and whether the response is interpreted as go on or
go back. Additionally, Krahmer et al. (2002) pointed out that
the classification as go on and go back was dependent on the
dialogue context; if the system says “Should I repeat that?” or
“Did you understand?”, the meaning of answers like “yes” or
“no” can depend entirely on prosody and timing. Even when
extended to more classes than go on and go back, like in the

feedback classification schemes by Clark (1996) or Allwood et al.
(1992) presented in section 2.2, the argument that context and
multimodal signals (beyond pure linguistic content) can help
distinguish between minimal pairs still holds.

Negative feedback can also be linked to the notion of
“uncertainty,” i.e., signs of uncertainty can also be regarded
as negative feedback on some of the levels of understanding
discussed in section 2.2. Skantze et al. (2014) explored user
feedback in the context of a human-robot map task scenario,
where the robot was instructing the users on how to draw a
route. They showed that participants signalled uncertainty in
their feedback through both prosody and word choice (lexical
information). Uncertain utterances were shown to have a flatter
pitch contour than certain utterances, and were also longer and
had a lower intensity. Hough and Schlangen (2017) presented a
grounding model for human-robot interaction where the robot
could signal its uncertainty about what the user was referring
to. The scenario was a pentamino block game, where the robot’s
goal was to identify the piece that the human referred to. Hough
and Schlangen (2017) showed that users picked up the robot’s
uncertainty especially when it communicated it by moving more
slowly toward the piece it thought the user was referring to.
Hough and Schlangen (2017) framed uncertainty as a measure of
the agent’s certainty and understanding of its actions, as opposed
to its knowledge—this is an extension of grounding.

2.3.2. Gaze
Gaze can be used for feedback from a listener toward a speaker,
but this typically happens in combination with other signals and
modalities. Mehlmann et al. (2014) showed that gaze is used by
listeners to show that they understand which object the speaker
is referring to, and that this co-occurs with the physiological
process of actually finding the object. This also serves as a signal
of joint attention from the listener toward the referred object.
Gaze is also a way to improve the user’s perception of the human-
ness and social competence of the system (Zhang et al., 2017;
Kontogiorgos et al., 2021; Laban et al., 2021).

Gaze is sometimes considered a gestural backchannel
(Bertrand et al., 2007), although it is more commonly considered
to be a turn-taking indication or turn-taking cue (Skantze, 2021).
The uses of gaze as a turn-taking cue are not directly relevant
to this paper, as our scenario has a strict turn-taking protocol,
where the robot is the main speaker and the user mostly provides
brief feedback.

On a low feedback level, mutual gaze can be used as a
sign that a user wants to interact with the system, a signal
called engagement by Bohus and Rudnicky (2006). Kuno et al.
(2007) found that mutual gaze and co-occurring nods were
important indicators of an audience’s engagement with a robot’s
presentation in a museum scenario. Nakano and Ishii (2010)
presented a model of gaze as a sign of mutual engagement. An
agent that used a more sophisticated gaze sensing model was
found to be preferrable to test participants.

2.3.3. Head Movements
Similarly to the results related to gaze by Bavelas et al. (2002)
and the results related to prosody by Ward and Tsukahara
(2000), McClave (2000) has shown that head-nods are a viable

Frontiers in Computer Science | www.frontiersin.org 4 January 2022 | Volume 3 | Article 741148

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles


Axelsson and Skantze Multimodal Feedback During Robot-Human Presentations

listener response to a backchannel-inviting cue from the speaker,
especially if that cue is also a nod. Stivers (2008) presented
the view that nods are a stronger signal than conventional
backchannels like “uh-huh” and “OK,” arguing that they present
evidence that the recipient (listener) is able to visualise being part
of the event being told by the teller (speaker).

Heylen (2005) presented a list of head movements together
with the communicative functions they often serve, both
for speakers and listeners. Heylen (2005) argued that head
movements can be a communicative signal on both track 1 and
track 2 as defined by Clark (1996) (see section 2.2). However,
the examples presented by Heylen all related to head movements
produced by the speaker, and were co-ordinated with speech or
utterances that are unambiguously part of track 1— such as when
the speaker produces an inclusive sweeping hand movement
while saying the word “everything,” indicating that the scope of
the word is wide. Other gestures and functions listed by Heylen,
like nodding to signal agreement, were more unambiguously part
of track 2.

In a multimodal study of the ALICO corpus, Malisz et al.
(2016) found that listeners used head movements twice as often
as speech in response to being told a story by a speaker.
Additionally, nods are by far the most common head movement
feature, and multiple nods are twice as common as single nods.
Similarly, head shakes occur much more often in multiples than
one-by-one, but the opposite holds for head tilts and head jerks,
which are significantly more likely to occur one-by-one than in
multiples. Singh et al. (2018) arrived at different rates of usage of
modalities when annotating a corpus of children reacting to each
other’s stories, finding that gazing on the speaker, smiling, leaning
toward the speaker, raising one’s brow, and responding verbally
are all more common behaviours than nodding. While their
results may not extend to adults, Singh et al. (2018) also found
that adult evaluators considered certain signals to be indicative
of positive or negative attention based on context—nodding was
correlated with positive attention if the nod was long, but with
negative attention if the nod was fast. Oertel et al. (2016) showed
that head-nods are perceived as less indicative of attention the less
pronounced they are, the slower they are, and the shorter they are,
and conclude that head-nods are not merely a signal of positive
attention, but rather reflect various degrees of attentiveness. The
apparent difference between these results and those of Singh et al.
(2018) could be argued to be because Singh et al. studied children,
whose gestural behaviour is known to be different from that of
adults (Colletta et al., 2010).

Navarretta et al. (2012) found that multiple nods are more
common than single nods in Swedish and Danish experiment
participants, while Finnish participants used single nods more
often than multiple nods. This highlights how signals can be
used differently even in cultures that are closely related to
each other.

Novick (2012) showed that head-nods in dyadic conversations
between humans were significantly cued by gaze—i.e., the listener
would nod when gazed at by the speaker. This allows the listener
to use feedback when it is the most likely to be picked up by the
speaker, in a modality fitting for this. Novick and Gris (2013)
showed that nods were less frequent inmulti-party conversations,

where there was more than one listener, and not necessarily cued
by gaze.

Sidner et al. (2006) showed that there was a significant effect
on how many head nods users of a system used after they figured
out that the system could recognise such signals. These results
generally go together with the findings by Kontogiorgos et al.
(2021) and Laban et al. (2021), showing that this applies for head
movements and speech, respectively.

2.3.4. Facial Expressions
Facial expressions are typically viewed as a sign of the listener’s
emotional state (Mehlmann et al., 2016): for example, eyebrow
movements are known to signal interest or disbelief from a
listener toward a speaker (Ekman, 2004). This is grounding
on a high level—as mentioned in section 2.2, Allwood et al.
(1992) placed attitudinal reactions as the highest level of the
feedback scale, while Clark (1996) would classify it as a variant
of showing acceptance.

Jokinen and Majaranta (2013) argued that facial expressions
are closely tied to gaze signals; when interacting with a human, or
with an embodied agent, listeners tend to gaze at the speaker’s
eyes and upper face region to be prepared to catch subtle
facial expressions.

2.3.5. Body Pose
Body pose is typically only used as a unimodal indication of
whether the sensed individual wants to engage with the system
or not, as explored by Bohus and Rudnicky (2006). This is also
how body pose was used in the model for estimating classroom
engagement presented by Goldberg et al. (2021). Engagement
corresponds to the lowest level of Clark’s four levels of feedback
described in section 2.2: attention. An exception to this is
shrugging, which Goldberg et al. (2021) found to be used by
children toward a reading partner agent. Shrugging was found
by Goldberg et al. (2021) to signal that the child does not know
the answer to a question. We would argue that this implies
positive identification but negative or ambiguous understanding
by the scheme detailed in section 2.2. Battersby (2011) showed
that speakers were significantly more likely to use hand gestures
than listeners.

Oppenheim et al. (2021) recently showed that leaning was
used as an extended gaze cue by participants in an experiment
where they had to learn how to build an object from another
participant. In this experiment, the learners, corresponding to
our listeners, coordinated gaze cues by leaning around 40%
of the time when being taught how to build a smaller Lego
model, and 26% of the time when being taught how to
build a larger pipe structure—while the responses appeared to
correspond to the physical properties of the object, indicating
that learners’ responses were cued by physically wanting to see
the object being referred to, the gaze and lean signals happened
in response to inviting cues by the teacher, indicating that
the signals both served a grounding purpose and a practical
purpose, simultaneously.

Park et al. (2019) found that there was a strong connection
between the body pose of children— specifically the gesture of
leaning forwards—and their intent to engage with a system.
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Zaletelj and Košir (2017) have presented models for predicting
classroom engagement from body pose in this sense. Body pose
can also be used to predict the emotional state of a user: Sun
et al. (2019) used body pose as an input to estimate subjects’
emotional state, training a neural network on a dataset labelled
with the speaker’s intended emotional state and the listener’s
interpretation. This was then used in a robot that was consistently
evaluated as more emotionally aware than a baseline.

2.3.6. Combining Modalities
It important to not just study feedback functions of individual
modalities, but to also consider their combined effects. Clark
and Krych (2004) showed how multimodal grounding worked
in an instructor-instructee scenario where a LEGO model
was constructed by one participant. The data showed many
multimodal patterns in how participants coordinated their
speech with other modalities to ensure grounding (often
specifically establishing which LEGO piece the speaker was
referring to). Crucially, participants used visual modalities (for
example, holding up a LEGO piece) when that modality resulted
in an easier and faster reference than speech.

In a corpus study focusing on physiological indications of
attention, Goswami et al. (2020) found that the rate of blinking,
pupil dilation, head movement speed and acceleration, as well as
prosodic features and facial landmarks can create a good model
for predicting children’s engagement with a task as well as when
they are going to deploy backchannels. The authors’ random
forest model prioritises gaze as the most important feature for
measuring whether the children were engaged with the task.

Visser et al. (2014) presented amodel for how a conversational
system could show grounding to a speaking user. This is the
inverse of the scenario analysed by us, but the approach, where
specific backchannels were assigned to specific states of hierarchic
subcomponents of the system, is interesting. For example, their
agent nodded if the language understanding component of the
system reported a high confidence, and frowned if there was
a pause longer than 200 ms and the language component was
not confident that it had understood the last thing the speaker
said. Kontogiorgos et al. (2019) presented a model of estimating
uncertainty of a test participant by combining gaze and pointing
modalities, but the authors conclude that it is uncertain how the
results extend to domains outside of the specific test scenario.

Oppenheim et al. (2021) showed that the modalities that
a listener used depended on the context of the cue used
by the speaker. The scenario was a teacher/student scenario
where the participants took turns teaching each other how
to build an object. Depending on if the teacher looked at
the student to supplement, highlight or converse, the student’s
response modalities significantly changed. Nod responses were
significantly more common than speech responses if the teacher’s
act was supplement, nods and speech were approximately as
common when responding to highlight actions, and speech was
significantly more common in response to converse acts.

Hsieh et al. (2019) used multimodal features, specifically
speech and head movements, to estimate the certainty of users
of their virtual agent. They used certainty and uncertainty as a
term for feedback that can be mapped to several of the levels

we described in section 2.2. While the authors showed that
applying statistical models to the data is a viable way to estimate
self-reported certainty in the answers the users gave to the
robot’s questions, the study was limited by the small number
of participants.

To conclude this review, a large body of work exists that
investigates how individual modalities can be sensed and
interpreted in terms of feedback. There is less work that
investigate the combined effect of several modalities as feedback
to achieve some task-specific goal between an agent and a user.
More specifically, we have not found any previous systematic
analyses of how human listeners express feedback in various
modalities, as a response to a presentation agent.

3. METHOD

3.1. Data Collection
For our analysis, we set up an experiment where participants
interacted with a robot presenting a piece of art, as seen in
Figure 1, similar to that used in Axelsson and Skantze (2019).
As a robot platform, the Furhat robot head was used, which
has a back-projected animated face and a mechanical neck (Al
Moubayed et al., 2012). The robot presented two paintings1 to
each participant. Although the agent communicated with the
participants in English, participants were allowed to respond in
Swedish or English if they wished. A Wizard of Oz setup was
used, and the Wizard sat behind a separating wall on the other
side of the room. Participants were led to believe that they were
interacting with a fully autonomous system, and that theWizard’s
role was only to make sure that data were being successfully
recorded. The presentation was automated to a large extent,
but the Wizard controlled whether the system would repeat
utterances, move on, or clarify. To triggermore negative feedback
(for the sake of the analysis), the system would misspeak with a
certain probability (also controlled by the Wizard). Misspeaking
was implemented by replacing a key part of the utterance with
something else or by muting parts of the synthesised speech.

In total, 33 test participants were recruited. For technical
reasons, data from 5 participants had to be discarded, leaving
28 usable participants. The participants were recorded on video
from multiple angles, and were equipped with a microphone
which recorded their speech. A snapshot from the video
recording can be seen in Figure 1.

3.2. Manual Data Annotation
Video and audio data recorded from the experiment were
synchronised and annotated in multiple ways. We cut the data
into clips representing the time between the robot beginning
an utterance and the video frame before it started its next
utterance; this left us with between 59 and 125 clips per painting
presentation. For the rest of this paper, clip will be used to refer
to a video recording of the robot saying something, and the full

1The first painting presented to each participant was Pieter Brueghel’s Tower of
Babel, and the second was Gentile Bellini’s Miracle of the Cross fallen into the

channel of Saint Lawrence.
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FIGURE 1 | A snapshot of an experiment participant, shown from all three

angles from which we recorded them. The participant’s face has been blurred

for privacy. Top: the participant is shown from behind, illustrating the set-up of

our experiment, with the presenting Furhat head visible.

reaction of the test participant to that utterance before the robot
starts saying its next line.

3.2.1. Feedback Polarity of Each Clip
Each clip where the participant’s turn was at least five seconds
long was annotated based on what type of feedback it contained,
using Amazon Mechanical Turk. Our original idea was to
classify the feedback as being positive or negative acceptance,
understanding, hearing or attention, as defined by Clark (1996)
(discussed in section 2.2 above). However, initial results from
annotating our data using these labels gave agreement scores
that we considered too low to annotate the entire dataset this
way. We believe that the scientific definitions of acceptance,
understanding, hearing and attention were too nuanced and
theoretical for laypeople to apply consistently, and that our
annotators were mostly annotating clips as positive or negative
attention, hearing, understanding or acceptance based on their
immediate understanding of those words. This would have made
the annotations questionable even if we were able to get a higher
agreement score.

As a result of this, we decided to instead use the labels positive,
negative, and neutral, and ignore the grounding level with which
the feedback could be associated. The positive and negative labels
were described to the annotators equivalently to the go on and
go back labels used by Krahmer et al. (2002), with the neutral
label representing cases where the annotator did not think that
the participant’s response was strong enough to classify it as either
of the others:

• “Positive” was described as “Pick this if you think the person
is showing that the presentation can continue the way it is
currently going, without having to stop to repair something
that went wrong. If the person shows understanding of what

TABLE 1 | The distribution of output features across all clips.

Positivity Negativity Neutrality Count Argmax classification

0 0 3 190 Neutral

0 1 2 109 Neutral

0 2 1 51 Negative

0 3 0 202 Negative

1 0 2 146 Neutral

1 1 1 74 Neutral

1 2 0 74 Negative

2 0 1 123 Positive

2 1 0 120 Positive

3 0 0 1,034 Positive

the robot said, or asks a followup question, then this may be
the right option.”

• “Negative” was described as “This option is right if you think
the person is showing that the robot needs to stop and repeat
something, or that it needs to explain something that the
person didn’t understand, hear or see.”

• “Neutral” was described as “If the person doesn’t really react
or show any clear signals, or hasn’t really had time to react by
the end of the video, you should pick this.”

Each clip was annotated by three crowdworkers. In effect, this
classified each clip by the polarity of the feedback contained in it,
as defined in section 2.2.

Table 1 shows how often each combination of positive,
negative, and neutral evaluations appear. If the three evaluations
are viewed as votes for a class, then the most common class
is three votes for positivity (49%), followed by three votes for
negativity (10%) and three votes for neutrality (9%). The final
label for each clip in our dataset is determined based on the
majority vote. 74 clips receive one vote for each class, and these
are assigned the neutral label.

The distributions seen in Table 1 give a Fleiss’ κ value of
κ ≈ 0.582, which is moderate agreement on the scale by Landis
and Koch (1977). For a classification or annotation task, higher
κ values than this could be beneficial, but we accept this value
since there are likely grey zones between the classes, and it
is not obvious that clips with very few signals belong to any
of the three classes without knowing the context of the clip.
One annotator may assume that no signals are a positive signal,
presuming that the context before the clip started is such that the
listener has established a low grounding criterion for continuing
the dialogue. Another annotator may have seen other clips of
the robot eliciting feedback from users, and assume that the
robot always wants the listener to react in some way, and thus
evaluates the same clip as negative. For comparison, Malisz et al.
(2016), who classified dialogues using four feedback levels similar
to the schemes described in section 2.2, achieved a κ score of
around 0.3.
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3.2.2. Multimodal Signals
Separately from the Mechanical Turk polarity classification, we
also annotated each clip with what multimodal signals were used
by the participant over time. This was done by a small number of
annotators employed at KTH. We based our annotation system
on the MUMIN standard by Allwood et al. (2007). To stay
consistent with the clip format that had been used onMechanical
Turk, the multimodal feature annotation was also done clip-
by-clip, rather than for the entire recording of a participant’s
interaction with the robot. This had the downside of making
signals that were cut off by the beginning or end of a clip
impossible to annotate properly, and the advantage of ensuring
that only signals that could be fully seen by the Mechanical Turk
evaluators were annotated.

In the MUMIN standard (Allwood et al., 2007), multimodal
expressions are only annotated if they have a communicative
function, and ignored if they are incidental to the communication
(for example, if a participant blinks because their eyes are
dry). MUMIN standardises how signals should be annotated for
their feedback function (contact and perception, and optionally
understanding), but we did not use this part of the standard,
since we assumed that such information was captured in the
polarity annotation by the Mechanical Turk crowdworkers.
Finally, MUMIN is intended to be used for annotation of face-
to-face interactions between two participants where the signals
used by both participants are relevant and where turn-taking is
important. However, since our scenario was very restricted in
terms of turn-taking, and since we knew which behaviours were
used by the speaking robot, we restricted our annotation to only
use MUMIN constructs for annotating the signals used by the
listening user, ignoring their meaning.

3.3. Data Processing
We post-processed and merged the annotated data from
Mechanical Turk and our internal MUMIN-like annotation.
Since the goal of this analysis is to find out what feedback could
be detected in an online interaction, the post-processing involved
taking steps to make the multimodal data more feasible to have
been generated in real time. For example, two of the features
annotated by our multimodal annotation weremultiple nods and
single nod—but it would be impossible for a real-time system to
know if a nod is the first of many or a single nod in isolation at the
time that the head gesture starts. To address this for head gestures
and speech, our post-processing procedure involved replacing all
head gesture features by an arbitrary ongoing head gesture feature.
The feature that describes what the head gesture had been is only
delivered on the last frame of ongoing head gesture. The same was
done to speech (ongoing speech).

As a separate part of the post-processing process, we converted
the transcribed text of the participants’ speech to binary features
representing the contents of the speech: can’t hear, can’t see, no
and yes. These features were based on whether the transcribed
text contains some variation on those phrases in either Swedish
or English. The prosody of the speech segment was also converted
into rising F0 or falling F0 through Praat (Boersma and van
Heuven, 2001) by comparing the average F0 for the first half of
the speech segment to the F0 in the second half, in the cases

where Praat was able to extract these values. As mentioned in
the previous paragraph, these classifications of speech contents
or prosody are only delivered on the last frame of the ongoing
speech annotation.

Our annotators also labelled speech as backchannels or non-
backchannels. This distinction is not universal, and our labelling
corresponds to what Duncan and Fiske (1977) would instead call
short back-channels and long back-channels. Additionally, each
speech segment was transcribed (if intelligible). Our annotators
disagreed on whether short speech like yeah or OK should be
considered backchannels or not, with a tendency to annotate
them as non-backchannels. We retroactively went through the
data and changed any speech segment that had been transcribed
as just the single word yes, yeah, OK, okay, yep, and the
corresponding phrases in Swedish, to backchannels if they had
been annotated as non-backchannels. Longer speech segments
containing the words in question (e.g., “OK, that makes sense.”)
were left as non-backchannels.

3.4. Statistical Models
Apart from analysing how the multimodal signals correlate with
the three feedback labels (positive, negative, and neutral), we also
apply four statistical models to our dataset, in order to analyse to
what extent it is possible to predict these labels from the signals.
We here provide a brief overview of these models.

3.4.1. Random Forest
Random forestmodels are a variant of decision treemodels where
a number of trees classify the data. If used for classification, like
in our case, themajority vote determines the forest’s classification.
Random forests were originally proposed by Svetnik et al. (2003).
They have previously performed well on feedback analysis tasks,
like in the recent work by Jain et al. (2021), who recently
successfully used random forests to identify multimodal feedback
in clips of test participants, or in the work by Soldner et al.
(2019), who successfully used random forests to classify whether
participants in a study were lying based on multimodal cues. Yu
and Tapus (2019) used random forests to classify emotions based
on the combined modalities of thermal vision and body pose,
finding that the random forest model successfully combined the
modalities to achieve better performance than on either modality
in isolation.

3.4.2. RPART Tree
RPART, short for recursive partitioning, is an algorithm for how to
split the data when generating a decision tree. The trees are thus
simply decision trees, and RPART is a name for the algorithm
used to generate them (Hothorn et al., 2006).

RPART trees were not included in our analysis because
we expected them to outperform random forest methods, but
rather because they are easy to visualise and generate human-
understandable patterns for classification. A brief analysis of the
generated RPART trees can be found in section 4.2.3.

3.4.3. Multinominal Regression
Multinomial regression is an extension of logistic regression that
allows for multi-class classification by linking the input signals to
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probabilities for each class. Multinomial regression and variants
of logistic regression have been used successfully for dialogue
state tracking (Bohus and Rudnicky, 2006) andmultimodal signal
sensing (Jimenez-Molina et al., 2018; Hsieh et al., 2019).

3.4.4. LSTM Model
The LSTM neural network model, short for long short-term
memory, was proposed by Hochreiter and Schmidhuber (1997).
Neural networks utilising LSTMs have been used to model a
large space of tasks since their introduction, including dialog
state tracking (Zilka and Jurcicek, 2016; Pichl et al., 2020) and
turn-taking (Skantze, 2017). Within the multimodal feedback
space, Agarwal et al. (2019) have shown that LSTM models can
perform incremental sentiment analysis, and Ma et al. (2019)
have proposed model structures that make use of multimodal
signals to classify emotions in subjects.

Our LSTMmodel starts with an embedding layer between the
input features and the LSTM layer. The LSTM layer has 64 nodes,
feeding into a three-wide embedding layer, feeding into a Softmax
layer which gives the outputs as classification probabilities.
Categorical cross-entropy is used as the loss function, and
categorical accuracy as the accuracy function. For each fold, the
model was trained for 100 epochs. The accuracy on the final time-
step of each clip was calculated, and this accuracy value was used
to choose the most accurate epoch. Larger and deeper models
were tried out, but did not achieve better accuracy overall.

3.4.5. Data Formatting
For the non-timing-aware random forest, RPART tree, and
multinomial regression models, the multimodal feature set of
each clip is converted into static features in four different
ways. If the features are split, then the signals used during the
robot’s speech are separated from the features used during the
participant’s response. The alternative to this is non-split, where
each feature represents the usage of a signal for the entire clip.
If the features are formatted using binary formatting, then the
value of the feature is 1 if is present at any point in the clip,
and 0 otherwise; the alternative to this is fractional formatting,
where a value between 0 and 1 (inclusive) is used, representing
for how much of the clip the feature is present. This post-
processing is required because only the LSTM model can be fed
data by time-frame.

For the LSTM model, data is instead segmented into 100 ms
time-frames, which allows it to make decisions that depend on
the timing and ordering of the signals. In this data, a feature
has the binary value of 1 if it is present at some point in the
time-frame, and 0 otherwise, with the exceptions for specific head
gestures and speech classification mentioned in section 3.3—
speech was turned into ongoing speech until its final time-frame,
and head gestures were turned into ongoing head gesture.

4. RESULTS

We split our results into two parts. In section 4.1, the data that
we collected and annotated is analysed for statistical patterns.
In section 4.2, we investigate to what extent it is possible to

predict a clip’s polarity from its multimodal signals using various
statistical models.

4.1. Data Analysis
A summary of the signals that were annotated can be seen in
Table 2. This table groups annotated signals by modality as pose,
facial expressions, gaze direction, head gestures, and speech.
The duration of the signal is not taken into account here. The
positive class has a clear correlation with head nods, and the
negative class has a clear correlation with the speech was no class,
but the neutral class is mostly characterised by a lack of signals.
It is never the class with the highest proportion of a signal, and
when a signal appears more often in neutral clips than in positive
or neutral clips, it is usually a signal that we would assume to be
ambiguous, like arms misc or head gesture was single tilt.

4.1.1. Individual Features Correlated With Labels
The rightmost two columns of Table 2 show analyses of the
distribution of feedback signals across clips labelled as positive,
negative, and neutral. We use a χ2 test, Bonferroni corrected, to
find if any signal is significantly more or less common in any of
the three labels. If this is true, illustrated by the “Sign. 3” column
in Table 2, we perform a follow-up test only on the positive and
negative classes, and report χ2 test significance on that test as
well. The results of the follow-up test are presented in the column
labelled “Sign.±.”

Many signals, notably all speech signals and most head
movement and facial gesture signals, show strong significance
when comparing the distribution of all three labels to the
distribution of the signal. Looking at the percentages of how often
the signal shows up across different labels, discussed above, we
find that strong significance in “Sign. 3” typically means that the
signal is a strong indication that the clip is not neutral. This
is clearly the case for speech and its sub-signals, where speech
appears more than 70% of the time in positive or negative clips,
but only 7.5% of the time in neutral clips.

An exception to significance in the “Sign. 3” column indicating
that the clip is not neutral appears to be the “Jerk forwards” head
gesture feature. This feature appears more often in neutral clips
than in positive clips. Because of this, the significance in the “Sign.
3” column can be seen as evidence that this signal shows only that
a clip is not positive, but that it could still be neutral.

Some signals also have strong significance when comparing
the distribution between only positive and negative clips,
presented in the rightmost column labelled “Sign ±.” Since this
is only a comparison of two classes, a quick post-hoc test can be
performed by simply comparing the percentages of how often the
signals appear in positive and negative videos. This is indicated in
Table 2 by marking the most common label in bold, where “Sign
±” is significant.

Frowning is significantly connected to negativity, since it
appears much more often in negative clips than in positive clips.
Speech in general only indicates that a clip is not neutral, but
the sub-classifications of speech are strongly correlated with
positivity or negativity. The “no” and “yes” features are strongly
correlated with negativity and positivity, respectively. Rising
F0 is connected to negativity, which can be explained by its
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TABLE 2 | How common each signal detailed in section 3.3 is, clip-by-clip, for all clips, positive clips, negative clips and neutral clips.

Modality Signal All (%) Positive (%) Negative (%) Neutral (%) Sign. 3† Sign. ±
‡

Pose

Cross arms 9.2 9.1 11.9 7.9 ns ns

Arms behind the back 0.0 0.1 0.0 0.0 ns ns

Arms misc 31.8 33.1 28.2 31.1 ns ns

Shrug 0.4 0.4 1.0 0.0 ns ns

Face

Eyebrow raise 9.8 11.6 12.2 4.3 ** ns

Frown 12.9 8.5 32.4 11.2 **** ****
Facial laughter 8.3 8.8 10.9 5.5 ns ns

Lip pout 4.8 6.0 5.1 1.8 * ns

Mouth miscellaneous 18.4 20.6 24.4 9.4 **** ns

Smile 25.5 29.7 34.0 10.4 **** ns

Gaze

Gaze on miscellaneous 3.0 3.4 2.2 2.6 ns ns

Gaze on poster 98.6 98.8 98.1 98.2 ns ns

Gaze on robot 75.0 74.7 84.9 69.7 ns ns

Head gestures

Head gesture 68.1 88.6 49.7 31.5 **** ****
Jerk backwards 2.6 2.7 4.2 1.6 ns ns

Jerk forwards 4.5 3.4 9.0 4.5 ** ***
Multiple head shakes 1.5 0.6 7.4 0.2 **** ****
Multiple nods 40.3 62.8 6.7 8.1 **** ****
Multiple tilts 1.2 1.0 2.2 1.2 ns ns

Single head shake 3.4 3.0 6.7 2.4 ns ns

Single nod 20.4 28.2 8.3 9.6 **** ****
Single tilt 9.3 7.0 16.0 10.6 *** ****

Speech

Speech 55.1 70.0 75.6 7.5 **** ns

Speech with rising F0 30.2 36.4 51.3 2.6 **** **
Speech with falling F0 24.9 31.8 33.3 3.3 **** ns

Backchannel 19.4 26.1 17.0 5.1 **** ns

Not backchannel 42.4 52.2 69.2 3.1 **** **
Speech with interrogative 2.2 0.3 13.1 0.2 **** ****
“Can’t hear” 2.9 0.1 18.3 0.0 **** ****
“Can’t see” 0.3 0.0 1.9 0.0 **** ****
“No” 1.3 0.5 6.4 0.0 **** ****
“Yes” 25.4 41.6 3.5 0.8 **** ****

Signals are grouped by modalities. The right-most two columns present significance analyses of the distributions of the signals across clip labels, see section 4.1.1. If a signal is

significantly different between positive and negative labels, the over-represented class is marked in bold.

†χ2 significance (Bonferroni-corrected) of the distribution on all three labels.

‡χ2 significance (Bonferroni-corrected) of the distribution of only positive and negative clips.

ns, Not significant.

* p < 0.05/32.

** p < 0.01/32.

*** p < 0.001/32.

**** p < 0.0001/32.

connection to a questioning tone, as mentioned in section 2.3.1.
Nods and head shakes are obviously strong signals of positivity
and negativity, respectively, but head jerks—themovement of the
head forwards—are also correlated with negativity, or, at least,
a lack of positivity, as mentioned above. Our interpretation is
that this gesture generally conveys confusion and a negatively
connotated surprise in our data.

Table 2 shows that speech that is a backchannel is
not significantly differently distributed between positive
and negative clips, while speech that is a backchannel is
significantly different between positive and negative labels.

The proportion of neutral clips is higher for backchannels,
and the remaining difference between positive and negative
clips is small enough that the difference is not significant for
backchannels. We interpret this as non-backchannel speech
carrying more verbal information, usually having a more
distinct meaning.

We conclude that neutral clips are associated
with the absence of speech and head gestures, while
positivity and negativity are indicated more strongly
by differences between sub-labels of head movements
and speech.
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FIGURE 2 | Distributions of neutral, negative and positive clips for each participant. Each distribution is compared to the mean, expected distribution through a χ2

test, and individuals who significantly deviate from the mean are presented by bolding the identifier, the same as in Figure 3.

4.1.2. Individual Differences
The distribution of positive, negative, and neutral clips in the
entire dataset is 59, 15, and 25%, respectively, as seen in Table 1.
We perform a χ2 test on the participants to see if any participants
deviate from the expected proportion of labels. This χ2 test has
two degrees of freedom—three labels and one participant at a
time—and we regard the given p-value as significant if it is lower
than or equal to a Bonferroni-corrected 0.05/28 ≈ 0.0018. 15
out of the 28 participants significantly differ from the mean: the
distributions and which participants are significant are presented
in Figure 2, where the significantly different individuals are
marked in bold. F9, F27, and F33 stand out by their unusually
high proportion of neutral clips.

We also want to see how the usage of the multimodal signals
differs between individuals. A high-level view of this distribution
is to group signals by modalities. Our modality groups can be
seen in the leftmost column of Table 2. Figure 3 shows how the
modalities used differ between the 28 individuals in our dataset.
Figure 3A displays positive clips, and Figure 3B displays negative
clips. As can be expected from Table 2, speech is slightly more
common in negative clips than in positive clips, but there are
outliers. Participant F27 never uses speech, in either positive or
negative clips.

We perform a χ2 analysis to see if the usage of modalities
differed significantly between individuals. This analysis is
separated by positive, negative, and neutral clips, to find
differences in how modalities are used to communicate those
three labels. The χ2 test is performed on each of the 28
participants individually: it has df = 4, since there are five
modalities, and the χ2 test has to give a p-value lower than
the Bonferroni-corrected 0.05/28 ≈ 0.0018 to be considered
significant. The individuals that differ significantly from the
mean are denoted with bold labels in Figure 3. 6/28 participants
differ significantly from the overall distribution for negative
clips, 13/28 differ significantly for neutral clips, and 21/28
differ for positive clips. This tells us that there are significant
differences in how individuals choose to use different modalities
to give feedback, and that those differences are larger for
positive feedback than for negative feedback. Thus, any feedback

detection method relying on a single modality is likely to not
work well on all subjects.

4.1.3. Feature Analysis Over Time
The analysis above only considers whether the signal is present or
not in the clip: it does not take the timing or length of the signal
into account. While Table 2 shows that some signals are strongly
associated with positivity or negativity by their very presence in
a clip, it is also possible that the meaning of a signal could also
depend on its timing within a clip, both in relation to the robot’s
speech and in relation to other signals produced by the human
participant. This would not be visible in Table 2.

Figure 4A shows a tendency for positive and negative clips to
have user speech after the robot finishes speaking, but negative
clips have a peak later than positive clips. Figure 4B shows the
timing of gaze on the robot, and Figure 4C shows the timing of
gaze on the poster. These graphs show a tendency for participants
in negative clips to gaze at the robot after it stops speaking. In
positive clips, there is instead tendency to gaze at the poster
after the robot stops speaking. Our initial hypothesis was that
these patterns indicated a larger trend in the data for positively
polarised signals to appear earlier in the user’s turn and be shorter,
and we believed that these patterns would be of the type that
a timing-aware classification model would outperform one that
was not timing-aware. We will come back to this hypothesis in
the next section.

4.2. Statistical Modelling
In this section we analyse to what extent it is possible to
use statistical models for predicting the three feedback labels
(positive, negative, and neutral) based on the annotated features
described in section 3.

4.2.1. Comparison of Models
Our data set is split into ten folds for use in ten fold cross-
validation. The mean categorical accuracy and F-score for each
model over the ten folds are presented in Table 3. For models
that output probabilities for each class, the prediction is judged
as accurate if the highest-rated class predicted by the model is
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FIGURE 3 | The usage of different modalities of feedback from different individuals in our dataset. (A) Only when considering clips labelled as positive by the

crowdworkers. (B) Only considering clips labelled as negative. In both graphs, distributions that are significantly different from the mean according to a χ2 test are

marked by bolding the identifier of the participant, see section 4.1.2.

also the highest-rated class by the Mechanical Turk annotators as
described in section 3.2, breaking ties in favour of neutrality over
negativity over positivity.

A baseline model is introduced for comparison. This baseline
model always predicts the most common clip class in the
training data. This is positive clips for each fold, as can
be expected from Table 1. The baseline model’s accuracy of
59.2% therefore is exactly the proportion of positive clips in
the data set as a whole. Its F-score of 0.248 is, as expected,
much lower.

The two most well-performing models are the multinomial
regression model on split and binary data, and the random
forest model on split and fractional data. The multinomial
regression model is, by the nature of what a regression
model can do, not capable of handling interactions between
features, like if head nods mean something different in
combination with some other feature X than on their own.
Compared to this, the random forest model can theoretically
consider interactions between signals, but does not achieve
notably higher accuracy or F-score than the multinomial
regression model.

4.2.2. Analysis of Feature Importance
Table 3 shows that multinomial regression and random forests
perform similarly well on our data set. To evaluate which
combinations of features had the strongest classifying power, we
perform a meta-analysis with the random forest configuration
that achieved the highest accuracy—with fractional and split data.

For each feature in our data set, a model is trained on only that
feature, and the feature that results in the model capable of the
highest F-score on the training set is selected. Each combination
of two features, where the first was the feature selected in the
first step, is then tested in the same way, and then three features,
until the F-score does not increase (on both test and training sets)
upon adding a new feature. The resulting progression of features
is shown in Figure 5. Both F-score on the training and test set are
reported, but the models and features were only selected by the
F-score on the training set.

The features selected by the models show a pattern where
orthogonal features are selected first (ongoing head gesture
during the participant’s turn, followed by ongoing speech during
the participant’s turn). Following these, features that refine
the information given by the basic features are selected. The
selection of head gesture was single tilt as the fourth feature
seems strange, but it is possible that the model selects this
feature since, if it is present, it means that head gesture
is less likely to be nods or head shakes, which are split
across four features which may not be as important on
their own.

4.2.3. Visualisation of RPART Trees
An advantage of the RPART models in Table 3 is that they are
easily visualised to see which features had the highest classifying
power. Figure 6 shows a tree trained on fractional and split
data. The tree first splits on the presence of head gestures,
and refines based on the presence of speech if there are no
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FIGURE 4 | (A–C) Where in the clips that the features ongoing speech, gaze on robot, and gaze on poster, from top to bottom, as described in section 3.3, appear.

The horizontal axis has been normalised and split into two parts; on the left, the part of the clip where the robot speaks is represented with four points, representing

whether the signal appears in the first 25% of the robot’s speech, between 25 and 50%, between 50 and 75%, and finally for the last 25% of the part of the clip where

the robot speaks. The same split is done for the part of the clip where the robot does not speak, which is similarly represented on the right half of the horizontal axis.

The vertical axis shows how many of the clips that are marked as positive, negative, and neutral that contain the signal in that span. Note that all three Y axes are

clipped to make the comparison between neutral, negative and positive clips clearer.

TABLE 3 | Accuracy and F-score for each combination of feature format and statistical model, as presented in section 3.4.

Fractional Split Model Average accuracy (%) Average F-score

No Yes Multinomial regression 85.857 0.814

Yes Yes Random forest 85.998 0.811

No Yes Random forest 85.372 0.805

No No Random forest 84.971 0.804

Yes No Random forest 84.755 0.801

Yes Yes Multinomial regression 84.052 0.797

No No Multinomial regression 84.414 0.796

No Yes RPART tree 85.006 0.795

Yes Yes RPART tree 84.365 0.785

Yes No Multinomial regression 82.764 0.783

- - LSTM 83.861 0.781

No No RPART tree 83.235 0.777

Yes No RPART tree 83.222 0.775

- - Baseline 59.2 0.248

The highest values in each column have been marked in bold.

head gestures. If there are head gestures, the tree first attempts
to refine based on which head gesture was present, and falls
back to classifying based on the presence of speech if this

is not possible. The initial splitting by orthogonal high-level
features is similar to the order found for random forests in
Figure 5.
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FIGURE 5 | The results of the feature importance analysis described in section 4.2.2, for the random forest model. Please note that the Y axis has been clamped.

FIGURE 6 | The RPART tree for fractional, split data, with fold 6 used as test data.

4.2.4. Muting Modalities
The individual modalities shown in Table 2—pose, face, gaze,
head gestures, and speech—refer to separate, possibly co-
occurring ways to send feedback signals. To explore which of the
modalities were less important, and which modalities could be
expressed through combinations of other modalities, we train a
random forest model on every combination of including and not
including each modality. The results are presented in Table 4.

If including a certain modality would lead to overfitting, we
could expect the model to perform better when excluding that
modality. As can be seen in Table 4, including every modality
does not lead to overfitting—at least for a random forest model—
and there is a logical binary pattern where removing pose has
the smallest effect, followed by gaze, face, head gestures, and
speech in order. The model that is trained on data without
any multimodal features performs worse than the baseline. We
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TABLE 4 | An ordered presentation of F-scores and accuracies when random forest models are not given certain modalities.

Speech Head Face Gaze Pose Average accuracy (%) Average F-score (%)

X X X X X 85.992 81.233

X X X X 85.934 81.078

X X X X 85.648 80.858

X X X 85.67 80.801

X X X X 85.755 80.726

X X X 85.637 80.696

X X X 85.552 80.54

X X 85.492 80.425

X X X 76.332 73.329

X X 75.06 72.065

X X X 74.59 71.668

X X X X 74.951 71.101

X X 72.088 69.749

X 71.704 69.719

X X X 73.002 69.499

X X 72.317 69.442

X X X X 75.663 66.53

X X X 75.325 66.138

X X 74.574 65.635

X X X 74.434 65.375

X X X 74.617 64.197

X X 74.335 63.347

X X 72.392 57.376

X 72.067 56.641

X X X 62.698 44.189

X X 61.653 42.395

X 59.695 35.673

X X 60.569 35.137

X X 59.8 34.473

X 59.152 33.541

X 59.107 24.945

59.199 24.771

This table represents specifically the random forest, fractional, split data model which achieves the highest accuracy in Table 3.

interpret this as a result of overfitting on the is elicitation meta-
feature that remained.

4.2.5. Cross-Validation Leaving One Participant Out

at a Time
The 10-fold validation we use for our main statistical model
evaluation has the advantage of ensuring that test data and
training data have comparable distributions of positive, negative,
and neutral clips. This is not the case if the choices for training
and test data are made on a participant-by-participant basis.
However, leaving a single participant at a time out of the training
data does illustrate if their behaviours are similar to or different
to the behaviours expressed by the other participants left in
the training data. It is also a better showcase of whether the
trained models generalise to behaviours from individuals they
have never seen before. In light of this argument, we perform 28-
wise cross-validation on our dataset, for specifically the random
forest model that achieves the highest accuracy in Table 3. Each

participant is used for test data exactly once, with the others being
used for training data. The results are presented in Figure 7. Each
participant is represented by the F-score and accuracy of the
model where they were the test set.

To analyse the results in Figure 7, we want to know if
participants with notably lower accuracy and/or F-score in
Figure 7 correspond to the bolded participants in Figure 3.
Looking at the three participants with the lowest F-score—F3,
F27, and F33—we see that F3 has significantly deviating usage of
modalities in both positive and negative clips, F27 deviates from
the mean only for positive clips, and F33 only for negative clips.
Both F27 and F33 have unusually high proportions of neutral
clips (see section 4.1.2), so the model’s difficulty in estimating
their polarity based on the training data is presumably because
of their high rate of neutral clips, corresponding to a low rate
of feedback signals overall. Notably, however, F9, who has the
highest rate of neutral clips overall with 88/97 (see Figure 2), is
one of the participants whose model gets the highest accuracy in
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FIGURE 7 | F-score (blue, the left bar of each pair) and accuracy (orange, the right bar of each pair) when training a random forest model on split, fractional data. For

each of the 28 models, one individual is left out as test data—this is the individual pointed out on the X axis label. The rest of the dataset is used as training data. This

figure thus shows how certain individuals use behaviours that are harder to interpret based on training on the behaviours of the other individuals.

FIGURE 8 | The F-score of the various models from Table 3 when they are only given data corresponding to the first second of the participant’s turn, first 2 s of the

participant’s turn, and so on until 5 s, at which point the F-scores stop going up or down, even though there are a small number of clips with a participant turn as long

as 11 s.

Figure 7. Clearly, for F9, the model is able to generalise that an
absence of signals is a sign of neutrality, but this strategy does not
work for F33 and F27. F27 and F33 have a lack of speech signals
in common—F27 does not speak at all—while F9 is very active in
the speech modality but uses no head gestures.

4.2.6. Model Evaluations Over Time
The LSTM model presented in section 3.4.4 operates on data
given to it in time-frames representing a tenth of a second. While

the other statistical models in Table 3 are not inherently time-
aware in this way, they can still be trained and used to give an
evaluation over time by passing them data reflecting what has
happened up to a point in the clip.

Figure 8 reports the F-score of models when given data
corresponding to the first second of each participant’s turn, the
first 2 s, and so on. The X axis has been clipped at 5 s, since
the values converge at this point. Five seconds corresponds to
the end of the participant’s turn in most of our clips. Notably,
the LSTM model is slightly better than the other statistical
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models right at the start of the user’s turn; we assume this
is because the LSTM model has been able to use the timing
and presence of signals during the robot’s turn into account to
create a slightly better assumption of what the user’s reaction
is going to be. As more time passes, however, all statistical
models eventually surpass the LSTM in both F-score and
accuracy (not shown), around 2 s in. The models other than
the LSTM are only trained on data corresponding to the user’s
full turn, so the fact that they outperform the LSTM at almost
all points in time is a strong indication that the polarity of a
clip is mostly defined by the presence of signals, regardless of
their timing.

5. DISCUSSION

We will now return back to the questions posed in section 1 and
try to answer them in light of the findings from this study.
1. What modalities are most commonly used to convey

negative and positive feedback?

Table 2 shows that head-nods (multiples or single nods) are
the strongest indicator of positive feedback, whereas head shakes
and tilts indicate negative feedback. When it comes to facial
expressions, the only clear signal is frowning, which indicates
negative feedback. Non-backchannel speech is most often used
to express negative feedback, whereas backchannels can be both
negative and positive. Rising F0 is also associated with negative
feedback. Table 2 does not tell us which signals are a strong
indication of a neutral clip. However, the model analyses we have
presented in section 4.2.1 suggest that the strongest indication of
a neutral clip is an absence of any strong signals for either positive
or negative feedback.

By comparison to the above, there are signals in our dataset
that we would have expected to be connected to certain polarities,
but which show no such significance. Shrugging is too rare to be
a sign of anything, but if it were more common, Table 2 suggests
that it would be a sign of negativity, or at least non-neutrality.
Eyebrow raises are not, as we would expect, a sign of negativity,
but appear relatively commonly in positively labelled clips as well,
indicating that surprise is as often positive as it is negative.

Our scenario and experiment set-up may have affected which
signals users tended to use. The turn-taking heuristic we used
defaulted to a turn-time of 5 s—if the user had not reacted with
feedback that could be classified by the Wizard of Oz within this
time, the system would produce an elicitation. The Wizard had
the capacity to shorten or lengthen the user’s turn in response
to feedback where this felt natural, but we can see from Figure 8

that themodels reach their maximum performance after 5 s. Even
though our system had the capacity to allow for user turns shorter
or longer than 5 s, it appears that users generally synchronised
with its preferred cadence of 5-s turns. This cadence of feedback
presumably restricted users from reacting with longer speech
and sequences of feedback, even when they would have liked
to do so. On the other hand, this restriction is not entirely
inappropriate for our museum guide scenario—a museum guide
does not necessarily want their audience to constantly interrupt

their presentation, depending on how scripted and prepared the
presentation is.

Therefore, we believe that Tables 2, 4 accurately depict which
modalities and groups of modalities are most appropriate to pick
up for the scenario of a presentation agent, but further studies
need to be done to find out whether this would also be true
for other scenarios—where the robot is a more conversing, less
driving agent. The relative unimportance of hand gestures from
our listeners also matches up with earlier results from Battersby
(2011).

The results of Kuno et al. (2007) suggested that nods and
gaze were important signals of a user being involved with a
presenting robot’s presentation. While their results match with
ours when it comes to head-nods, gaze at first appears to have
been more important for their participants than ours. However,
looking at Figure 4, participants did in fact generally gaze on the
poster along with the robot, regardless of if the clip was positive,
negative, or neutral. This feature may not be unimportant for
determining if a participant is engaged in a presentation, but
since both positively and negatively classified clips assume that
the participant is engaged, the difference in importance is not
necessarily a disagreement in results.

Oppenheim et al. (2021) showed that the feedback responses
used by test participants were significantly different depending
on if the speaker gazed at the listener to supplement, highlight,
or converse, with speech being less common than nods, as
common as nods, and more common than nods, respectively.
Our presenting robot agent predictably gazed at the listener at the
end of each line. We see that nods, single or multiple, appear in
more clips than speech, by the frequencies in Table 2. Our robot’s
motivation for gaze was always closer to the supplement label
by Oppenheim et al. (2021) than the other two, since our robot
had finished speaking by the time it gazed at the user, and never
intended to hand over the turn for more than a brief comment.
Thus, our results roughly correspond to the proportions seen by
Oppenheim et al. (2021).

Rising F0 is an indication of negativity in our dataset, as seen
in Table 2. Because of the relatively short user turns, and because
user turns were restricted to being feedback or track 2 comments
on the content presented by the robot, we can presume that
prosody was not used to invite backchannels or highlight given
or non-given information, as mentioned in section 2.3.1. This
leaves the use of prosody to mark a proposition as a question, or
to ask to receive more information about some aspect about the
information previously presented, as mentioned by Hirschberg
andWard (1995) and Bartels (1997). It is possible to use this type
of prosody to mark a question that we would have labelled as
positivity (“And when was that?”, “Why did that happen?”), but
one interpretation of our data is that participants to a large extent
used such questions to ask the robot to repeat itself, or explain
something they had not understood.

Like Malisz et al. (2016), we also found that nods more
commonly occurred in groups than one-by-one, see Table 2.
Malisz et al. (2016) also found the same pattern for head shakes,
which we do not significantly see in our corpus. This could
be because Malisz et al. (2016) see proportionally much fewer
head-shakes than we do, only registering 35 head-shakes in a
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corpus also containing 1,032 nods—a completely different ratio
than ours, and hard to compare because we specifically elicited
negative feedback from our participants by making the robot
presenter misspeak. Like Malisz et al. (2016), however, we also
see that single tilts are more common than multiple tilts.
2. Are any modalities redundant or complimentary when it

comes to expressing positive and negative feedback?

Table 4 tells us that Speech and Head are the most important
modality groups and when only using these two modalities, the
F-score is quite close to using all modalities (80.4 vs. 81.2%).
Thus, even though Table 2 showed that frowning was associated
with negative feedback, Face, Gaze, and Pose do not have much
overall impact on the classification of feedback type and can
be considered fairly redundant. Table 4 also shows that when
only using Speech or Head on their own, the performance drops
significantly (69.7 and 56.6%). Thus, they seem to be highly
complimentary to each other.
3. Does the interpretation of feedback as positive or negative

change based on its relative timing to other feedback and the

statement being reacted to?

We were expecting the interpretation and ordering of
feedback in our model to affect the meaning in terms of positivity
or negativity, but this does not seem to hold based on the results
we have presented. Models which are simply given the presence
of a signal, ignoring internal order and timing, perform better
on classifying our dataset as positive, negative, or neutral than
the timing-aware LSTMmodel. The three most high-performing
models in Table 3 are split models—meaning that they received
data that differentiated between if a signal was used during the
robot’s turn or the participant’s response. This indicates that
multinomial regression and random forest models benefit from
the distinction between these timings, and that some information
is contained in it. However, the timing within the user’s turn
does not appear to matter, or at least matters much less than the
identity of the signal.

Figures 5, 6 show that the features that describe whether a user
used a signal during their turn, after the robot stopped speaking,
carry more information than the signals from when the robot
was speaking. In fact, in both Figures 5, 6, the only features that
appear are signals denoting the user’s turn. This tells us that
the relative performance advantage of split models in Table 3 is
because they were able to ignore what the user did during the
robot’s turn.

An important question is why there do not seem to be timing
and ordering effects in our dataset. One explanation is that
the scenario—passive audiences to a museum guide presenting
facts about a painting—lends itself to the audience delivering
one strong piece of positive feedback when prompted. It is also
possible that our agent design prompted this type of behaviour
in its audience because of the turn-taking cadence and elicitation
patterns. It has been previously established that users use mostly
the modalities and signals that they expect a system like ours to
recognise (Sidner et al., 2006; Kontogiorgos et al., 2021; Laban
et al., 2021).

Another potential explanation of the relative unimportance of
timing and ordering is that those effects are present in our data,
but are not necessary for predicting our positive/negative/neutral

labels—they could, however, be useful for a more in-depth
grounding annotation, using labels similar to those by Clark
(1996).
4. Are there individual differences in the use of modalities to

communicate different polarities of feedback?

As reported in section 4.1.2, many participants had
significantly differing distributions (from themean) of modalities
used for expressing negative and positive feedback. Figure 3
illustrates these differences. Speech appears to have been the
dominant way to express negative feedback. Positive feedback
is expressed with signals that are split between head gestures
and speech, especially the “yes” signal, as seen in Table 2. Since
positive clips are more common than negative or neutral clips in
our dataset, it is also not surprising that participants are able to
use a larger variety of signals in those clips. We have been unable
to find previous literature that describes if humans generally
use more varied feedback to express positive feedback than
negative feedback.

Speech and head movements are not strictly positive or
negative modalities—but sub-signals within the modality can
be significantly positive or negative, as shown in Table 2. Head
nods and head shakes are unsurprisingly positive and negative,
respectively, in our dataset: “yes” and “no” can be seen as
the spoken counterparts of these signals, and are similarly
significantly positive and negative. These signals can be seen
as encoding attitudinal reactions to the content spoken by the
robot—they only have a meaning if the user understood what the
robot was saying.

Figure 7 and the arguments presented in section 4.1.2
indicate that the hardest individuals to classify based on
training on the other individuals in our dataset are the
ones that are disproportionately labelled as neutral because
they do not use many feedback signals. Participants like
F9, who use feedback in an ambiguous way, are easier
to classify as neutral. The problem for our models is not
classifying feedback as positive and negative, but rather
what to do when that feedback is not present. The neutral
label is more common than the negative label in the
dataset, so by the numbers, correctly classifying participants
as neutral is more important than being able to classify them
as negative.

Navarretta et al. (2012) showed that Finnish participants used
single nods more than multiple nods. In our dataset, multiple
nods are significantly more common than single nods. This
could be explained by many of the participants being Swedish,
as Navarretta et al. (2012) showed that Swedish and Danish
subjects preferred multiple nods to single nods—and even for
those participants who were not native Swedish speakers, it
could be argued that they were using feedback patterns similar
to the Swedish environment in which they live. The corpus
study by Malisz et al. (2016) showed that multiple nods were
also more common in a German-speaking context, and since
most of our participants were Western European, the fact that
multiple nods were more common than single nods could be a
sign of a regional pattern where Western Europe prefers multiple
nods to single nods. Nonetheless, both single and multiple nods
were positive signals, so individual differences in which of the
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two signals an individual chooses to use would not complicate
feedback classification.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented an analysis of how humans
express negative and positive feedback across different modalities
when listening to a robot presenting a piece of art. The results
show that the most important information can be found in
their speech and head movements (e.g., nods), whereas facial
expressions, gaze direction and body pose did not contribute as
much. There seems to be more variation between individuals
when it comes to how positive feedback is expressed, compared
to negative feedback. Often, the very presence of a nod, a head
shake, or certain speech is enough to classify an entire reaction
as a positive or negative reaction, regardless of the context. The
precise timing of the feedback does not seem to be of importance.

For future research, we note that our analyses of the gaze and
pose modalities were not as deep as the analyses of the speech
and head modalities. An interesting direction for future work
in feedback analysis for presentation agents could be to enhance
gaze and pose analysis with more detailed sub-signals, like hand
gesture sensing andmore detailed approximations of gaze targets.
We have shown that not much positive or negative information is
contained in whether the participant looks at the presented object
or the presenting agent, but it is still possible that gaze sub-targets
within the presented objects carry information that we were not
able to annotate or extract.

We were unable to annotate our dataset with a rich grounding
scheme like that of Clark (1996), and fell back on the labels
positive/negative/neutral. It’s possible that annotating the data
with employed professional annotators would have led to the
more in-depth annotation succeeding, like in the work by
Malisz et al. (2016). While we did not see the ordering and
timing effects that we were expecting to see—see Question
3 in section 5— it is possible that such effects come into
play when the models are asked to perform a more fine-
grained classification with four grounding levels, rather than
the simpler positive/negative/neutral labels. One advantage of
the rich multimodal annotation of our dataset is that many
of the signals listed in Table 2 carry strong implications about
what grounding level the classified feedback must be on—if our
statistical models report that a clip is positive, and the “yes”
feature is present in the clip, for example, we can conclude that
the feedback must at least mean understanding, if not acceptance.
This allows us to partially reconstruct grounding data akin to the
standards by Clark (1996) and Allwood et al. (1992) from our
simpler classification.

The results are important for the development of future
adaptive presentation agents (which could be museum guides or
teachers), as they indicate that such systems should focus on the
analysis of speech and head movements, and put less focus on
the analysis of the audience’s facial expressions, gaze or pose. The
results indicate that such an agent should be able to determine
fairly reliably whether user feedback is positive, negative, or
neutral. If positive, the presentation can proceed, and if negative,
the agent can try to repair or reformulate the presentation.
If only neutral (i.e., absence of) feedback is received for too
long, the agent should elicit (positive or negative) feedback from
the user (depending on the grounding criterion, as discussed in
section 2.2). An example of such a framework, where this kind
of classification would be of direct use, is the model we have
presented in Axelsson and Skantze (2020).
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