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Material hardness of natural fiber composites depends upon the orientation of fibers, ratio of fiber to matrix, and their mechanical
and physical properties. Experimentally finding the material hardness of composites is an involved task. The present work
attempts to explore the deformation mechanism of natural fiber composites subjected to post-yield indentation by a spherical
indenter through a two-dimensional finite element analysis. In the present work, jute-polypropylene, sisal-polypropylene, and
banana-polypropylene composites are considered. The analysis is attempted by varying the properties of Young’s modulus of
fiber and matrix, diameter of fiber, and horizontal and vertical center distance between the fibers. The analyses results showed
that as the distance between the fiber’s center increases, the bearing load capacity of all composite increases nonlinearly. The
jute fiber composite shows predominate load-carrying capacity compared to other composites at all L/D ratios and interference
ratios. The influence of subsurface stress in lateral direction is minimal and gets reduced as the distance between the fiber
centers increases. The variation in diameter of fiber influences significantly, i.e., beyond the L/D ratio of 1.0; for the same
contact load ratio, the bearing area support is double for jute-polypropylene composite compared to sisal-polypropylene
composite. Compared to the sisal-polypropylene composite, for the same interference ratio, the load-carrying capacity is two
times high for banana-polypropylene composite, whereas four times high for jute-polypropylene composite, but this effect
decreases as the L/D ratio decreases. In all the composites, the subsurface stress gets distributed as the L/D ratio increases. The
ratio of fibers center distance to diameter of fiber influences marginally on the contact load and contact area and significantly
on the contact stress for all the fiber-reinforced composites.

1. Introduction

Natural fibers are extensively used in the preparation of com-
posites due to their low cost, low density, and biodegradable.
The properties of natural fiber composite depend on source
of fiber, fiber extraction, fiber preparation, fiber property,
matrix preparation, matrix property, and fabrication process

like hand molding, compression molding, injection molding,
continuous pultrusion, and extrusion molding and their pro-
cess parameters. Verma et al. [1] fabricated the alkali-treated
sisal reinforced with starch and epoxy matrix biocomposites
and investigated their mechanical and microstructure charac-
teristics. The results revealed that epoxy-coated fiber compos-
ite showed improved property. Verma et al. [2] fabricated and
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FIGURE 1: Geometrical modeling parameter.

experimentally characterized the jute and starch hybrid bio-
composites. They concluded that water absorption signifi-
cantly affected the mechanical properties of the composites.
Verma et al. [3] investigated the mechanical and physical
behavior of soy protein and sisal fiber-reinforced green com-
posites. Vijay et al. [4] experimentally studied the raw and
alkali-treated tridax procumbens fiber composites. The
alkali-treated fiber-based composites showed improved ther-
mal stability, tensile, and crystallinity. Dinesh et al. [5] investi-
gated the influence of wood dust as fillers in the mechanical
and thermal properties of jute —epoxy fiber composites. The
results showed that padauk wood dust embedded composite
improved the mechanical property, whereas rosewood dust
enhanced the thermal stability of the composite. Jothibabu
et al. [6] attempted to evaluate the hybridization effect on
mechanical property through the different stacking sequence
of areca sheath fiber/jute fiber/glass fabric fiber composites.
Vijay et al. [7] examined the thermo-mechanical characteris-
tics of Azadirachta indica seed powder and Camellia sinensis
powder filled jute epoxy composites. Vijay et al. [8] studied
the physical, chemical, thermal, mechanical, and morphologi-
cal characteristics of treated and untreated Leucas aspera
fibers. Vijay et al. [9] examined the physical and chemical
properties of Vachellia farnesiana fibers. Sathish Kumar and
Nivedhitha [10] studied the different weight fraction-based
chemically modified kenaf fiber-epoxy composites. The results
showed that 6% NaOH treated 40% weight fraction fiber com-
posite showed improved mechanical property compared to
others. The above natural fiber composites are fabricated with
different orientation of fibers and ratio of fiber to matrix so
finding their mechanical properties is an involved task. If a
model or method is developed to find the mechanical proper-
ties in advance that may reduce cost and time incurred to fab-
ricate the materials with required properties. Generally, the
hardness values for the metallic materials are well known
and are available in ASTM standard format, but the hardness
values for natural fiber composites are unknown in most of the
circumferences. Indentation-based hardness has direction
benefits in different engineering applications like load-
bearing mechanical elements and contact effects at different

length scales in micro, meso, and macro applications. The
pioneered indentation of metals was approached by Tabor
[11]. The followers attempted in numerical, semianalytical,
and analytical methods using different shapes of indenters
indenting infinite half space to explore the plasticity role.
Ishlinsky [12] attempted indentation of rigid perfectly plastic
half space against a rigid sphere using the slip-line theory of
plasticity and concluded that indentation hardness is three
times of material yield strength, whereas Hill et al. [13] used
flow theory for the same. Johnson [14] stated that indenta-
tion behavior of elastic perfectly materials against rigid
indenter can be explored in deformation order of elastic,
elastoplastic, and fully plastic deformations. Samuels and
Mulhearn [15] explored the deformation behavior of half
space against a blunt indenter and observed that subsurface
deformation is in radial direction under the contact zone.
The pioneer finite element method-based study was
attempted by Hardy et al. [16], who detected that contact
pressure changes from elliptical to rectangular and also
observed that contact stress in axis symmetry is constant as
the applied load increases. Follansbee et al. [17] compared
their elastic-plastic indentation numerical results with the
Hertz elastic solution and shallow and deep indentations
experimental results and found good agreement with them.
Giannakopoulos et al. [18] found constitutive relations for
applied normal load and indentation interference using finite
element method for elastic and elastic-plastic material
against a Vickers indenter. Komvopoulos and Ye [19]
observed the behavior rigid sphere indentation against an
elastic perfectly plastic half-space through the finite element
study. The developed constitutive equations showed good
agreement with Johnson [14] and concluded that material
hardness is three times the yield strength of indented mate-
rial. Park and Pharr [20] explored the elastic and plastic
dominant regimes in elastic-plastic indentation. Mesarovic
et al. [21] detected a decreasing trend in mean contact pres-
sure for larger indentation which leads to the failure. Bhatta-
charya et al. [22] studied the elastic and plastic behavior with
finite element approach at submicrometer scale and com-
pared with experimental results. They said that continuum-
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F1GURE 3: Models with different L/D ratios (by changing the fiber diameter).

based finite element approach can relate load and indenta-
tion at submicrometer scale in a well manner, and Knapp
et al. [23] developed finite element approach-based nanoin-
dentation method to expose the elastic modulus and hard-
ness of layered medium.

Apart from the indentation models, flattening models
are also approach by different researchers. Kogut et al.
[24] analyzed deformation of a sphere asperity against a
rigid flat through finite element approach and deduced
empirical relations for contact parameters with
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FIGURE 5: Finite element model of L/D 3.0 with boundary conditions.

interference as variable. Chang et al. [25] called as CEB
model assumed volume conservation at the tip of spherical
asperity and offered a simplified analytical contact area
and contact load solution for the elastic-plastic contact

deformation behavior similarly Thornton et al. [26] who
provided a simplified analytical solution based on elastic
perfectly plastic collision of spheres with truncated Hertz
contact pressure distribution.
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TaBLE 1: Physio-mechanical properties of fibers and matrix.
Fiber/matrix Density (g/cm3) Tensile strength-Y (MPa) Tensile modulus-E (MPa) Poisson’s ratio Reference
Banana 1.35 600 17.85 0.30 [39]
Sisal 1.45 567 10.4 0.32 [39]
Jute 1.3-1.45 393-800 13-26.5 0.31 [40]
Polypropylene 0.9 27 0.8 0.41 [41]

Kocharski et al. [27] and Vu-Quoc et al. [28] provided
more accurate finite element solutions with realistic elastic
plastic deformation of spherical asperity during its loading,
but they did not provide common solution for the global
contact parameters. Kogut et al. [29] carried out a finite
element-based loading and unloading of rigid sphere inden-
tation in a half space for elastic-plastic materials. Meanwhile,
Quicksall et al. [30] explored the effect of Young’s modulus
and yield strength properties impact on single asperity flat-
tening model. Jackson et al. [31] extended the Kogut et al.
[24] model for low to high E/Y values and developed empir-
ical expressions for contact parameters with the variation of
H/Y against the deforming contact geometry.

Brizmer et al. [32] explored the contact condition effects
with the study of ductile and brittle materials with their respec-
tive failure criterions. Ovcharenko et al. [33] experimented with
copper, stainless steel spheres, and sapphire flat and observed
good agreement with the existing contact models. Jackson
et al. [34] compared their results with the spherical indentation
models of Komvopoulos et al. [19] and Kogut and Komvopou-
los et al. [35]. Recently, Wagh et al. [36] analyzed the composite
laminates with finite thickness using spherical indenter. Lei
Zhou et al. [37] explored the influence of eccentricity and
indentation modulus for an anisotropic elastic half space
indented by a spherical rigid indenter.

The above-mentioned literature explored the different
metallic materials’ elastic-plastic indentation and flattening

behavior, but the natural fiber composite materials indenta-
tion behavior is not explored in detail. The objective of the
present work is to explore the indentation characteristics of
elastic—plastic behavior of natural fiber composite materials
for mostly using fibers and matrixes, and the present work
attempted to develop an empirical relation to calculate mate-
rial hardness of natural fiber composites when subjected to
post-yield indentation through finite element analysis, by
accounting the properties of matrix and fibers such as diam-
eter of fiber, horizontal and vertical center distance between
the fibers, and Young’s modulus of fiber and matrix.

2. Modeling and Analysis Details

Mostly hardness of composite materials is found using
ASTM D785 standard. In order to explain the effect of fiber
and matrix properties, two-dimensional model is considered
here, and the geometrical and modeling content are dis-
cussed in the below section.

2.1. Modeling Details. For the two-dimensional indentation
analysis, a model having 12.5x6mm and a spherical
indenter of 3.175mm radius as per the ASTM D785 stan-
dard are considered. The geometrical parameters for
modeling are shown in Figure 1. The horizontal and verti-
cal distance from the top of the specimen is (H), the hor-
izontal distance between fiber centers is (L), the vertical
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FiGure 7: Contact load ratio for various L/D ratios.

distance between fiber centers is (G) and the diameter of
the fiber is (D).

The distance between the fiber’s center and the fiber
diameter are most geometrically affecting parameters of the
material hardness apart from the orientation of the fibers,
so the distance between the fiber’s center and the fiber diam-
eter is taken as varying parameters of the present work. The
different L/D ratios such as 1.75, 2.0, 2.5, and 3.0 are
obtained by changing the distance between fibers center
(http://i.e.by changing the horizontal length between fiber
centers only), and the resultant models for different L/D
ratios by changing the fiber diameter are given below in
Figures 2(a)-2(d) and 3(a)-3(d), respectively.

2.2. Analysis Details. The finite element approach based
ANSYS® package is employed in indentation analysis of nat-
ural fiber-reinforced composites. In order to mesh the above
models, 8-noded 2D element (PLANE 183) is taken. The
meshed model of L/D 3.0 is shown in Figure 4. It consists
of 73,698 elements in which more than 60% of elements
are occupied in the expected contact zone. A rigid spherical
indenter is placed on the model. The surface contact pair

between the rigid indenter and the model is established with
frictionless condition. The top surface of the model consists
of contact element (CONTA172), and the rigid indenter
holds non-flexible elements (TARGE169). The nodes on
the planar symmetry of the meshed model are constrained
in horizontal direction, and the nodes on the bottom of the
meshed model are constrained in all directions. The resul-
tant finite element model having L/D 3.0 is shown in
Figure 5. Similarly, all other models having different L/D
ratios are modeled and meshed. The indentation is done
by applying the displacement incrementally to the indenter
with incremental substeps of maximum 8,000, and then,
the contact parameters are extracted from each analysis
results.

2.3. Validation of Present Model. The present finite element
model is validated with Yanping Cao et al. [38] model,
and the result shows a variation less than 1%. The inden-
tation depth is given up to 1mm in the present model.
Figure 6 shows the indentation load versus indentation
depth for the present model which shows the same
behavior as Yanping Cao et al. [38] model.
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FiGURE 8: Variation of contact area ratio for various L/D ratios.

3. Results and Discussion

For the present indentation analysis, the most commonly
using natural fibers and matrix are utilized which is given
in Table 1 where the natural fiber-reinforced composite’s E
/Y ratio varies in the range of 18 to 40. The contact param-
eters are observed for every small step of the indentation to
enumerate the influence of distance between fiber centers
and fiber diameter.

3.1. Influence of Distance between Fiber Centers on Contact
Parameters. The contact loads for every step are extracted
from the analysis results.

3.1.1. Influence of Contact Load. The response of contact
load ratio against interference ratio for the L/D ratios of
1.75, 2.0, 2.5, and 3.0 is shown in Figures 7(a)-7(d).

In Figure 7, as the dimensionless interference increases,
the load-bearing capacity increases for all the fiber compos-
ites nonlinearly, but the trend looks similarly. The deviation
among the load-carrying capacity increases as the interfer-
ence ratio increases. For the same interference ratio, the jute

fiber-based composite shows very high load-bearing capacity
compared to all other composites. The sisal fiber-based com-
posite shows very less load-carrying capacity, whereas the
banana fiber-based composite behavior is intermediate so,
for the increasing E/Y ratio, load-carrying capacity also
increases. At the same interference ratio, as the L/D ratio
increases, the load-bearing capacity increases marginally
which is less than 3% for all composites.

3.1.2. Effect of Contact Area. The contact areas for every step
are extracted from the analysis results. The contact area ratio
against the interference ratio for the L/D ratios of 1.75, 2.0,
2.5, and 3.0 is shown in Figures 8(a)-8(d).

From the Figure 8, as the dimensionless interference
increases, the contact area ratio increases for all the fiber
composites, and the deviation among them also increases.
Compared to sisal fiber composite, the jute fiber composite
shows five times high bearing area ratio, whereas the banana
fiber-based composite shows two times high bearing area
ratio. In each composite, for the same interference ratio, as
the L/D ratio increases, the contact area ratio marginally
increases as like contact load ratio.
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FIGURE 9: Response of contact area ratio vs contact load ratio for various L/D ratios.

3.1.3. Effect of E/'Y Ratio on Contact Load and Area. Figures 9(a)
and 9(b) shown below show the response of contact area ratio
against contact load ratio for various L/D ratios. As contact load
ratio increases, the contact area ratio also increases. For the
same indentation depth, the jute fiber-reinforced composites
have very high dimensionless contact area when compared to
banana and sisal fiber-reinforced composites.

3.1.4. Effect of LID Ratio on Contact Load and Area.
Figure 10 shows the influence of L/D ratios on the contact
area ratio with contact load ratio.

The influence of L/D ratios on all the composites is sim-
ilar, but for the same contact load ratio, the bearing area is
large for banana composite, and it is less for the jute com-
posite and intermediate for sisal composite.

3.1.5. Effect of E/Y Ratio and L/D Ratio on Von Mises Stress
Distribution. The three modes of deformation of polypropyl-
ene such as elastic, elastic-plastic, and plastic deformations
are extracted from the analysis results. The Von Mises stress
plots of the three mode of deformation are shown in

Figures 11(a)-11(c). The Von Mises stress distribution is
used to identify the areas in which the equivalent stress is
maximum and minimum and its distribution pattern and
also it is used to predict failure of the material.

The resultant Von Mises stress plots for jute-
polypropylene composite at /R of 0.31496 for different L/D
ratios are shown in Figures 12(a)-12(d). The influence of dis-
tance between the fiber centers on stress distribution is less.

Figures 13(a)-13(d) show the stress distribution in the
banana-polypropylene composites of increasing L/D ratio
at /R of 0.31496.The influence of increase in L/D ratio on
stress distribution is marginal.

When compared to jute and banana fiber-reinforced
composites, the stress distribution in sisal-polypropylene
composite is significant. The resultant Von Mises stress plots
for sisal-polypropylene composite at §/R of 0.31496 for dif-
ferent L/D ratios are shown in Figures 14(a)-14(d).

3.2. Influence of Fiber Diameter on Contact Parameters. The
contact loads for every step are extracted from the analysis
results by accounting the influence of fiber diameter.
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3.2.1. Effect of Contact Load. The response of contact load
ratio against the interference ratio for the L/D ratios of 1.0,
1.5, 5.0, and 15 is shown in Figures 15(a)-15(d).

As the interference ratio increases the contact load ratio
increases for all fiber-reinforced composites. The load-
bearing capacity of all the composites decreases with
increase in L/D ratio. The jute fiber-reinforced composite
shows high load-carrying capacity compared to all other
fiber-reinforced composites. The sisal fiber-reinforced com-
posite has low load-carrying capacity and the banana fiber-
reinforced composites shows an intermediate behavior as
L/D ratio increases.

3.2.2. Effect of Contact Area. From the analysis results, the
contact area for every step is calculated. The response of
the contact area ratio against the interference ratio for
the L/D ratios of 1.0, 1.5, 50, and 15 is shown in
Figures 16(a)-16(d). The response of the contact area ratio
against the contact load ratio for various L/D ratios of 1.0,
1.5, 5.0, and 15 is shown in Figures 17(a)-17(d).

As the interference ratio increases, the contact area ratio
increases nonlinearly for all fiber-reinforced composites. The

jute fiber-reinforced composite shows large load-bearing
area compared to all other fiber-reinforced composites. As
the L/D ratio increases, the load-bearing area slightly
decreases for all the composites.

3.2.3. Effect of E/Y Ratio on Contact Area against Contact
Load. As the contact load ratio increases, the contact area
ratio also increases linearly, but on the other hand as the L
/D ratio increases, the load-bearing area also increases for
increasing dimensionless load in all the composites due to
the variation in E/Y ratio.

3.24. Effect of LID Ratio on Contact Load against
Interference. The influence of the L/D ratio on the contact load
ratio against the interference ratio and dimensionless contact
area shows significant difference in all the composites.

In Figure 18, the load-bearing capacity is high for jute
composite, for sisal composite is low and intermediate for
banana composite, but as the dimensionless interference
increases, the load-bearing capacity decreases for increasing
L/D ratio.

In Figures 19(a)-19(c), for the high L/D ratio, the load-
bearing area is high only at low load ratio, but for high load
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ratio, the load-bearing area increases for smaller L/D ratio,
and similar behaviors are observed in banana and sisal com-
posites, but their load-bearing area and load-carrying capac-
ity are less.

3.2.5. Effect of LID Ratio on Von Mises Stress Distribution.
The resultant Von Mises stress plots for jute-polypropylene
composite at 6/R of 0.529133 for different L/D ratios are
shown in Figures 20(a)-20(d). As the L/D ratio increases
the maximum stress decreases.

The resultant Von Mises stress plots for banana-
polypropylene composite at §/R of 0.529133 for different L
/D ratios are shown in Figures 21(a)-21(d). As the L/D ratio
increases the maximum stress decreases.

The resultant Von Mises stress plots for sisal-
polypropylene composite at 6/R of 0.529133 for different L
/D ratios are shown in Figures 22(a)-22(d). As the L/D ratio
increases, the maximum stress decreases.

Empirical relations are developed for contact parameters
with variables as dimensionless interference and ratio of dis-

tance between fiber centers to diameter of fiber:
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4. Conclusion

Indentation analyses are carried on sisal-polypropylene,
jute-polypropylene, and banana-polypropylene natural com-
posites through finite element method. The results revealed
that the neat polypropylene undergone three different
modes of (elastic, elastoplastic, and full plastic) deformation
regimes, but the indentation of the sisal-polypropylene, jute-
polypropylene, and banana-polypropylene composites
exposed only elastic deformation and stayed away from the
elastic-plastic and plastic deformations.

As the distance between fiber centers increases, the con-
tact load ratio increases nonlinearly for all composites. The
load-carrying capacity of jute fiber composite is six times,
and the bearing area ratio is five times greater than sisal fiber
composite at maximum interference ratio. The impact of
subsurface stress gets reduced as the distance between fiber
centers increases. Compared to varying the distance between
the fiber’s center, the variation in diameter of fiber influences
significantly. After the L/D ratio of 1.0, for the same contact
load ratio, the bearing area support is double for jute-
polypropylene composite compared to sisal-polypropylene
composite. Compared to the sisal-polypropylene composite,
for the same interference ratio, the load-carrying capacity is
two times high for banana-polypropylene composite,
whereas four times high for jute-polypropylene composite
compared to sisal-polypropylene composite, but this effect
decreases as the L/D ratio decreases. The subsurface stress

gets distributed in all composites as the L/D ratio increases.
In overall, the jute-polypropylene composite shows a high
load-carrying capacity than other composites so this can be
utilized in high load-carrying applications.

Generalized empirical relations are developed to appro-
priately calculate contact load, contact area with variables
as interference ratio, and ratio of distance between the fiber
centers and diameter of fiber.
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