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Abstract

The search for potential antibody-based diagnostics, vaccines, and therapeutics for pan-

demic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has focused almost

exclusively on the spike (S) and nucleocapsid (N) proteins. Coronavirus membrane (M),

ORF3a, and ORF8 proteins are humoral immunogens in other coronaviruses (CoVs) but

remain largely uninvestigated for SARS-CoV-2. Here, we use ultradense peptide microarray

mapping to show that SARS-CoV-2 infection induces robust antibody responses to epitopes

throughout the SARS-CoV-2 proteome, particularly in M, in which 1 epitope achieved excel-

lent diagnostic accuracy. We map 79 B cell epitopes throughout the SARS-CoV-2 proteome

and demonstrate that antibodies that develop in response to SARS-CoV-2 infection bind

homologous peptide sequences in the 6 other known human CoVs. We also confirm reactiv-

ity against 4 of our top-ranking epitopes by enzyme-linked immunosorbent assay (ELISA).

Illness severity correlated with increased reactivity to 9 SARS-CoV-2 epitopes in S, M, N,

and ORF3a in our population. Our results demonstrate previously unknown, highly reactive

B cell epitopes throughout the full proteome of SARS-CoV-2 and other CoV proteins.

IntroductionAU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:
Antibodies correlate with protection from coronaviruses (CoVs) including severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2) [1–8], severe acute respiratory syndrome

coronavirus (SARS-CoV) [8–12], and Middle Eastern respiratory syndrome coronavirus
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(MERS-CoV) [8,13–16]. All CoVs encode 4 main structural proteins, spike (S), envelope (E),

membrane (M), and nucleocapsid (N), as well as multiple nonstructural proteins and accessory

proteins [17]. In SARS-CoV-2, anti-S and anti-N antibodies have received the most attention

to date [1–8], including in serology-based diagnostic tests [1–5] and vaccine candidates [6–8].

The immunogenicity of S-based vaccines is variable [18,19], so better representation of the

breadth of antibody reactivity in vaccines, therapeutics, and diagnostics will be important as

the pandemic continues especially as new variants emerge. Prior reports observed that not all

individuals infected with SARS-CoV-2 produce detectable antibodies against S or N [1–5],

indicating a need for expanded antibody-based options.

Much less is known about antibody responses to other SARS-CoV-2 proteins, although

data from other CoVs suggest they may be important. Antibodies against SARS-CoV M can be

more potent than antibodies against SARS-CoV S [20–22], and some experimental SARS-CoV

and MERS-CoV vaccines elicit responses to M, E, and ORF8 [8]. Additionally, previous work

has demonstrated humoral cross-reactivity between CoVs [7,11,23–26] and suggested it could

be protective [26,27], although full-proteome cross-reactivity has not been investigated.

We designed a peptide microarray tiling the proteomes of SARS-CoV-2 and 8 other human

and animal CoVs in order to assess antibody epitope specificity and potential cross-reactivity with

other CoVs. We examined immunoglobulin G (IgGAU : PleasenotethatIgGandCOVID � 19havebeendefinedasimmunoglobulinGandcoronavirusdisease2019; respectively; attheirfirstmentionsinthesentenceWeexaminedimmunoglobulinGðIgGÞantibodyresponsesin40coronavirus:::Pleasecorrectifnecessary:) antibody responses in 40 coronavirus disease

2019 (COVID-19) convalescent patients and 20 SARS-CoV-2-naïve controls. Independent

enzyme-linked immunosorbent assays (ELISAs) confirm 4 of the highest-performing epitopes. We

detected antibody responses to epitopes throughout the SARS-CoV-2 proteome, with several anti-

bodies exhibiting apparent cross-reactive binding to homologous epitopes in multiple other CoVs.

Results

SARS-CoV-2-naïve controls show consistent binding in “common cold”

CoVs and limited binding in SARS-CoV-2, SARS-CoV, and MERS-CoV

Greater than 90% of adult humans are seropositive for the human “common cold” CoVs

(CCCoVs: HCoV-HKU1, HCoV-OC43, HCoV-NL63, and HCoV-229E) [28,29], but the effect

of these preexisting antibodies upon immune responses to SARS-CoV-2 or other CoVs remains

uncertain. We measured IgG reactivity in sera from 20 SARS-CoV-2-naïve controls to CoV lin-

ear peptides, considering reactivity that was>3.00 standard deviations above the mean for the

log2-quantile normalized array data to be indicative of antibody binding [30]. All sera (SARS-

CoV-2-naïve and COVID-19-convalescent) exhibited binding in known epitopes of at least one

of the control non-CoV strains (poliovirus vaccine and rhinovirus; Fig 1, S1 Data), and all were

collected in Wisconsin, United States of America, where exposure to SARS-CoV or MERS-CoV

was extremely unlikely. We found that at least 1 epitope in structural or accessory proteins

showed binding in 100% of controls for HCoV-HKU1, 85% of controls for HCoV-OC43, 65%

for HCoV-NL63, and 55% for HCoV-229E (Fig 2, S2 Data). The apparent cross-reactive bind-

ing was observed in 45% of controls for MERS-CoV, 50% for SARS-CoV, and 50% for SARS-

CoV-2 (S2 Data). We completed neutralization assays on 12 of these control samples and on 18

additional samples from other SARS-CoV-2-naïveAU : PerPLOSstyle; subjectsshouldnotbeusedforhumanpatients:Therefore; subjectshasbeenchangedtopatientsasappropriatethroughoutthearticle:Pleaseconfirmthatthischangeisvalid:controls collected before 2019, and none of

these had detectable neutralization activity against SARS-CoV-2 [31] (S1 Table, S1 Fig).

SARS-CoV-2 infection induces antibodies binding throughout the

proteome

We aimed to map the full breadth of IgG binding induced by SARS-CoV-2 infection and to

rank the identified epitopes in terms of likelihood of immunodominance. We defined epitope
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recognition as antibody binding to contiguous peptides in which the average log2-normalized

intensity for patients was at least 2-fold greater than for controls with t test statistics yielding

adjusted p-values <0.1. We chose these criteria, rather than the 3.00 standard deviation cutoff

(S2 Data), in order to ensure that binding detected would be greater than background binding

seen in controls (2-fold greater) and to remove regions of binding that were not at least weakly

significantly different from controls (adjusted p< 0.1). All COVID-19 convalescent patients’

sera bound multiple epitopes in SARS-CoV-2, including in 2 patients who did not have detect-

able neutralizing antibodies in neutralization assays (S1 Table, S1 Fig). Top-ranking epitopes

had greater correlations (0.7 and greater) with neutralization titers (Table 1).

These criteria identified 79 B cell epitopes (Fig 3, Table 1) in S, M, N, ORF1ab, ORF3a,

ORF6, and ORF8. We ranked these epitopes by minimum adjusted p-value for any 16-mer in

the epitope in order to determine the greatest likelihood of difference from controls as a proxy

for likelihood of immunodominance. The highest-ranking epitope occurred in the N-terminus

of M (1-M-24). Patient sera showed high-magnitude reactivity (up to an average of 6.7 fluores-

cence intensity units) in other epitopes in S, M, N, and ORF3a, with lower-magnitude reactiv-

ity (average of<3.3 fluorescence intensity units) epitopes in other proteins. The epitopes with

the greatest reactivity in S were located in the S2 subunit of the protein (residues 686–1273)

rather than the S1 subunit (residues 14–685) [6] (Fig 3). The greatest reactivity in S occurred

in the fusion peptide (residues 788–806) and at the base of the extracellular portion of the pro-

tein (between the heptad repeat 1 and heptad repeat 2, roughly residues 984–1163) (Figs 3 and

4). The highest magnitude antibody binding (red sites in Fig 4A) on S are below the flexible

head region that must be in the “up” position for angiotensin converting enzyme 2 (ACE2AU : PleasenotethatACE2hasbeendefinedasangiotensinconvertingenzyme2atitsfirstmentioninthesentenceThehighestmagnitudeantibodybindingðredsitesinFig4aÞ:::Pleasecorrectifnecessary:)

binding to occur. Notably less reactivity occurred in the receptor-binding domain (RBD) (resi-

dues 319–541) [6]. Four detected epitopes (553-S-26, 624-S-23, 807-S-26, and 1140-S-25) have

Fig 1. Patients and controls show reactivity to a poliovirus control. Sera from 20 controls collected before 2019 were assayed for IgG binding to the full

proteome of human poliovirus 1 on a peptide microarray. Binding was measured as reactivity that was>3.00 standard deviations above the mean for the

log2-quantile normalized array data. Patients and controls alike showed reactivity to a well-documented linear poliovirus epitope (start position 613 [IEDB.

org]; orange shading in line plot). The data used in this analysis can be accessed online at: https://github.com/Ong-Research/UW_Adult_Covid-19.

COVIDAU : AbbreviationlistshavebeencompiledforthoseusedinFigs1 � 7:Pleaseverifythatallentriesarecorrect:-19, coronavirus disease 2019; IgG, immunoglobulin G.

https://doi.org/10.1371/journal.pbio.3001265.g001
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previously been shown to be potently neutralizing [32–34], and all 4 of these were ranked

within the top 10 of our 79 epitopes. Forty-two of our detected epitopes (including 1-M-24,

553-S-26, 624-S-23, 807-S-26, and 1140-S-25; Table 1) confirm bioinformatic predictions of

antigenicity based on SARS-CoV and MERS-CoV [7,8,35–37], including each of the 12 top-

ranking epitopes.

The highest specificity (100%) and sensitivity (98%), determined by linear discriminant

analysis leave-one-out cross-validation, for any individual peptide was observed for a 16-mer

within the 1-M-24 epitope: ITVEELKKLLEQWNLV (S2 Table). Fifteen additional individual

Fig 2. Control sera show reactivity to CCCoVs and to SARS-CoV, MERS-CoV, and SARS-CoV-2. Sera from 20 controls collected before 2019 were assayed for IgG

binding to the full proteomes of 9 CoVs on a peptide microarray. Viral proteins are shown aligned to the SARS-CoV-2 proteome with each virus having an individual

panel; SARS-CoV-2 aa position is represented on the x-axis. Binding was measured as reactivity that was>3.00 standard deviations above the mean for the log2-

quantile normalized array data. Peptides for which>40% of the controls showed binding are indicated by a black diamond. The data used in this analysis can be

accessed online at: https://github.com/Ong-Research/UW_Adult_Covid-19. aa, amino acid; CCCoVs, “common cold” CoVs; CoV, coronavirus; IgG, immunoglobulin

G; MERS-CoV, Middle Eastern respiratory syndrome coronavirus; SARS-CoV, severe acute respiratory syndrome coronavirus; SARS-CoV-2, severe acute respiratory

syndrome coronavirus 2.

https://doi.org/10.1371/journal.pbio.3001265.g002
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peptides in M, S, and N had 100% measured specificity and at least 80% sensitivity (Table 2).

Combinations of 1-M-24 with 1 of 5 other epitopes (384-N-33, 807-S-26, 6057-ORF1ab-17,

227-N-17, and 4451-ORF1ab-16) yielded an area under the curve receiver operating

characteristic of 1.00 (S3 Table) based on linear discriminant analysis leave-one-out-cross-

validation.

Fig 3. Anti-SARS-CoV-2 antibodies bind throughout the viral proteome. Sera from 40 COVID-19 convalescent patients were assayed for IgG binding to the full

SARS-CoV-2 proteome on a peptide microarray. B cell epitopes were defined as peptides in which patients’ average log2-normalized intensity (black lines in line

plots) is 2-fold greater than controls’ (gray lines in line plots), and t test statistics yield adjusted p-values<0.1; epitopes are identified by orange shading in the line

plots. Epitopes having at least 100% specificity and at least 80% sensitivity for SARS-CoV-2 infection are indicated by a black arrow. The 1-M-24 epitope, which

had the highest combined reactivity, specificity, and sensitivity of all epitopes we defined, is indicated by a black star. The data used in this analysis can be accessed

online at: https://github.com/Ong-Research/UW_Adult_Covid-19. aa, amino acid; COVID-19, coronavirus disease 2019; IgG, immunoglobulin G; SARS-CoV-2,

severe acute respiratory syndrome coronavirus 2.

https://doi.org/10.1371/journal.pbio.3001265.g003
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Anti-SARS-CoV-2 antibodies may cross-reactively bind peptides in other

CoVs

We determined epitopes bound by anti-SARS-CoV-2 antibodies in non-SARS-CoV-2 CoVs

by the same criteria we used to determine epitopes in SARS-CoV-2. Epitopes in these viruses

were defined as binding by antibodies in COVID-19 convalescent sera to peptides at an aver-

age log2-normalized intensity at least 2-fold greater than in controls with t test statistics yield-

ing adjusted p-values <0.1. Some of these epitopes were identical sequences with SARS-CoV-

2, particularly in the RaTG13 bat betacoronavirus (β-CoV), the closest known relative of

SARS-CoV-2 (96% nucleotide identity) [39,40], the pangolin CoV (85% nucleotide identity

with SARS-CoV-2) [41], and SARS-CoV (78% identity) [39]. Cross-reactivity of an antibody is

typically determined by evaluating a pure preparation of specific antibodies or by competition

assays. However, since our Wisconsin controls are almost certainly naïve to MERS-CoV,

SARS-CoV, and bat and pangolin CoVs, we can make predictions about cross-reactivity (as

opposed to binding due to sequence identity).

Fig 4. Anti-SARS-CoV-2 antibodies to S protein show the highest binding in the fusion cleavage site. Binding reactivities were

localized on a coordinate file for a trimer of the SARS-CoV-2 S protein using a dark blue (low, 0.00 fluorescence intensity) to red (high,

9.00 fluorescence intensity) color scale. (A) COVID-19 convalescent patients, (B) naïve controls, and (C) the difference between patients

and controls are shown. The highest reactivity occurred in the fusion peptide (aa 788–806) and at the base of the extracellular portion of

the molecule (aa 984–1163), with lower reactivity in the receptor-binding domain (aa 319–541). (D) Key regions of the S protein are

labeled and colored. In the S1 subunit (aa 14–685), the NTD (aa 14–305) is red, and the RBD (aa 319–541) is blue. Within the RBD, the

RBM (aa 438–506) is yellow, and the residues that bind to the ACE2 receptor (aa 446, 449, 453, 455–456, 473, 475–476, 484, 486–487,

489–490, 493, 496, 498, 500–502, and 505) are in black. In the S2 subunit (aa 686–1273), the FP (aa 788–806) is green, the HR1 (aa 912–

984) is orange, and the base of the extracellular part of the protein (base, roughly aa 1140–1160) is purple [6,38]. The remainder of the

protein is gray. The data used in this analysis can be accessed online at: https://github.com/Ong-Research/UW_Adult_Covid-19. AA,

amino acid; ACE2, angiotensin converting enzyme 2; COVID-19, coronavirus disease 2019; FP, fusion peptide; HR1, heptad repeat 1;

NTD, N-terminal domain; RBD, receptor-binding domain; RBM, receptor-binding motif; S, spike; SARS-CoV-2, severe acute respiratory

syndrome coronavirus 2.

https://doi.org/10.1371/journal.pbio.3001265.g004

Table 2. Sixteen peptides in the SARS-CoV-2 proteome had 100% specificity and at least 80% sensitivity for

SARS-CoV-2 infection in 40 COVID-19 convalescent patients compared to 20 naïve controls.

Protein First aa position Sequence Specificity Sensitivity F1

M 8 ITVEELKKLLEQWNLV 1 0.98 0.99

M 7 TITVEELKKLLEQWNL 1 0.95 0.97

N 390 QTVTLLPAADLDDFSK 1 0.95 0.97

N 388 KQQTVTLLPAADLDDF 1 0.90 0.95

N 391 TVTLLPAADLDDFSKQ 1 0.90 0.95

S 570 ADTTDAVRDPQTLEIL 1 0.88 0.93

S 571 DTTDAVRDPQTLEILD 1 0.88 0.93

S 574 DAVRDPQTLEILDITP 1 0.85 0.92

S 576 VRDPQTLEILDITPCS 1 0.85 0.92

S 1253 CCKFDEDDSEPVLKGV 1 0.85 0.92

S 572 TTDAVRDPQTLEILDI 1 0.83 0.90

S 573 TDAVRDPQTLEILDIT 1 0.83 0.90

S 577 RDPQTLEILDITPCSF 1 0.83 0.90

S 1252 SCCKFDEDDSEPVLKG 1 0.83 0.90

M 162 KDLPKEITVATSRTLS 1 0.83 0.90

S 1250 CGSCCKFDEDDSEPVL 1 0.80 0.89

aaAU : AnabbreviationlisthasbeencompiledforthoseusedinTable2:Pleaseverifythatallentriesarecorrect:, amino acid; COVID-19, coronavirus disease 2019; M, membrane; N, nucleocapsid; S, spike; SARS-CoV-2, severe

acute respiratory syndrome coronavirus 2.

https://doi.org/10.1371/journal.pbio.3001265.t002
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Antibodies in COVID-19-convalescent sera appeared to be cross-reactive with identical or

homologous epitopes in S, M, N, ORF1ab, ORF3, ORF6, and ORF8 in other CoVs (Fig 5, S2

Fig, and S3 and S4 Data). Overall, the greatest number of epitopes in any non-SARS-CoV-2

CoV occurred in the RaTG13 bat β-CoV at 74 epitopes (60 identical to SARS-CoV-2, 13

homologous nonidentical, 1 without a homologous SARS-CoV-2 epitope). The second greatest

number, 60 epitopes, occurred in the pangolin CoV (23 identical to SARS-CoV-2, 30 homolo-

gous nonidentical, 6 without a homologous SARS-CoV-2 epitope, 1 without a homologous

region in SARS-CoV-2), and third SARS-CoV with 45 epitopes, (10 identical to SARS-CoV-2,

32 homologous nonidentical, 3 without a homologous SARS-CoV-2 epitope) (S3 and S4

Data). Most (8 of 12) of the epitopes that were not in areas having epitopes in the homologous

SARS-CoV-2 region occurred in ORF1ab, with the others occurring in S (2 epitopes) and N (2

epitopes). These epitopes were not conserved among each other and were not conserved with

any epitopes in the CCCoVs (S3 Data).

Fig 5. Anti-SARS-CoV-2 antibodies may cross-react with other CoVs. Sera from 40 COVID-19 convalescent patients were assayed for IgG

binding to 9 CoVs on a peptide microarray; averages for all 40 are shown. Viral proteins are aligned to the SARS-CoV-2 proteome; SARS-CoV-2 aa

position is represented on the x-axis. Regions that may be cross-reactive across all β-CoVs (�) or cross-reactive for SARS-CoV or MERS-CoV (#) are

indicated. Gray shading indicates gaps due to alignment or lacking homologous proteins. Cross-reactive binding is defined as peptides in which

patients’ average log2-normalized intensity is 2-fold greater than controls’ and t test statistics yield adjusted p-values<0.1. The data used in this

analysis can be accessed online at: https://github.com/Ong-Research/UW_Adult_Covid-19. aa, amino acid, β-CoV, betacoronavirus; CoV,

coronavirus; COVID-19, coronavirus disease 2019; IgG, immunoglobulin G; MERS-CoV, Middle Eastern respiratory syndrome coronavirus;

SARS-CoV, severe acute respiratory syndrome coronavirus; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.

https://doi.org/10.1371/journal.pbio.3001265.g005
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One region, corresponding to SARS-CoV-2 epitope 807-S-26, showed binding or potential

cross-reactivity across all CoVs, and one, corresponding to SARS-CoV-2 epitope 1140-S-25,

showed binding or potential cross-reactivity across all β-CoVs (Fig 5). Epitope 807-S-26

includes the CoV S fusion peptide, and 1140-S-25 is immediately adjacent to the heptad repeat

region 2, both of which are involved in membrane fusion [42].

Enzyme-linked immunosorbent assays (ELISAs) confirm peptide

microarray findings

Having determined reactivity and apparent cross-reactivity by peptide array, we aimed to

independently confirm and validate these findings by ELISA. We selected 4 peptides for

ELISA evaluation (1253-S-16, 814-S-16, 8-M-16, and 390-N-16) from those in our top 10

ranked epitopes, considering diversity among the proteins represented, association with neu-

tralizing capacity, and potential cross-reactivity across multiple CoVs, and using the 16-mer in

each epitope that most correctly discriminated between patients and controls. All 4 SARS-

CoV-2 peptides had higher IgG binding in COVID-19 convalescent sera than in controls (Fig

6). Peptide 8-M-16 showed the greatest discrimination between COVID-19 convalescent and

control sera with only 3 COVID-19 convalescent samples having values similar to controls.

Both peptides 1253-S-16 and 814-S-16 showed greater binding in controls than either 8-M-16

or 390-N-16, confirming our findings of greater potential cross-reactivity among epitopes

found in S.

Fig 6. Higher IgG binding to SARS-CoV-2 peptides in COVID-19 convalescent patients compared to controls by ELISA. (A) IgG binding to

SARS-CoV-2 peptides in COVID-19 convalescent (n = 40) and naïve control (n = 20) sera was measured by ELISA. Bars indicate mean abs +/− SEM

and ����p< 0.0001 by t test. (B) Anti-SARS-CoV-2 peptide IgG detected by ELISA was compared to array findings by Spearman rank-order

correlation (Spearman correlation coefficient, ρ) for COVID-19 convalescent (n = 40, closed circles) and control (n = 20, open circles) sera. The data

used in this analysis can be accessed online at: https://github.com/Ong-Research/UW_Adult_Covid-19. abs, absorbance; COVID-19, coronavirus

disease 2019; ELISA, enzyme-linked immunosorbent assay; IgG, immunoglobulin G; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2;

SEM, standard error of the mean.

https://doi.org/10.1371/journal.pbio.3001265.g006
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Reactivity in some epitopes correlates with disease severity

Increased antibody titer and duration have been associated with increased severity of illness

due to infection with SARS-CoV-2 [43–47] and other CoVs [48], although data on epitope-

level differences by severity is lacking [49]. We compared reactivity in patients within our

cohort whose COVID-19 course required intubation and mechanical ventilation (n = 8) with

reactivity in COVID-19 convalescent patients who never required hospitalization (n = 25)

using multilinear regression accounting for age, sex, immunocompromising conditions, and

Charlson comorbidity index score [50] to determine epitope-level resolution of differences in

reactivity. Nine epitopes in S (2 epitopes), M (1 epitope), N (2 epitopes), and ORF3a (4 epi-

topes) showed statistically significant (p< 0.05) increases in reactivity for intubated patients

relative to never-hospitalized patients (Fig 7, S4 Table). The S epitopes (289-S-17 and 613-S-

25) both occurred in the S1 subunit (aa 14–685), with one (289-S-17) in the N-terminal

domain [6] (see Fig 4D), whose function is not well understood but which may play a role in

membrane fusion [51]. The M epitope (1-M-24) was the highly reactive epitope in the N-ter-

minus of this protein discussed above. The N epitopes (336-N-16 and 376-N-22) occurred in

the C-terminal domain (336-N-16), which is thought to bind nucleic acids, and in the unstruc-

tured C-tail (376-N-22) [52]. The ORF3a epitopes clustered near the N-terminus of the protein

(16-ORF3a-16, 18-ORF3a-16, and 21-ORF3a-16) with one other epitope nearer the C-termi-

nus (252-ORF3a-24). No epitopes showed statistically significant increases in reactivity for

never-hospitalized patients relative to intubated patients (S4 Table).

Discussion

In our analysis of antibody binding to the full proteome of SARS-CoV-2, the highest magni-

tude binding of anti-SARS-CoV-2 antibodies from human sera occurred for an epitope in the

Fig 7. Disease severity correlates with increased antibody binding in specific SARS-CoV-2 epitopes. IgG reactivity against

SARS-CoV-2 epitopes identified by peptide microarray in COVID-19 convalescent patients who were never hospitalized

versus intubated patients showed statistically significant increases in reactivity in intubated patients for 11 epitopes. The data

used in this analysis can be accessed online at: https://github.com/Ong-Research/UW_Adult_Covid-19. COVID-19,

coronavirus disease 2019; IgG, immunoglobulin G; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.

https://doi.org/10.1371/journal.pbio.3001265.g007
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N-terminus of M protein, with high specificity and sensitivity. Antibodies produced after

infection with SARS-CoV-2 reacted with epitopes throughout the proteomes of other human

and nonhuman CoVs, recognizing homologous regions across all CoVs. Taken together, these

results confirm that humans mount strong, broad antibody responses to SARS-CoV-2 proteins

in addition to S and N, and they implicate M epitopes as highly relevant to diagnostic and

potentially to vaccine design.

M proteins are the most abundant proteins in CoV virions [17]. The N-terminus of M is

known in other CoVs to be a small, glycosylated ectodomain that protrudes outside the

virion and interacts with S, N, and E [17], while the rest of M resides within the viral particle.

Full-length SARS-CoV M has been shown to induce protective antibodies [20,53], and pat-

terns of antibodies binding to SARS-CoV M are similar to those we found in SARS-CoV-2

[35]. SARS-CoV anti-M antibodies can synergize with anti-S and anti-N antibodies for

improved neutralization [20,53], and M has been used in protective SARS-CoV and MERS-

CoV vaccines [8]. However, the mechanism of protection of anti-M antibodies remains

unknown, and this protein remains largely understudied and underutilized as an antigen.

Other groups have not previously identified the high magnitude binding we observed for M,

though that may be due to other studies’ use of samples collected earlier in the course of

infection or different techniques, populations, or computational algorithms [54,55]. Nota-

bly, some of the highest binding we observed in the S protein occurred at the base of the

extracellular portion of the protein, which would be the site of the putative interaction

between SARS-CoV-2 S and M. The ACE2 binding site and the RBD in general are not as

reactive, by these methods, as expected, suggesting that other, less-investigated epitopes may

be playing a larger role in immunity to SARS-CoV-2 than is currently appreciated, which is

further bolstered by the correlation of some of this binding with neutralizing titers. Our

results, in concert with prior knowledge of anti-SARS-CoV antibodies, strongly suggest that

epitopes in M, particularly the 1-M-24 epitope as well as other novel epitopes we identified,

should be investigated further as potential targets in SARS-CoV-2 diagnostics, vaccines, and

therapeutics.

Among the accessory proteins against which we detected antibodies, ORF8 has been the

best studied. The ORF8 gene is part of a hypervariable region, having undergone multiple

substitutions and deletions and being recognized as a recombination hotspot [56]. ORF8

protein is considered to have immunomodulatory activity and has been shown to potently

down-regulate major histocompatibility complex class I expression in several cell lines [57]

and to antagonize interferon signaling [58,59]. A deletion in ORF8 appears to be associated

with a milder clinical COVID-19 course [60], and ORF8 has been shown to be secreted [61],

indicating that the epitopes we defined here may merit further investigation for development

of potential vaccines and therapeutics. Less is known about the other SARS-CoV-2 accessory

proteins in which we found epitopes, ORF3a and ORF6, although some studies have impli-

cated them in immunomodulatory functions [59,62–64]. Further investigations will be

needed to determine the function of these proteins, which will provide greater insight into

how the epitopes we found may be useful in the development of countermeasures against

COVID-19.

Interestingly, we found antibodies bind or bind adjacent to a number of the mutations in

some of the “variants of concern” (VOCs) of SARS-CoV-2, which have recently emerged [65–

67], so named because they appear to potentially be more transmissible than previous known

variants or to escape antibody binding [68]. The epitopes we defined contained or were imme-

diately adjacent to the locations of the majority of the variant-defining mutation sites in the

structural and accessory proteins of the B.1.1.7 and B.1.351 variants and to one-quarter of the

structural or accessory protein mutations sites of the P.1, B.1.427, and B.1.429 variants (see
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S5 Table). These results suggest that antigen escape may be driving the rise and dominance of

variants. Recent works have demonstrated this phenomenon with mutations in S [69,70] but

have not investigated this possibility for other proteins. Our findings suggest that antibodies to

non-S proteins may be important to this process, as well. Given that the VOCs were identified

after we performed our experiments, we did not include mutations characteristic of the VOCs

in our array design for this current work. Future studies should include representation of the

VOCs in order to discern any differences in antibody binding.

We also found that antibodies produced in response to SARS-CoV-2 infection appear to

bind peptides representing homologous epitopes throughout the proteomes of other human

and nonhuman CoVs. Hundreds of CoVs have been discovered in bats and other species

[27,39–41,71,72], making future spillovers inevitable. The potential broad cross-reactivity we

observed in some homologous peptide sequences may help guide the development of pan-

CoV vaccines [15], especially given that antibodies binding to 807-S-26 and 1140-S-25, which

showed potential cross-reactivity across all CoVs and all β-CoVs, respectively, are known to be

potently neutralizing [32,33]. A caveat is that our methods cannot discern whether the

increased IgG binding to CCCoVs in COVID-19 convalescent sera is due to newly developed

cross-reactive antibodies or due to the stimulation of a memory response against the original

CCCoV antigens. However, cross-reactivity of anti-SARS-CoV-2 antibodies with SARS-CoV

or MERS-CoV is likely real, since our population was very unlikely to have been exposed to

those viruses. A more stringent assessment of cross-reactivity as well as functional investiga-

tions into these cross-reactive antibodies will be vital in determining their capacity for cross-

protection. Further, our methods efficiently detect antibody binding to linear epitopes [73],

but their sensitivity for detecting parts of conformational epitopes, which are considered

highly important in the immune response to SARS-CoV-2 and which are believed to be the

type of epitope found within the RBD [23,25,74–76], is unknown. Additional analyses will be

required to determine whether epitopes newly identified here induce neutralizing or otherwise

protective antibodies. It is interesting to note that SARS-CoV-2 infection resulted in some

antibodies that bound epitopes in other coronaviruses without binding the homologous part

of SARS-CoV-2. These epitopes were not conserved with each other (S3 Data), and most of

this binding occurred in nonstructural proteins in ORF1ab, which may indicate that this was

nonspecific binding resulting from a generalized immune activation.

Finally, we demonstrated that more severely ill patients have significantly greater reactivity

to certain epitopes in S, M, N, and ORF3a. The 9 epitopes with significantly higher magnitude

reactivity in intubated patients may play a role in the overaggressive immune response known

to characterize severe COVID-19 [7,77], suggesting that they may be targets for treatment in

or prevention of severe disease. Our data collection included date of first positive test (S1

Table) but not of symptom onset, but future studies that include these data could investigate

potential correlations between symptoms and antibody kinetics. Alternatively, the antibody

response in general may be higher in very sick patients, expanding the repertoire of antibody

reactivity. Future studies should investigate whether these differences can be detected early in

the disease course to determine their potential utility as predictive markers of disease severity.

Future studies may also investigate these epitopes’ potential as targets for medical countermea-

sures [51], although consideration should be given to the small sample size of our

investigation.

Many questions remain regarding the biology and immunology related to SARS-CoV-2.

Our extensive profiling of epitope-level resolution antibody reactivity in COVID-19 conva-

lescent patients, confirmed by independent assays, provides new epitopes that could serve as

important targets in the development of improved diagnostics, vaccines, and therapeutics

against SARS-CoV-2 and dangerous human CoVs that may emerge in the future.
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Methods

Peptide microarray design and synthesis

Viral protein sequences were selected and submitted to Nimble Therapeutics (Madison, Wis-

consin, USA) for development into a peptide microarray [73]. Sequences represented include

proteomes of all 7 coronaviruses known to infect humans, proteomes of closely related corona-

viruses found in bats and pangolins, and spike proteins from other coronaviruses (accession

numbers and replicates per peptide shown in S5 Data). A number of proteins were included as

controls, including poliovirus, 7 strains of human rhinovirus, and human cytomegalovirus

65kDa phosphoprotein. We chose these controls given that we expect most human adults will

have antibody reactivity to at least one of these proteins and proteomes. Accession numbers

used to represent each viral protein are listed in the Supporting information (accession numbers

and replicates per peptide shown in S5 Data). All proteins were tiled as 16 amino acid peptides

overlapping by 15 amino acids. All unique peptides were tiled in a lawn of thousands of copies,

with each unique peptide represented in at least 3 and up to 5 replicates (S5 Data). The peptide

sequences were synthesized in situ with a Nimble Therapeutics Maskless Array Synthesizer

(MAS) by light-directed solid-phase peptide synthesis using an amino-functionalized support

(Geiner Bio-One) coupled with a 6-aminohexanoic acid linker and amino acid derivatives car-

rying a photosensitive 2-(2-nitrophenyl) propyloxycarbonyl (NPPOC) protection group

(Orgentis Chemicals). Unique peptides were synthesized in random positions on the array to

minimize impact of positional bias. Each array consists of 12 subarrays, where each subarray

can process 1 sample, and each subarray contains up to 389,000 unique peptide sequences.

Human patients and controls

The study was conducted in accordance with the Declaration of Helsinki and approved by the Insti-

tutional Review Board of the University of Wisconsin-Madison. Clinical data and sera from patients

infected with SARS-CoV-2 were obtained from the University of Wisconsin (UW) COVID-19

Convalescent Biobank and from controls (sera collected prior to 2019) from the UW Rheumatology

Biobank [78]. All patients and controls were 18 years of age or older at the time of recruitment and

provided informed consent. COVID-19 convalescent patients had a positive SARS-COV-2 PCR

test at UW Health with sera collected 5 to 6 weeks after self-reported COVID-19 symptom resolu-

tion except blood was collected for 1 patient after 9 weeks. Age, sex, medications, and medical prob-

lems were abstracted from UW Health’s electronic medical record (EMR). Race and ethnicity were

self-reported. Hospitalization and intubation for COVID-19 and smoking status at the time of

blood collection (controls) or COVID-19 were obtained by EMR abstraction and self-report and

were in complete agreement. Two-thirds of COVID-19 convalescent patients and all controls had a

primary care appointment at UW Health within 2 years of the blood draw as an indicator of the

completeness of the medical information. Patients and controls were considered to have an immu-

nocompromising condition if they met any of the following criteria: immunosuppressing medica-

tions, systemic inflammatory or autoimmune disease, cancer not in remission, uncontrolled

diabetes (secondary manifestations or hemoglobin A1c>7.0%), or congenital or acquired immu-

nodeficiency. Controls and COVID-19 patients were similar in regard to demographics and health

(S5 Data), and patients who were not hospitalized, were hospitalized, or were hospitalized and intu-

bated also were compared (S5 Data). No patients or controls were current smokers.

Peptide array sample binding

Samples were diluted 1:100 in binding buffer (0.01 M Tris-Cl (pH 7.4), 1% alkali-soluble

casein, 0.05% Tween-20) and bound to arrays overnight at 4˚C. After sample binding, the
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arrays were washed 3× in wash buffer (1× TBS, 0.05% Tween-20), 10 minutes per wash. Pri-

mary sample binding was detected via Alexa Fluor 647-conjugated goat anti-human IgG sec-

ondary antibody (JacksonAU : PleaseprovidemanufacturerlocationdetailsforJacksonImmunoResearchinthesentencePrimarysamplebindingwasdetectedviaAlexaFluor647 � conjugated:::ImmunoResearch, West Grove, Pennsylvania, United States of

America). The secondary antibody was diluted 1:10,000 (final concentration 0.1 ng/μl) in sec-

ondary binding buffer (1× TBS, 1% alkali-soluble casein, 0.05% Tween-20). Arrays were incu-

bated with secondary antibody for 3 hours at room temperature, then washed 3× in wash

buffer (10 minutes per wash), washed for 30 seconds in reagent-grade water, and then dried by

spinning in a microcentrifuge equipped with an array holder. The fluorescent signal of the sec-

ondary antibody was detected by scanning at 635 nm at 2 μm resolution using an Innopsys

910AL microarray scanner. Scanned array images were analyzed with proprietary Nimble

Therapeutics software to extract fluorescence intensity values for each peptide.

Peptide microarray findings validation

We included sequences on the array of viruses that we expected all adult humans to be likely to

have been exposed to as positive controls: 1 poliovirus strain (measuring vaccine exposure)

and 7 rhinovirus strains. Any patient or control whose sera did not react to at least 1 positive

control would be considered a failed run and removed from the analysis. All patients and con-

trols in this analysis reacted to epitopes in at least 1 control strain (Fig 1, S1 Data).

Peptide microarray data analysis

The raw fluorescence signal intensity values were log2 transformed. Clusters of fluorescence

intensity of statistically unlikely magnitude, indicating array defects, were identified and

removed. Local and large area spatial corrections were applied, and the median transformed

intensity of the peptide replicates was determined. The resulting median data was cross-nor-

malized using quantile normalization.

Neutralization assay

Virus neutralization assays were performed with SARS-CoV-2/UW-001/Human/2020/Wis-

consin on Vero E6/TMPRSS2 [79]. Virus (approximately 100 plaque-forming units) was incu-

bated with the same volume of 2-fold dilutions of heat-inactivated serum for 30 minutes at

37˚C. The antibody/virus mixture was added to confluent Vero E6/TMPRSS2 cells that were

plated at 30,000 cells per well the day prior in 96-well plates. The cells were incubated for 3

days at 37˚C and then fixed and stained with 20% methanol and crystal violet solution. Virus

neutralization titers were determined as the reciprocal of the highest serum dilution that

completely prevented cytopathic effects.

Protein structures

The SARS-CoV-2 S-chimera.pdb used to make S protein structures is a chimeric structure

built by Robert Kirchdoerfer using 6VYB.pdb, 5X4S.pdb, and 6LZG coordinates and filling in

internal unresolved residues from known (presumably) analogous sites determined for SARS-

CoV S from 6CRV.pdb. Additional unmodeled regions were generated using Modeller [80].

C-proximal HR2 regions were modeled as single helices (Phe1148-Leu1211) in Coot [81].

The data2bfactor Python script written by Robert L. Campbell, Thomas Holder, and Suguru

Asai (downloaded from http://pldserver1.biochem.queensu.ca/~rlc/work/pymol/) was used to

substitute peptide array data onto this structure in place of the B factor in PyMol (The PyMOL

Molecular Graphics System, Version 2.0 Schrödinger, LLC) using a dark blue (low) to red

(high) color scale. Data used for these visualizations were the average reactivity in the 40
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COVID-19 convalescent patients, the average reactivity in the 20 naïve controls, and the differ-

ence between averages for the patients and for the controls.

Enzyme-linked immunosorbent assays (ELISAs)

Costar 96-well high-binding plates (Corning, Corning, USA) were incubated at 4˚C overnight

with 5 μg/ml streptavidin (Thermo Fisher Scientific, Waltham, USA) in PBS (Corning). Plates

were washed twice with PBS and incubated at room temperature for 1 hour with 0.5 mM of

the following peptides (Biomatik, Kitchener, Canada) in PBS: 814-S-16 (KRSFIEDLLFNKVT

LA-K-biotin), 1253-S-16 (CCKFDEDDSEPVLKGV-K-biotin), 390-N-16 (QTVTLLPAADLD

DFSK-K-biotin), and 8-M-16 (ITVEELKKLLEQWNLV-K-biotin). Plates were washed thrice

with wash buffer (0.2% Tween-20 in PBS), then incubated for 1 hour in blocking solution (5%

nonfat dry milk in wash buffer) at room temperature, incubated overnight at 4˚C with sera at

1:200 in blocking solution, washed 4 times with wash buffer, incubated for 1 hour at room

temperature with mouse anti-human IgG conjugated to horse radish peroxidase (Southern

Biotech, Birmingham, USA) diluted 1:5,000 in blocking solution, washed 4 times with wash

buffer, and incubated with tetramethyl benzidine substrate solution (Thermo Fisher Scientific)

for 5 minutes followed by 0.18 M sulfuric acid. Absorbance was read on a FilterMax F3 Multi-

mode Microplate reader (Molecular Devices, San Jose, USA) at 450 and 562 nm. Background

signal from 562 nm absorbance and wells with no peptide and no serum were subtracted.

Plates were normalized using a pooled serum sample on every plate. Absorbance values of 0

were plotted as 0.0002 to allow a log scale for graphs. Samples were run in duplicate.

Statistical analysis

Statistical analyses were performed in R (v 4.0.2) using in-house scripts. For each peptide, a

p-value from a two-sided t test with unequal variance between sets of patient and control

responses were calculated and adjusted using the Benjamini–Hochberg (BH) algorithm. To

determine whether the peptide was in an epitope (in SARS-CoV-2 proteins) or cross-reactive

for anti-SARS-CoV-2 antibodies (in non-SARS-CoV-2 proteins), we used an adjusted p-value

cutoff of<0.1 (based on multiple hypothesis testing correction for all 119,487 unique

sequences on the array) and a fold-change of greater than or equal to 2 and grouped consecu-

tive peptides as a represented epitope. Linear discriminant analysis leave-one-out cross valida-

tion was used to determine specificity and sensitivity on each peptide and from each epitope

using the average signal of the component peptides. Pearson correlation for reactivity with

neutralizing titer was calculated using each patient’s or control’s epitope signal and the log2

signal of the respective neutralization value.

To identify cross-reactive epitopes, we used each SARS-CoV-2 epitope sequence as a query,

searched the database of proteins from the sequences in the peptide array using blastp (-word-

size 2, num-targets 4,000) to find homologous sequences in the bat, pangolin, and other

human CoV strains, then determined whether the average log2-normalized intensity for these

sequences in patients was at least 2-fold greater than in controls with t test statistics yielding

adjusted p-values <0.1. Each blast hit was then mapped back to the corresponding probe

ranges.

For correlations of reactivity with clinical severity, for each patient, the epitope signal was

determined by averaging the normalized signal from the epitopes corresponding probes. Each epi-

tope average signal response was fit using a multilinear regression model accounting for age, sex

(Female, Male), immunocompromised status (Yes, No), and Charlson comorbidity index score

[50] as additive. Contrasts between nonhospitalized and intubated patients were performed for

each epitope with the fit models and p-values and log2 fold-change were determined.
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The clinical and demographic characteristics of convalescent patients were compared to

those of the controls using χ2 tests for categorical variables and Wilcoxon rank-sum tests for

nonnormally distributed continuous measures.

Heatmaps were created using the gridtext [82] and complexheatmap [83] packages in R.

Alignments for heatmaps were created using MUSCLE [84].

Supporting information

S1 Fig. Anti-SARS-CoV-2 antibody binding patterns do not vary with neutralizing titer.

Sera from 40 COVID-19 convalescent patients were assayed for IgG binding to the full SARS-

CoV-2 proteome on a peptide microarray. B cell epitopes were defined as peptides in which

patients’ average log2-normalized intensity (black lines in line plots) is 2-fold greater than con-

trols’ (gray lines in line plots) and t test statistics yield adjusted p-values <0.1; epitopes are

identified by orange shading in the line plots. Data are grouped by their neutralizing titer.

COVID-19, coronavirus disease 2019; IgG, immunoglobulin G; SARS-CoV-2, severe acute

respiratory syndrome coronavirus 2.

(XLSX)

S2 Fig. Alignment of epitopes in human and animal CoVs for which antibodies in sera

from 40 COVID-19 convalescent patients showed apparent cross-reactive binding. Align-

ments were performed in Geneious Prime 2020.1.2 (Auckland, New Zealand). CoV, coronavi-

rus; COVID-19, coronavirus disease 2019.

(PDF)

S1 Table. Metadata for the 40 COVID-19 convalescent patients and 20 naïve controls:

Patient or control status, age at blood draw, legal sex, Charlson comorbidity index, immu-

nocompromised status, whether the COVID-19 convalescent patients required hospitali-

zation or intubation for their COVID-19 course, race, and ethnicity. Neutralizing titers and

the dates of the first positive COVID-19 test are also included. COVID-19, coronavirus disease

2019.

(XLSX)

S2 Table. Specificity and sensitivity for past SARS-CoV-2 infection in 40 COVID-19 conva-

lescent patients compared to 20 naïve controls of individual 16-mer peptides comprising

epitopes throughout the full SARS-CoV-2 proteome. COVID-19, coronavirus disease 2019;

SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.

(XLSX)

S3 Table. Epitopes paired with the 1-M-24 epitope obtained AUC-ROC of 1.0 for SARS-

CoV-2 infection in 40 COVID-19 convalescent patients and 20 naïve controls using leave-

one-out cross validation with linear discriminant analysis. AUC-ROC, area under the

receiver operating characteristic curve; COVID-19, coronavirus disease 2019; SARS-CoV-2,

severe acute respiratory syndrome coronavirus 2.

(XLSX)

S4 Table. Comparison of antibody binding in SARS-CoV-2 B cell epitopes in 8 intubated

COVID-19 convalescent patients compared to 25 symptomatic but never hospitalized

COVID-19 convalescent patients compared by multilinear regression accounting for age,

sex, immunocompromising conditions, and Charlson comorbidity index score. COVID-

19, coronavirus disease 2019; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.

(XLSX)
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S5 Table. B cell epitopes detected by sera from 40 individuals having a first positive SARS-

CoV-2 test in March through May 2020 overlap with protein areas containing in SARS-

CoV-2 variants of concern. SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.

(XLSX)

S1 Data. Percentages and individual reactivity of the 40 COVID-19 convalescent patients

and 20 naïve controls reacted to known epitopes in at least 1 control virus (rhinovirus and

poliovirus strains). COVIDAU : AbbreviationlistshavebeencompiledforthoseusedinS1 � S5Data; S1 � S5Tables; andS1andS2Figs:Pleaseverifythatallentriesarecorrect:-19, coronavirus disease 2019.

(XLSX)

S2 Data. Percentages and individual data for the 40 COVID-19 convalescent patients and 20

naïve controls showing log2-normalized fluorescence intensity at least 3.00 standard devia-

tions above the mean for the array for 9 species of CoVs. CoV, coronavirus; COVID-19, coro-

navirus disease 2019.

(XLSX)

S3 Data. Cross-reactive binding of antibodies against other CoVs in 40 COVID-19 conva-

lescent patients compared to 20 naïve controls. CoV, coronavirus; COVID-19, coronavirus

disease 2019.

(XLSX)

S4 Data. Cross-reactive binding of antibodies in 40 COVID-19 convalescent patients com-

pared to 20 naïve controls in protein motifs in other CoVs aligned to SARS-CoV-2. CoV,

coronavirus; COVID-19, coronavirus disease 2019; SARS-CoV-2, severe acute respiratory syn-

drome coronavirus 2.

(XLSX)

S5 Data. SupportingAU : PleasenotethatPLOSusesthetermSupportinginformation:Therefore; supplementaryinS5DatahasbeenchangedasperPLOSstyle:information tables (3 tables) show data relevant to the Methods for

this study. Supporting information Table A contains the proteins represented on the array,

including the GenBank accession numbers and the number of replicates of reach peptide in those

proteins. Supporting information Table B contains the characteristics of the 40 COVID-19 con-

valescent patients and the 20 naïve controls whose sera were used in this study. Supporting infor-

mation Table C contains the characteristics of the 40 COVID-19 convalescent patients according

to hospitalization status. COVID-19, coronavirus disease 2019.

(DOCX)
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