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Abstract: P-type ATPases are transmembrane pumps of cations and phospholipids. They are en-
ergized by hydrolysis of ATP and play important roles in a wide range of fundamental cellular
and physiological processes during plant growth and development. However, the P-type ATPase
superfamily genes have not been characterized in soybean. Here, we performed genome-wide
bioinformatic and expression analyses of the P-type ATPase superfamily genes in order to explore the
potential functions of P-type ATPases in soybean. A total of 105 putative P-type ATPase genes were
identified in the soybean genome. Phylogenetic relationship analysis of the P-type ATPase genes indi-
cated that they can be divided into five subfamilies including P1B, P2A/B, P3A, P4 and P5. Proteins
belonging to the same subfamily shared conserved domains. Forty-seven gene pairs were related to
segmental duplication, which contributed to the expansion of the P-type ATPase genes during the
evolution of soybean. Most of the P-type ATPase genes contained hormonal- and/or stress-related
cis-elements in their promoter regions. Expression analysis by retrieving RNA-sequencing datasets
suggested that almost all of the P-type ATPase genes could be detected in soybean tissues, and
some genes showed tissue-specific expression patterns. Nearly half of the P-type ATPase genes
were found to be significantly induced or repressed under stresses like salt, drought, cold, flooding,
and/or phosphate starvation. Four genes were significantly affected by rhizobia inoculation in root
hairs. The induction of two P2B-ATPase genes, GmACA1 and GmACA2, by phosphate starvation was
confirmed by quantitative RT-PCR. This study provides information for understanding the evolution
and biological functions of the P-type ATPase superfamily genes in soybean.

Keywords: P-type ATPase; ion pump; phylogenetic analysis; expression analysis; tissue expression
pattern; stress; duplication; evolution; cis-acting element

1. Introduction

The P-type ATPases are cation and lipid pumps energized by hydrolysis of ATP. They
were named P-type ATPases because they form a phosphorylated (hence P-type) reaction
cycle intermediate during catalysis [1]. The ATP hydrolyzing machinery of P-type ATPases
consists of three interconnected cytoplasmic domains: the phosphorylation (P), nucleotide
binding (N), and actuator (A) domain. A conserved sequence motif, DKTGT, is contained
in the P domain of P-type ATPases, where the Asp (D) residue is phosphorylated during
catalysis [1]. The P-type ATPases form a large superfamily that can be divided into five
distinct evolutionarily related subfamilies, P1–P5. Each of the subfamilies can be further
divided into subgroups [2,3]. The major subgroups of P-type ATPases include P1A-ATPases
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(part of bacterial K+ transport system), P1B-ATPases (heavy metal pumps), P2A-ATPases
(Ca2+ pumps), P2B-ATPases (Ca2+ pumps), P2C-ATPases (Na+/K+ and H+/K+ pumps
of animals), P2D-ATPases (Na+ pumps of fungi), P3A-ATPases (H+ pumps), P4-ATPases
(phospholipid pumps), and P5-ATPases (the substrate of P5-ATPases is still unclear) [1,4,5].
The P-type ATPases play critical roles in a wide range of fundamental cellular processes,
such as generating and maintaining the electrochemical gradient that is used as the driving
force for secondary transporters (H+-ATPases in plants and fungi and Na+/K+-ATPases
in animals), calcium signaling (Ca2+-ATPases), the transport of essential micronutrients
(heavy metal-ATPases), and the generation of membrane phospholipid asymmetry [6–10].

The subfamilies of P1B-, P2A-, P2B-, P3A-, P4-, and P5-ATPases have been found to
exist in higher plants, while the genes of P1A, P2C, and P2D subfamilies are absent [3,11,12].
In Arabidopsis (Arabidopsis thaliana L.), a total of 47 P-type ATPase genes have been iden-
tified, including eifht P1B, four P2A, eleven P2B, eleven P3A, twelve P4, and one P5
gene(s) [11–13]. In rice (Oryza sativa L.), a total of 45 P-type ATPase genes have been identi-
fied, including nine P1B, three P2A, twelve P2B, ten P3A, ten P4, and one P5 gene(s) [11,13].
P1B-ATPase is a subfamily of P-type ATPases. It is also named as heavy metal ATPase
(HMA). HMAs are divided into two groups based on their substrate specificity: Cu/Ag
transporters (Cu+-ATPases) and Zn/Cd/Co/Pb transporters (Zn2+-ATPases) [14,15]. In
addition to the conserved domains of P-type ATPases, HMAs typically possess six to eight
transmembrane domains, an HP locus, a CPx/SPC motif, and putative metal-binding
domains in the N- and/or C-terminal regions [9]. HMAs mainly function in the transport
of metal cations (e.g., Cu+, Cu2+, Ag+, Zn2+, Co2+, Cd2+, and Pb2+) across biological mem-
branes in a wide range of organisms [9,16,17]. P1B-ATPases in Arabidopsis and rice have
been divided into six groups [9,11]. Arabidopsis AtHMA1–4 have been suggested to be
Zn2+-ATPases, while AtHMA5–8 have been suggested to be Cu+-ATPases [9,17,18]. Rice
OsHMA1–3 belong to the Zn2+-ATPase group, while OsHMA4–9 have been indicated to
belong to the Cu+-ATPase group [16,19,20].

P2-ATPases in plants, which are also named Ca2+ pumps, are divided into two
subgroups: P2A (ER-type Ca2+-ATPases, ECAs) and P2B (autoinhibited Ca2+-ATPases,
ACAs) [8,21]. Both ECAs and ACAs contain all the characteristic motifs of P-type ATPases
and of the P2 subfamily ATPases, such as the highly conserved sequence DKTGT, the PEGL
motif playing a critical role in energy transduction, and the KGAXE sequence involved
in nucleotide binding [8,11,21]. ACAs contain an N-terminal autoinhibitory domain that
binds to calmodulin and activates the Ca2+ pump [22,23]. Plant P-type ATPases are impli-
cated in Ca2+ signaling and Ca2+ homeostasis by pumping Ca2+ from the cytoplasm into
intracellular compartments or into the apoplast [8,21]. Plant P2-ATPases are involved in
many cellular and physiological processes, such as pollen tube growth, and abiotic and
biotic stress tolerance [21,24–27].

The P3A-ATPases are plasma membrane (PM) H+-ATPases, which are universal elec-
trogenic H+ pumps hydrolyzing ATP to pump H+ out of the cytosol from fungi to vascular
plants [28,29]. The PM H+-ATPase is a functional monomer with a molecular weight about
100 kDa that can oligomerize to form dimeric and hexameric complexes [30]. The PM
H+-ATPases have N- and C-terminal segments protruding into the cytoplasm, and ten
transmembrane segments [28]. Generally, the C-terminal region of the PM H+-ATPase
consisting of approximately 100 amino acids is known as an autoinhibitory domain keeping
the H+-ATPase in a low-activity state via an interaction with the catalytic domain under
normal conditions [28]. The phosphorylation of the penultimate Thr and subsequent bind-
ing of the 14-3-3 protein to the phosphorylated penultimate Thr results in the activation of
H+-ATPase [31,32]. All 12 PM H+-ATPase gene members in Arabidopsis (AHA1–AHA12),
10 members in rice (OSA1–OSA10), and 12 members in sorghum (Sorghum bicolor L.) have
been classified into five subfamilies [11,29,33]. By generating an H+ electrochemical gradi-
ent, maintaining intracellular pH homeostasis, and providing driving force for the active
influx and efflux of ions and metabolites across the PM, PM H+-ATPases have been in-
dicated to be involved in many important physiological processes during plant growth
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and development, such as nutrient uptake and transportation, stomatal movement, cell
elongation, and environmental stress tolerance [6,7,28,30,34–36].

The P4-ATPases, also known as phospholipid flippases, are unique to eukaryotic
organisms. They are present in the plasma membrane and membranes of the secretory
pathway to generate phospholipid asymmetry, which is required for vesicle budding
and fusion in the secretory pathway [4,37]. A characteristic feature of the P4-ATPase
subfamily proteins is the high frequency of hydrophobic or aromatic residues within those
transmembrane domains that are commonly involved in cation transport in other P-type
ATPases [4]. Mutation of some of these residues causes changes in lipid specificity, but
none of these residues seem to be involved in direct lipid binding [37,38]. There are 12
P4-ATPase subfamily proteins in Arabidopsis, designated as Aminophospholipid ATPase1
(ALA1) to ALA12 [12]. Ten ALA proteins were identified in rice [11]. Some Arabidopsis
ALA proteins have been characterized to be phospholipid flippases and have diverse
physiological functions [37]. For example, AtALA1 is involved in chilling tolerance [39];
AtALA3 is a broad-specificity phospholipid flippase localized in the Golgi apparatus, where
it contributes to the formation of secretory vesicles [10]; AtALA10 transports up to six
different phospholipids, including sphingomyelin, a ceramide-derived phospholipid [40].
In contrast to the well-known cation transporters of the P-type ATPases, the substrate of
P5 ATPases is still unclear [5]. In both Arabidopsis and rice, there is only one P5 ATPase
gene [11]. In addition to model plants Arabidopsis and rice, genes encoding P-type ATPase
proteins have been identified at the whole-genome scale in some other plants [41,42].

Soybean is an important economic crop providing oil- and protein-rich food for
humans around the world. The genome sequence of a cultivated soybean developed in
the 1980s (Glycine max L. var. Williams 82) has been released ten years ago [43]. The
reference genome has opened the door for soybean functional genomics [44,45]. The
entire P-type ATPase superfamily in the whole genome of soybean has not been identified,
and its roles in developmental regulation and environmental stress tolerance are largely
unknown. In this study, we carried out a genome-wide search and characterized and
analyzed all the putative P-type ATPase genes in the soybean genome. RNA-sequencing
and microarray data were used to analyze their expression patterns in different tissues
of soybean and their transcriptional responses to environmental stresses and rhizobia
infection. Quantitative reverse-transcription polymerase chain reaction (qRT-PCR) was
used to validate the expression of two genes in response to phosphorus deficiency. These
results provide useful information for further functional studies on P-type ATPase genes
and their possible roles in stress tolerance, nutrient utilization, and symbiosis.

2. Materials and Methods
2.1. Identification and Annotation of P-Type ATPase Genes in the Soybean Genome

Proteins encoding putative P-type ATPase proteins in the soybean genome were
identified by searching the soybean genome database SoyBase (https://www.soybase.org/)
by BLASTP with the representative P-type ATPase proteins (including all five subfamilies
of P-type ATPases, P1B, P2A/B, P3A, P4, and P5) from Arabidopsis and rice. The default
settings were used. The nucleotide and protein sequences were obtained from the SoyBase
website (https://www.soybase.org/). Protein domains were analyzed by using HMMScan
(https://www.ebi.ac.uk/Tools/hmmer/search/hmmscan) [46] and the InterPro database
(http://www.ebi.ac.uk/interpro/) [47]. The TMHMM2.0 program (http://www.cbs.dtu.
dk/services/TMHMM/) was used to predict transmembrane helices [48]. Proteins that do
not contain the characteristic domains and motifs of the P-type ATPase subfamilies were
eliminated. Putative genes encoding P-type ATPase proteins were named according to
their orthologues in Arabidopsis and their positions in the phylogenetic trees.

2.2. Phylogenetic Tree Construction and Chromosome Distribution

The full-length amino acid sequences of P-type ATPase proteins from soybean, Ara-
bidopsis, and rice were retrieved from TAIR (http://www.arabidopsis.org/), RGAP

https://www.soybase.org/
https://www.soybase.org/
https://www.ebi.ac.uk/Tools/hmmer/search/hmmscan
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(http://rice.plantbiology.msu.edu/index.shtml), and SoyBase (https://www.soybase.org/),
respectively. These sequences were aligned using ClustalW, and the neighbor-joining trees
were constructed using the Molecular Genetics Analysis (MEGA) 6.0 with the “pairwise
deletion” option and “Poisson correction” model [49]. Bootstrap replications were set
to 1000 to evaluate the reliability of internal branches. Chromosomal locations of all the
putative genes encoding P-type ATPase proteins were obtained from the SoyBase website
(https://www.soybase.org/). The P-type ATPase genes were mapped on the 20 soybean
chromosomes based on their physical positions on chromosomes.

2.3. Gene Duplication Analysis and Calculation of Ka/Ks Values

The duplication of putative P-type ATPase genes on segmentally duplicated regions
was determined according to the results of phylogenetic trees and through searching the
plant genome duplication database (PGDD) [50]. If the distance between two neighboring
paralogous genes were less than 100 kb and separated by five or less genes, they were
considered to be tandemly duplicated genes [51]. The history of selection performed on
coding sequences can be measured by the Ka (non-synonymous substitution rates)/Ks
(synonymous substitution rates) ratio, and the Ka/Ks can be used to identify pairwise
combinations of genes, where encoded proteins may have changed functions [52]. The
direction and magnitude of natural selection enforcing on the different genes could be
interpreted by the Ka/Ks ratio. A pair of sequences having Ka/Ks < 1 indicates purifying
selection; Ka/Ks = 1 implies both sequences drift neutrally; and Ka/Ks > 1 indicates
positive or Darwinian selection [53]. The Ks and Ka of each gene pair was calculated by
using TBtools [54]. The divergence time (T) was calculated by T = Ks/(2 × 6.1 × 10−9) ×
10−6 MYA (million years ago), in which 6.1 × 10−9 is divergence rate in millions of years
translated from Ks value [53].

2.4. In Silico Expression Analysis of P-Type ATPase Genes in Soybean

The expression patterns of P-type ATPase genes in different tissues of soybean were
retrieved from two published soybean RNA-seq datasets [55,56]. The normalized Illumina-
Solexa reads number (The Reads/Kb/Million, RPKM) was log2-transformed and visualized
in the heatmap, which was drawn by the MultiExperiment Viewer program (http://mev.
tm4.org/). Microarray and high-throughput sequencing datasets of short-term salt stress
(1 h, 6 h, and 12 h) in soybean roots [57], 1 d cold stress in soybean shoots [58], 4 d
dehydration stress in soybean shoots [58], 7 d flooding stress in soybean leaves [59], 7 d
drought stress in soybean leaves [59], and 7 d phosphate starvation stress in soybean
roots [60], were acquired from published datasets. The published dataset of transcriptome
response to symbiotic bacteria (Bradyrhizobium japonicum) in soybean root hairs was also
retrieved [61].

2.5. Analysis of Cis-Acting Regulatory Elements

Promoter sequences of 1.5 kb upstream from the transcription start sites of putative
genes encoding P-type ATPase proteins were obtained from the SoyBase database (http:
//www.soybase.org/). The location of cis-acting regulatory elements was analyzed using
Regulatory Sequence Analysis Tools (RSAT) (http://rsat.eead.csic.es/plants/) [62].

2.6. Plant Growth and qRT-PCR Analysis

Soybean seeds (Glycine max L. var. Williams 82) were germinated at room temper-
ature in the dark between two layers of filter paper moistened with sterilized water.
After four days, soybean seedlings were grown hydroponically in half-strength modified
Hoagland nutrient solution, the pH of the nutrient solution was adjusted to 5.6, and the
nutrient solution was changed every three days [63]. The seedlings were grown in a
growth chamber with a photoperiod set at 16-h-light/8-h-dark at 26/22 ◦C and with a
light intensity of 150 µmol m−2 s−1. After cultivating for two weeks, soybean seedlings
were used for phosphorus deficiency treatment. Seedlings were transferred into nor-

http://rice.plantbiology.msu.edu/index.shtml
https://www.soybase.org/
https://www.soybase.org/
http://mev.tm4.org/
http://mev.tm4.org/
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mal nutrient solution (control) and phosphorus deficient solution (without KH2PO4).
For the phosphorus deficient treatment, we replaced KH2PO4 with K2SO4 to keep the
concentration of K+. Roots and leaves of soybean seedlings were separately sampled
after treatment of phosphorus deficiency for one and seven days. Quantitative RT-PCR
(qRT-PCR) was performed on a real-time PCR system (CFX96 system, Bio-Rad Company,
Hercules, California, USA) as described previously [64]. Relative expression levels were
normalized to that of an internal control GmACTIN11 (Glyma.18g290800). The primers
used for amplification were as follows: 5′-CGGTGGTTCTATCTTGGCATC-3′ and 5′-
GTCTTTCGCTTCAATAACCCTA-3′ for GmACTIN11; 5′-TCGAGGCTTTCTTGGGTTGG-3′

and 5′-GCAGTTTGCCATGTCTCAGTC-3′ for GmACA1; and 5′-ACTACTTTTGGGGAAGT
GGTAG-3′ and 5′- CATTTGGCCACTGTTACTATCG-3′ for GmACA2. The calculated effi-
ciency (E) of these primers was all around 2.0.

3. Results
3.1. Identification of Putative Genes Encoding P-Type ATPase Proteins in the Soybean Genome

To investigate the P-type ATPase gene superfamily in the soybean genome, the
BLAST algorithm was used to search the soybean genome database in the SoyBase website
(https://www.soybase.org/) using Arabidopsis and rice P-type ATPase protein sequences
as the query. In total, 105 genes were identified to putatively encode P-type ATPase proteins
(Table S1). These genes can be classified into five subfamilies, e.g., P1B, P2A/B, P3A, P4,
and P5, based on their homologues in Arabidopsis and rice (Figure 1 and Table S1). There
were nineteen P1B genes, seven P2A genes, twenty-six P2B genes, twenty-four P3A genes,
twenty-seven P4 genes, and two P5 genes identified in the soybean genome (Figures 1 and
2). The total number of P-type ATPase proteins in soybean is about 2.2 and 2.3 folds that in
Arabidopsis and rice, respectively (Figure 2).
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3.2. P1B Subfamily Genes in Soybean

Twenty P1B subfamily genes have been identified previously in soybean and they
were sequentially named GmHMA1 to GmHMA20 according to their chromosomal po-
sitions [65]. Here, we used P1B proteins from Arabidopsis and rice as queries to BLAST
against the soybean genome database (SoyBase, https://www.soybase.org/). These 20
genes were all covered in the BLAST result, but the gene or protein length of these GmH-
MAs in the latest version of soybean genome annotation (Wm82.a4.v1) is different from
the previous report (Wm82.a1.v1) [65]. For example, the protein length of GmHMA16 is
278 amino acids, while the length was 793 in the previous report. Because of the lack of
characteristic domains of P1B ATPases, GmHMA16 was removed in the P1B subfamily
members. The gene and protein sequences of the other 19 GmHMAs in the latest version
were then used for further analysis. The coding region of these soybean P1B ATPase genes
was interrupted by 4 to 16 introns (Table S2). The protein length of GmHMAs ranged
from 505 to 1096 amino acids (Table S2). All of the GmHMA proteins were predicted to
contain a E1-E2 ATPase domain (Figure S1). Twelve GmHMA proteins were predicted to
contain one to three heavy-metal-associated domains (Figure S1). All GmHMA proteins
were predicted to contain two to eight transmembrane helices by using the TMHMM2.0
program (http://www.cbs.dtu.dk/services/TMHMM/), with the exception that there was
no transmembrane helix for GmHMA4 (Table S2), which is consistent with a previous
report [65]. An unrooted phylogenetic analysis was conducted to explore the evolution-
ary relationships of HMAs in soybean, Arabidopsis and rice plants. The topology of the
phylogenetic tree revealed that the P1B subfamily can be divided into six clades (I–VI)
(Figure 3). In each clade, genes from the three plant species were present, suggesting a
common ancestor of the same clade in these plants.

https://www.soybase.org/
http://www.cbs.dtu.dk/services/TMHMM/
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Figure 3. Phylogenetic tree of P1B family proteins from soybean (Glycine max), rice (Oryza sativa), and
Arabidopsis thaliana: the full-length amino acid sequences were aligned by ClustalW. The neighbor-
joining phylogenetic tree was constructed by MEGA6 with 1000 bootstrap replications. GmHMAs
are denoted by red circles, AtHMAs are denoted by purple triangles, and OsHMAs are denoted by
green diamonds. The locus name of a soybean gene is shown in brackets. Roman numerals designate
the subfamilies.

3.3. P2 Subfamily Genes in Soybean

The P2 subfamily ATPases can be classified in two groups: P2A (ECA) and P2B
(ACA). Previously, we identified 8 P2A subfamily genes and 25 P2B subfamily genes in
the soybean genome [66]. The soybean P2 ATPase proteins were predicted to contain
five to ten transmembrane helices (Table S3). Domain prediction analysis showed that
five domains characteristic for P2 subfamily ATPase, such as N-terminal autoinhibitory
domain, N-terminus cation transporter/ATPase, E1-E2 ATPase, haloacid dehalogenase-like
hydrolase, and C-terminus cation transporter/ATPase, were predicted to exist in most of
the soybean P2 subfamily proteins [66]. Most of the soybean P2B proteins were predicted
to contain an N-terminal autoinhibitory domain [66]. A phylogenetic tree was constructed
using deduced amino acid sequences to analyze the evolutionary relatedness among the
members of P2 subfamily from soybean, rice, and Arabidopsis (Figure 4). The phylogenetic
analysis suggested that the P2 subfamily formed five distinct clades; P2B can be divided
into four clades, i.e., P2B-I, P2B-II, P2B-III, and P2B-IV (Figure 4). Gene members in the
same clade have a high degree of evolutionary relatedness in these three plant species,
suggesting the common ancestry of P2 type ATPases in these plants.



Agronomy 2021, 11, 71 8 of 25

Agronomy 2021, 11, x FOR PEER REVIEW 8 of 25 
 

to ten transmembrane helices (Table S3). Domain prediction analysis showed that five 
domains characteristic for P2 subfamily ATPase, such as N-terminal autoinhibitory do-
main, N-terminus cation transporter/ATPase, E1-E2 ATPase, haloacid dehalogenase-like 
hydrolase, and C-terminus cation transporter/ATPase, were predicted to exist in most of 
the soybean P2 subfamily proteins. [66]. Most of the soybean P2B proteins were predicted 
to contain an N-terminal autoinhibitory domain [66]. A phylogenetic tree was constructed 
using deduced amino acid sequences to analyze the evolutionary relatedness among the 
members of P2 subfamily from soybean, rice, and Arabidopsis (Figure 4). The phyloge-
netic analysis suggested that the P2 subfamily formed five distinct clades; P2B can be di-
vided into four clades, i.e., P2B-I, P2B-II, P2B-III, and P2B-IV (Figure 4). Gene members in 
the same clade have a high degree of evolutionary relatedness in these three plant species, 
suggesting the common ancestry of P2 type ATPases in these plants. 

 
Figure 4. Phylogenetic tree of P2 subfamily proteins from soybean (Glycine max), rice (Oryza sativa), and Arabidopsis thali-
ana: the full-length amino acid sequences were aligned by ClustalW. The neighbor-joining phylogenetic tree was con-
structed by MEGA6 with 1000 bootstrap replications. Soybean genes are denoted by red circles, Arabidopsis genes are 
denoted by purple triangles, and rice genes are denoted by green diamonds. The locus name of a soybean gene is shown 
following the gene name. The P2 subfamily is divided into six clades, i.e., P2A, and P2B-I to P2B-IV. 

3.4. P3 Subfamily Genes in Soybean 
A total of 24 putative genes encoding PM H+-ATPases which belong to the P3 sub-

family were identified in soybean (Table S4). These genes were designated as GmHA1 to 
GmHA24. The intron number of GmHA genes varied from 8 to 21, and the protein length 
of GmHAs ranged from 888 to 1017 amino acids (Table S4). All of the GmHA proteins 
were predicted to contain 6 to 10 transmembrane helices (Table S4). All of the GmHA 
proteins were predicted to contain an N-terminus cation transporter/ATPase domain, a 

Figure 4. Phylogenetic tree of P2 subfamily proteins from soybean (Glycine max), rice (Oryza sativa), and Arabidopsis thaliana:
the full-length amino acid sequences were aligned by ClustalW. The neighbor-joining phylogenetic tree was constructed
by MEGA6 with 1000 bootstrap replications. Soybean genes are denoted by red circles, Arabidopsis genes are denoted by
purple triangles, and rice genes are denoted by green diamonds. The locus name of a soybean gene is shown following the
gene name. The P2 subfamily is divided into six clades, i.e., P2A, and P2B-I to P2B-IV.

3.4. P3 Subfamily Genes in Soybean

A total of 24 putative genes encoding PM H+-ATPases which belong to the P3 sub-
family were identified in soybean (Table S4). These genes were designated as GmHA1 to
GmHA24. The intron number of GmHA genes varied from 8 to 21, and the protein length
of GmHAs ranged from 888 to 1017 amino acids (Table S4). All of the GmHA proteins
were predicted to contain 6 to 10 transmembrane helices (Table S4). All of the GmHA
proteins were predicted to contain an N-terminus cation transporter/ATPase domain,
a E1-E2 ATPase domain, and a haloacid dehalogenase-like hydrolase domain, with the
exception that there is no N-terminus cation transporter/ATPase domain for GmHA18
(Figure S2). By sequencing alignment, the protein sequences of PM H+-ATPases were found
to be highly conserved among the P3 subfamily proteins in Arabidopsis, rice and soybean
(Figure S3). All of the 24 GmHA proteins possess a penultimate Thr, a conserved region I,
and a conserved region II in the C-terminal regions with the exception of GmHA13 (Figure
5). Region I and region II have been identified to be important for autoinhibitory effects
on the PM H+-ATPase [67]. The phosphorylation of penultimate Thr or Ser is required
for 14-3-3 protein binding, which results in the activation of PM H+-ATPases [32,68]. A
phylogenetic tree was constructed using full-length amino acid sequences of all the PM
H+-ATPase in soybean, Arabidopsis, and rice. These proteins could be grouped into five
distinct clades (Figure 6). In each clade, PM H+-ATPase genes from soybean, Arabidopsis,
and rice are all included (Figure 6).
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Figure 5. Alignment of the C-terminal regions of 24 soybean PM H+-ATPases and three representative PM H+-ATPases
from Arabidopsis and rice (AHA2, AHA8, and OsA1): region I, region II, and the 14-3-3 protein binding site within the
C-terminal regions are indicated by lines. Region I and region II in the C-terminal region have been identified to be critical
for the autoinhibitory effects on the H+-ATPase. The phosphorylation of penultimate Thr or Ser is required for 14-3-3 protein
binding, which results in the activation of H+-ATPases.

3.5. P4 Subfamily Genes in Soybean

In this study, 27 P4 subfamily genes were identified in the soybean genome (Table S5).
These genes were designated as GmALA1 to GmALA27 according to their positions in the
phylogenetic tree (Figure 7). The intron number of GmALA genes varied from 6 to 24, and
the protein length of GmALAs ranged from 943 to 1297 amino acids (Table S5). All the P4
ATPase proteins in soybean were predicted to contain seven to ten transmembrane helices
(Table S5). All of these proteins were predicted to contain several conserved domains of
P4-ATPases, such as an N-terminal phospholipid-translocating P-type ATPase domain, a
E1-E2 ATPase domain, a cation-transport ATPase domain, a haloacid dehalogenase-like
hydrolase, and a C-terminal phospholipid-translocating P-type ATPase domain (Figure 8).
A phylogenetic tree was constructed using the neighbor-joining method to determine the
homology between the P4 subfamily genes in soybean, Arabidopsis and rice. The topology
of the phylogenetic tree showed that the P4 subfamily can be divided into five clades (I–V)
(Figure 7). Genes coming from the monocot rice, the dicotyledon Arabidopsis, and the
legume soybean were all included in each of these clades (Figure 7), suggesting common
ancestors of P4 ATPases in these angiosperms.

3.6. P5 Subfamily Genes in Soybean

By homolog searching, two putative genes were identified to encode P5 subfamily
ATPases in soybean; they were named GmP5a and GmP5b (Table S6). The coding regions
of these two genes are both interrupted by 20 introns. The encoded proteins of these two
genes were predicted to contain 10 transmembrane helices (Table S6). GmP5a and GmP5b
were both predicted to contain a E1-E2 ATPase domain and a haloacid dehalogenase-like
hydrolase domain (Figure 9A). The protein sequences of GmP5a and GmP5b are similar
to the P5 proteins in Arabidopsis and rice (Figure S4). A phylogenetic tree suggested that
GmP5a and GmP5b are closely related to their orthologous proteins in Arabidopsis and
rice (Figure 9B).
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Figure 6. Phylogenetic tree soybean (Glycine max), rice (Oryza sativa), and Arabidopsis thaliana of the
P3A subfamily: the full-length amino acid sequences were aligned by ClustalW. The phylogenetic
neighbor-joining tree was made by MEGA6 with 1000 bootstrap replications. GmAHAs are denoted
by red circles, AtAHAs are denoted by purple triangles, while OsAs are denoted by green diamonds.
The locus name of a soybean gene is shown in brackets. Roman numerals designate the subfamilies.
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Figure 7. Phylogenetic tree of soybean (Glycine max), rice (Oryza sativa), and Arabidopsis thaliana of the
P4 subfamily: the neighbor-joining phylogenetic tree was made using MEGA6 with 1000 bootstrap
replications by aligning full-length amino acid sequences with ClustalW. GmALAs are denoted by
red circles, AtALAs are denoted by purple triangles, while OsALAs are denoted by green diamonds.
The locus name of the soybean gene is shown in brackets. Roman numerals designate the subfamilies.
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Figure 9. Schematic representation of functional domains of soybean P5 subfamily proteins (A)
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3.7. Chromosomal Distribution and Gene Duplication of Soybean P-Type ATPase Genes

The identified 105 putative genes encoding P-type ATPases were distributed on 19 of
the 20 chromosomes in soybean (Figure 10). There is no P-type ATPase gene on chromo-
some 20. On each of the other 19 chromosomes, the number of P-type ATPase genes ranged
from one to eleven; only one gene (GmACA10) was found on chromosome 10, while 11
genes were found on chromosome 8 (Figure 10). The duplication of genes resulted in gene
family expansion. GmHMA1 and GmHMA2 were found to be tandem duplicated because
their distance is less than 100 kb and no intervening gene was found (Figure 10). In addition,
47 segmentally duplicated gene pairs were identified with higher bootstrap values (>90%)
(Table S7). The synonymous substitution rates (Ks), the nonsynonymous substitution rates
(Ka) and the Ka/Ks ratio for the 47 duplicated gene pairs indicated high similarities in
their coding sequence alignments. The Ks values of these 47 gene pairs ranged from 0.056
for gene pair GmALA26/GmALA27 to 0.372 for gene pair GmACA21/GmACA22 with an
average Ks of 0.115 (Table S7). The Ka/Ks of all the 47 duplicated gene pairs were found to
be between 0.023 and 0.338 (Table S7), suggesting the influence of purifying selection on the
evolution of these gene pairs, because a pair of genes having Ka/Ks < 1 could indicate pu-
rifying selection enforcing on the different protein coding genes during the evolution [53].
The duplication time for each gene pairs was calculated based on the divergence rate of λ =
6.1 × 10−9 proposed for soybean [53]. All the segmentally duplicated gene pairs showed a
time frame between 4.59 and 30.52 MYA, having an average time of 9.4 MYA (Table S7).

3.8. Tissue Expression Patterns of Soybean P-Type ATPase Genes

The tissue expression patterns of putative genes encoding P-type ATPase proteins
in soybean were analyzed by using two published RNA-seq datasets. The first dataset
contains nine tissues, i.e., leaves, shoot apical meristem (SAM), flower, green pods, root,
root tip, mature nodules, and root hair cells isolated 84 and 120 h after sowing (HAS) [56].
The second dataset contains 14 tissues, i.e., three vegetative tissues (leaves, root, and
nodules) and whole seed at 11 stages of reproductive tissue development (flower, pod, and
seeds) [55]. In the first dataset, with the exception of GmACA18 and GmACA24, which do
not have corresponding locus names of version 1.0 (Wm82.a1.v1, used in the published
RNA-seq data), the expression of the other 103 putative P-type ATPase genes could be
detected in at least one of the nine tissues (Figure 11 and Table S8), suggesting authentic
expression of these identified P-type ATPase genes. In the second dataset, the expression
of 93 putative P-type ATPase genes could be detected in at least one of the 14 tissues, while
the expression of ten genes (GmHMA20, GmACA3/4/7/8, and GmHA9/10/11/12/16)
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could not be found (Figure S5). Consistently, the expression of the ten genes showed very
low expression levels in tissues of soybean in the first dataset (Figure 11 and Table S8),
suggesting that these genes could be expressed under specific conditions and that their
functions may be very weak under normal conditions. It is notable that the previously
identified GmHMA16 could not be detected in any of these two datasets, suggesting that
it is a pseudogene. As shown in both datasets, many genes were expressed ubiquitously
in various tissues, such as GmHMA5-8/10-12/14/15/19, GmACA1/2/5/6/9-14/19/20/23/25/26,
GmP5a/b, and GmHA3-8/20-23, whereas some genes were tissue-specifically expressed.
For example, GmACA3/4, and GmHA11-15 were predominantly expressed in flowers;
GmHMA1/2 and GmHA1/2 were strongly expressed in roots; and GmHMA18, GmACA21/22,
and GmALA15/16 were predominantly expressed in root nodules (Figure 11 and Figure S5).
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Figure 10. Graphical representation of locations for all the P-type ATPase genes on each chromosome of soybean: genes
belonging to the same family are shown in the same color. Genes within a light golden box are putatively tandemly
duplicated.
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expression intensity, and grey color indicates no detected expression. HAS: hours after sowing. SAM:
shoot apical meristem.
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3.9. Analysis of Cis-Acting Element in the Promoter Regions of Soybean P-Type ATPase Genes

The presence of 10 classes of cis-elements related to hormonal signal and/or stress
responses was surveyed in the 1.5 kb promoter regions upstream from the predicted tran-
scription start sites of these putative P-type ATPase genes. These cis-elements include
dehydration and cold response element DRE/CRTE, abscisic acid response element ABRE,
ethylene responsive element GCC-box, auxin signaling component ARF1 binding site
(AuxRE), salicylic acid-responsive element SARE, phosphate starvation signaling tran-
scription factor PHR1 binding site (P1BS), sulfur-responsive element (SURE), stress-related
CAMTA transcription factor binding site CG-box, and stress-related WRKY transcription
factor binding site W-box (Table S9) [69–78]. The positions of cis-elements located in the
promoter regions are shown in Table S10. With the exception of GmALA4 and GmALA21,
all of the other P-type ATPase genes contained at least one of the ten cis-elements in their
promoter regions (Figure S6). More than 60 of these genes contained more than four kinds
of cis-elements in their promoters, especially for GmACA20 and GmHA6; each of them
contained eight kinds of cis-elements (Figure S6). Among the P-type ATPase genes, more
than half of them contained SARE, W-box and/or SURE, while only around 15% of them
contained DRE/CRT or P1BS (Figure S6). Some cis-elements have more than one copy in
the promoter region. For example, four ABRE elements were found in the promoter of
GmHA11; seven SARE elements were found in the promoter of GmACA14; and nine SURE
elements were found in the promoter of GmHMA17 (Figure S6 and Table S10).

3.10. Expression Analysis of Soybean P-Type ATPase Genes in Response to Stresses and
Rhizobia Inoculation

The expression profiles of soybean P-type ATPase genes in response to various environ-
mental stresses, like salt, drought/dehydration, cold, flooding, and phosphate starvation,
were retrieved from published microarray or RNA-seq datasets [57–60]. Among all the
P-type ATPase genes in soybean, the expressions of 51 genes (48.6%) were found to be
significantly changed under at least one of these environmental stresses (Figure 12). Five
GmHMA genes (GmHMA6/7/10/11/15) were induced by cold, while six GmHMA genes
(GmHMA2/5/8/13/14/18) were repressed by salt or dehydration stress. GmACA1/2/23/25
were strongly induced by multiple stresses, like cold, salt and drought. The expression
of GmHA1/3/19 was increased, while the expression of GmHA6/16/17/20/21/22/23/24 was
repressed under cold, drought, and/or salt stress.

The expression profile of P-type ATPase genes in response to rhizobia (Bradyrhizobium
japonicum) inoculation (12–48 h after inoculation (HAI)) was also analyzed in soybean
root hairs by acquiring published transcriptome data [61]. With the exception of GmHA12,
GmHA14, GmACA4, GmACA22, and GmECA2, almost all of the P-type ATPase genes (98
genes) could be detected in the root hairs with or without rhizobia inoculation (Figure
13 and Table S11). It is interesting that some of these genes were significantly affected
during the inoculation of rhizobia. For example, GmHMA2 was significantly induced at 12
and 24 HAI; GmACA19 and GmALA1 were remarkably repressed at 12 HAI and 48 HAI,
respectively; and GmALA7 was dramatically increased at 12 HAI (Figure 13).

Two P-type ATPase genes, GmACA1 and GmACA2, were suggested to be responsive
to phosphorus deficiency by RNA-seq (Figure 12). In order to confirm their transcrip-
tional responses to phosphorus deficiency, we analyzed their expression patterns under
phosphorus deficiency stress in soybean leaves and roots by qRT-PCR. Consistent with
the RNA-seq data, GmACA1 and GmACA2 were found to be significantly induced by
phosphorus deficiency one day and seven days after phosphorus deficiency treatment in
both leaves and roots (Figure 14).
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Figure 12. Heatmap representation for the expression profiles of putative genes encoding P-type
ATPase proteins under environmental stresses, like short-term salt stress (1 h, 6 h, and 12 h) in roots,
1 d cold stress in shoots, 4 d dehydration stress in shoots, 7 d flooding stress in leaves, 7 d drought
stress in leaves, and 7 d phosphate starvation stress in roots: the intensities of the color represent
the relative magnitude of fold changes in log2 values according to microarray or high-throughput
sequencing data (fold change > 2, and p-value < 0.05). Red color indicates induction, blue color
indicates repression, and gray color means no significant change in expression level.
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Figure 13. Heatmap representation for the expression profiles of putative genes encoding P-type
ATPase proteins in root hairs (RH) and stripped roots inoculated (IN) and mock-inoculated (UN)
with Bradyrhizobium japonicum at 12, 24, and 48 h after inoculation (HAI) according to Illumina
transcriptome data: the Reads/Kb/Million (RPKM) normalized log2-transformed counts were
visualized in the heatmap. The asterisk indicates a significant difference between rhizobia-inoculated
RH and mock-inoculated RH at the same time point (an absolute fold change of IN/UN > 2, p-value
< 0.05 by binomial test).
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Figure 14. Relative expression levels of GmACA1 and GmACA2 in the roots and leaves of soybean
seedlings after phosphorus-deficiency (−P) treatment for one day (1 d) and 7 days (7 d): the relative
expression levels of GmACA1 and GmACA2 in roots and leaves under phosphorus-sufficient condi-
tions (+P) were normalized to one. Relative expression levels of these genes in soybean leaves and
roots were detected by qRT-PCR. Data presented are mean ± SD from three biological replicates. The
asterisks indicate an absolute fold change > 2 (−P/+P) and p-value < 0.05 by Student’s t-test.

4. Discussion

The P-type ATPase superfamily comprises a large number of ATP-hydrolyzing trans-
porters of cations and phospholipids [1]. Based on their evolutionary relationships and
transporting targets, the superfamily genes are divided into five subfamilies, e.g., P1 to
P5 [2,3]. Many P-type ATPase genes have been indicated to be involved in various cellular
and physiological processes during the whole life of plants [6–9,37]. The P-type ATPase
superfamily genes have been characterized genome-wide in the model plants Arabidopsis
and rice, as well as in some other plants [3,12,41,42,79–81]. The total number of P-type
ATPase genes in Arabidopsis and rice is 47 and 45, respectively [11–13]. In this study, a total
of 105 genes were identified to encode putative P-type ATPases in the soybean genome
(Figure 1 and Tables S1–S6). Phylogenetic analysis suggested that soybean P-type ATPase
genes can be grouped into five subfamilies, i.e., P1B, P2A/B, P3A, P4, and P5, which
is consistent with that in Arabidopsis and other flowering plants [11,41]. The P2C- and
P2D-type Na+ pumps exist in Chlorophyceae (e.g., Ostreococcus tauri and Chlamydomonas
reinhardtii) and moss (e.g., Physcomitrella patens) but appear to have been lost in vascular
plants [3].

The number of the total P-type ATPase genes in soybean is about 2.2 and 2.3 times
higher than that in Arabidopsis and rice, respectively (Figure 2). Soybean is a paleopoly-
ploid with 75% of the genes present in multiple copies [43]. The larger size of the P-type
ATPase gene family in soybean could be attributed to the two whole-genome duplication
events occurred approximately 59 and 13 MYA [43]. Among the P-type ATPase genes in
soybean, one pair of genes (GmHMA1 and GmHMA2) was found to be tandemly dupli-
cated, and 47 pairs of genes were possibly duplicated segmentally (Figure 10 and Table
S7). The time frame of segmental duplication of these genes was estimated to be between
4.59 and 30.52 MYA (Table S7). Thus, the whole genome segmental duplication could
play a major role in the expansion of P-type ATPase genes during the evolution of soy-
bean. Other gene families like SWEET transporters, calcium transporters, and WRKY
transcription factors were also found to be expanded mainly by segmental duplication in
the soybean genome [52,66,82]. Duplicated genes could enhance the adaptation to various
environmental conditions during the evolution of soybean.
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In this study, nearly all of the P-type ATPase genes could be detected in at least one of
the soybean tissues and most of them were expressed in multiple tissues (Figure 11 and
Figure S5), suggesting that these genes are authentic and that they may have functions
during the growth and development of soybean. Some genes in the same subfamily
showed different expression patterns in various tissues, suggesting that they may have
distinct functions during the growth and development of soybean. It is notable that
many of the duplicated gene pairs showed similar tissue expression patterns, suggesting
that they may have redundant functions. However, they may have potential different
roles at specific developmental stages or under specific environmental stresses. The ion
transport of each P-type ATPase is dependent on the ion binding capabilities and affinity
constants [15,83]. Further biochemical experiments are needed to address the specific roles
of homologous proteins. In addition, a number of genes were found to be constitutively
expressed in various tissues (Figure 11 and Figure S5), such as GmHA3-8/20-23, GmHMA5-
8/10-12/14/15/19, and GmACA1/2/5/6/9-14/19/20/23/25/26, suggesting that they may have
general functions during the whole life of soybean. However, some soybean P-type ATPase
genes were expressed in a tissue-specific manner (Figure 11 and Figure S5). The genes
predominantly expressed in the flowers, like GmACA3/4 and GmHA11-15, could play
potential roles in reproductive growth of soybean. Genes strongly expressed in the roots,
like GmHMA1/2 and GmHA1/2, could have putative functions in nutrient uptake and
translocation. Some P-type ATPase genes have been suggested to be expressed strongly in
specific tissues and to play critical roles in diverse physiological processes, such as stomatal
regulation, root development, pollen tube growth, and flower coloration [25,40,84–87].
For example, Arabidopsis PM H+-ATPase genes AHA1 and AHA2 are the dominating
isoforms in the majority of tissues, whereas AHA8, AHA7, AHA6, and AHA9 exhibited high
expression levels in pollen [88]. Recently, it has been found that the simultaneous loss of
function mutation of AHA6, AHA8, and AHA9 delays pollen germination, causes pollen
tube growth defects, and drastically reduces fertility in Arabidopsis [84].

Some P-type ATPase genes play important roles in plant symbiosis with arbuscular
mycorrhizal fungi and rhizobial bacteria [89–92]. For example, Medicago truncatula P2A-
ATPase gene MCA8 has been suggested to be critical for the generation of Ca2+ spiking in
the nucleus, which is essential for legume symbiosis [91]; tomato PM H+-ATPase SlHA8
is critical for arbuscule development and energizing the periarbuscular membrane for
symbiotic phosphate and nitrogen uptake [92]. It is interesting that almost all of the
putative P-type ATPase genes could be detected in soybean root hairs with or without
rhizobia inoculation (Bradyrhizobium japonicum) (Figure 13). Some genes, like GmHMA18,
GmACA21/22, and GmALA15/16 were predominantly expressed in root nodules (Figure 11
and Figure S5). In addition, the expression of some genes, like GmACA19, GmHMA2, and
GmALA1/7 were significantly changed at 12 or 24 HAI (Figure 13). These results suggest
that P-type ATPase genes could participate in the establishment of symbiosis and nodule
development in soybean. Further research is needed to investigate their potential roles in
symbiosis.

The production of soybean all over the world is frequently influenced by various envi-
ronmental stresses. By retrieving published microarray and RNA-seq transcriptome data,
the expression of 51 putative P-type ATPase genes was found to be remarkably affected
by environmental stresses like salt, drought, cold, flooding, and/or phosphate starvation.
These genes included five GmHMA genes (GmHMA6/7/10/11/15) that were induced by cold;
six GmHMA genes (GmHMA2/5/8/13/14/18) that were repressed by salt or dehydration;
four GmACA genes (GmACA1/2/23/25) and three GmHA genes (GmHA1/3/19) that were
induced cold, salt, and/or drought; and eight GmHA genes (GmHA6/16/17/20/21/22/23/24)
that were repressed by cold, drought, and/or salt (Figure 12). Modification of the ex-
pression of HMA genes could affect the transport and distribution of Cu and Zn in plant
cells and could further affect the activities of Cn/Zn superoxide dismutase, which are
closely related to stress tolerance. Many P-type ATPase genes have been indicated to be
involved in stress response and tolerance in plants [26,39,93,94]. For example, AtHMA1,
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an Arabidopsis P1B-type ATPase localized in the chloroplast envelope, is involved in Cu
and Zn transport, and the loss of function mutant hma1 is sensitive to high light and excess
Zn stress [95,96]; rice OsACA6 is involved in salt and drought tolerance by increasing
reactive oxygen species scavenging [24]; and PM H+-ATPase plays a key role in salt and
alkali resistance [97,98]. Ca2+ signals play a very important role in plant response and
tolerance to various stresses. The Ca2+-ATPase has been indicated to be associated with the
generation of Ca2+ signaling and cellular Ca2+ homeostasis [8]. It is interesting that many
Ca2+-ATPase genes were found to be induced by stresses like salt, cold, drought, and phos-
phate starvation (Figure 12). By using qRT-PCR, GmACA1 and GmACA2 were confirmed to
be induced by phosphate starvation after treatment for short and moderate periods (Figure
13). Similarly, the expression of a tomato Ca2+-ATPase gene LCA1 was also increased by
phosphate starvation [99]. Whether the induction of Ca2+-ATPase genes is involved in
the generation of Ca2+ signaling under phosphate starvation, and whether the increased
expression of specific Ca2+-ATPases can enhance phosphate starvation adaptation deserve
further investigations.

5. Conclusions

In this study, 105 putative P-type ATPase genes were identified in the soybean genome.
According to the phylogenetic relationships and the conserved protein domains, they were
classified into five subfamilies. All of the P-type ATPase genes identified included nineteen
P1B, seven P2A, twenty-six P2B, twenty-four P3A, twenty-seven P4, and two P5 genes.
Comprehensive bioinformatic and expression analyses of the P-type ATPase superfamily
provide a foundation for future exploration of the potential cellular and physiological
functions of P-type ATPase genes in growth and development, symbiosis establishment,
and environmental stress tolerance in soybean. Considering the important roles of P-type
ATPases in stress resistance and nutrient utilization in model plants like Arabidopsis and
rice, further research is needed to develop stress-resistant and nutrient-efficient plants by
modulating the expression of P-type ATPase genes in soybean.
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