Fungus-Growing Ants: Models for the Integrative Analysis of Cognition and Brain Evolution

Muratore, Isabella B. and Traniello, James F. A. (2020) Fungus-Growing Ants: Models for the Integrative Analysis of Cognition and Brain Evolution. Frontiers in Behavioral Neuroscience, 14. ISSN 1662-5153

[thumbnail of pubmed-zip/versions/1/package-entries/fnbeh-14-599234/fnbeh-14-599234.pdf] Text
pubmed-zip/versions/1/package-entries/fnbeh-14-599234/fnbeh-14-599234.pdf - Published Version

Download (208kB)

Abstract

Agents of selection for behavioral responses to abiotic, biotic, and social environments are described as cognitive challenges. Research integrating behavior, ecology, and brain evolution has generated a growing literature—and sometimes controversy—over inferences made from correlating cognitive traits with neural metrics. We propose that our understanding of the role of cognition in brain evolution can be advanced through studies of eusocial insect species differing in agricultural practices and degree of division of labor, and thus social complexity. Fungus-growing ants offer diverse systems to assess the impacts of cognitive challenges on behavioral evolution and its neural and genomic architectures. Workers exhibit variability in social role differentiation in association with diet, morphology, group size, and task efficiency. This suite of covarying traits enables the accurate mapping of cognition, worker repertoire breadth, neuroanatomy, and genomic change in light of social evolution.

Item Type: Article
Subjects: Eurolib Press > Biological Science
Depositing User: Managing Editor
Date Deposited: 20 Jan 2023 06:31
Last Modified: 26 Feb 2024 04:13
URI: http://info.submit4journal.com/id/eprint/1160

Actions (login required)

View Item
View Item