Poher, Claude and Poher, Danielle (2020) Quantum Model of Inertia - Predictions - Confirmations, Consequences for Gravitation into Galaxies, and LCDM Cosmology Models. Applied Physics Research, 12 (4). p. 8. ISSN 1916-9639
5f24a3f716faa.pdf - Published Version
Download (2MB)
Abstract
We propose a Quantum model of Inertia using two main hypotheses, (i) existence of a general isotropic flux of Quanta (named “Universons”, which differ from Gravitons), propagating at light velocity into the Universe, (ii) a very short time duration interaction of these Quanta with elementary massive matter particles, with temporary momentum transfer (really a 2π phase shift of the wave function). Model parameters values are obtained from observations. The natural flux has Random Fluctuations in intensity and in direction, predicted to be the cause of Gravitational acceleration, a model of Gravitation is deduced. Predictions of the two models are confirmed by free fall of cold Neutrons; and by strong electrons accelerations into superconducting devices. A supplementary Cosmological acceleration H0 c, from Universe expansion, is predicted and confirmed by Astronomical observations. Galaxies rotation velocities are predicted from quantum fluctuations and H0c effect, solving the enigma that required Cold Dark Matter mass hypothesis. The cosmological concordance model has therefore to be strongly modified, and the isotropic flux expansion could also explain observations without “Dark Energy”.
Item Type: | Article |
---|---|
Subjects: | Eurolib Press > Physics and Astronomy |
Depositing User: | Managing Editor |
Date Deposited: | 18 Apr 2023 05:05 |
Last Modified: | 25 Jan 2024 03:59 |
URI: | http://info.submit4journal.com/id/eprint/1621 |