Modeling the Error Term by Moving Average and Generalized Autoregressive Conditional Heteroscedasticity Processes: An Advanced Research

Agboluaje, Ayodele Abraham and Ismail, Suzilah bt and Yip, Chee Yin (2022) Modeling the Error Term by Moving Average and Generalized Autoregressive Conditional Heteroscedasticity Processes: An Advanced Research. In: Innovations in Science and Technology Vol. 4. B P International, pp. 141-149. ISBN 978-93-5547-093-5

Full text not available from this repository.

Abstract

This study has been able to reveal that the Combine White Noise model outperforms the existing Generalized Autoregressive Conditional Heteroscedasticity (GARCH) and Moving Average (MA) models in modeling the errors, that exhibits conditional heteroscedasticity and leverage effect. MA process cannot model the data that reveals conditional heteroscedasticity and GARCH cannot model the leverage effect also. The standardized residuals of GARCH errors are decomposed into series of white noise, modeled to be Combine White Noise model (CWN). CWN model estimation yields best results with minimum information criteria and high log likelihood values. While the EGARCH model estimation yields better results of minimum information criteria and high log likelihood values when compare with MA model. CWN has the minimum forecast errors which are indications of best results when compare with the GARCH and MA models dynamic evaluation forecast errors. Every result of CWN outperforms the results of both GARCH and MA. The contribution of this study to the scientific community is that the CWN gives good results that improve the weaknesses of the existing models.

Item Type: Book Section
Subjects: Eurolib Press > Multidisciplinary
Depositing User: Managing Editor
Date Deposited: 13 Oct 2023 08:12
Last Modified: 13 Oct 2023 08:12
URI: http://info.submit4journal.com/id/eprint/2656

Actions (login required)

View Item
View Item