The Hemodynamic Effect of Enhanced External Counterpulsation Treatment on Atherosclerotic Plaque in the Carotid Artery: A Framework of Patient-Specific Computational Fluid Dynamics Analysis

Du, Jianhang and Wu, Guangyao and Wu, Bokai and Liu, Chang and Mai, Zhouming and Liu, Yumeng and Wang, Yawei and Zhang, Pandeng and Wu, Guifu and Liu, Jia (2020) The Hemodynamic Effect of Enhanced External Counterpulsation Treatment on Atherosclerotic Plaque in the Carotid Artery: A Framework of Patient-Specific Computational Fluid Dynamics Analysis. Cardiology Research and Practice, 2020. pp. 1-12. ISSN 2090-8016

[thumbnail of 5903790.pdf] Text
5903790.pdf - Published Version

Download (5MB)

Abstract

Long-term enhanced external counterpulsation (EECP) therapy has been recommended for antiatherogenesis in recent clinical observations and trials. However, the precise mechanism underlying the benefits has not been fully clarified. To quantify the effect of EECP intervention on arterial hemodynamic environment, a framework of numerical assessment was introduced using a parallel computing algorithm. A 3D endothelial surface of the carotid artery with mild atherosclerotic plaque was constructed from images of magnetic resonance angiography (MRA). Physiologic boundary conditions were derived from images of the ultrasound flow velocity spectrum measured at the common carotid artery and before and during EECP intervention. Hemodynamic factors relating to wall shear stress (WSS) and its spatial and temporal fluctuations were calculated and analyzed, which included AWSS, OSI, and AWSSG. Measuring and computational results showed that diastole blood pressure, perfusion, and WSS level in carotid bifurcation were significantly increased during EECP intervention. Mean AWSS level throughout the model increased by 16.9%, while OSI level did not show a significant change during EECP. We thus suggested that long-term EECP treatment might inhibit the initiation and development of atherosclerotic plaque via improving the hemodynamic environment in the carotid artery. Meanwhile, EECP performance induced a 19.6% increase in AWSSG level, and whether it would influence the endothelial functions may need a further study. Moreover, the numerical method proposed in this study was expected to be useful for the instant assessment of clinical application of EECP .

Item Type: Article
Subjects: Eurolib Press > Medical Science
Depositing User: Managing Editor
Date Deposited: 04 Mar 2023 06:47
Last Modified: 02 Jan 2024 12:54
URI: http://info.submit4journal.com/id/eprint/713

Actions (login required)

View Item
View Item