Convection-Diffusion Equations in Uniformly Local Lebesgue Spaces

Khatun, Mahfuza and Islam, Md. Zahidul and Haque, Md. Rabiul (2024) Convection-Diffusion Equations in Uniformly Local Lebesgue Spaces. Asian Journal of Mathematics and Computer Research, 31 (3). pp. 63-74. ISSN 2395-4213

[thumbnail of Khatun3132024AJOMCOR12248.pdf] Text
Khatun3132024AJOMCOR12248.pdf - Published Version

Download (535kB)

Abstract

In this paper, we establish the local existence and uniqueness of the mild solution to the Cauchy problem for convection-diffusion equation in n-dimensional Euclidean space with initial data in uniformly local function spaces \(L^r_{uloc,\rho}\)(\(\mathbb{R}^n\)). For the proof, we apply the uniformly local \(L^p_{uloc,\rho}\)(\(\mathbb{R}^n\)) - \(L^q_{uloc,\rho}\)(\(\mathbb{R}^n\)) estimate for the convolution operators got by Maekawa and Terasawa [1], and the Banach fixed point hypothesis.

Item Type: Article
Subjects: Eurolib Press > Mathematical Science
Depositing User: Managing Editor
Date Deposited: 03 Aug 2024 06:47
Last Modified: 03 Aug 2024 06:47
URI: http://info.submit4journal.com/id/eprint/3725

Actions (login required)

View Item
View Item