Khatun, Mahfuza and Islam, Md. Zahidul and Haque, Md. Rabiul (2024) Convection-Diffusion Equations in Uniformly Local Lebesgue Spaces. Asian Journal of Mathematics and Computer Research, 31 (3). pp. 63-74. ISSN 2395-4213
Khatun3132024AJOMCOR12248.pdf - Published Version
Download (535kB)
Abstract
In this paper, we establish the local existence and uniqueness of the mild solution to the Cauchy problem for convection-diffusion equation in n-dimensional Euclidean space with initial data in uniformly local function spaces \(L^r_{uloc,\rho}\)(\(\mathbb{R}^n\)). For the proof, we apply the uniformly local \(L^p_{uloc,\rho}\)(\(\mathbb{R}^n\)) - \(L^q_{uloc,\rho}\)(\(\mathbb{R}^n\)) estimate for the convolution operators got by Maekawa and Terasawa [1], and the Banach fixed point hypothesis.
Item Type: | Article |
---|---|
Subjects: | Eurolib Press > Mathematical Science |
Depositing User: | Managing Editor |
Date Deposited: | 03 Aug 2024 06:47 |
Last Modified: | 03 Aug 2024 06:47 |
URI: | http://info.submit4journal.com/id/eprint/3725 |